首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
Signal recognition particle (SRP) and trigger factor (TF) both bind to ribosomal protein L23 at the peptide exit area on the 50S subunit of the E. coli ribosome. In this study, we have developed a spin-down assay and used it to estimate KD values and the corresponding enthalpies for the binding of radio-labelled SRP and TF to naked ribosomes and to ribosomes carrying a tetrapeptidyl-tRNA in the P site. At 20 degrees C, the KD value for TF binding is 2 microM and for SRP it is 170 nM for naked as well as for translating ribosomes. At 4 degrees C, the KD values for TF and SRP binding are 1.1 microM and 90 nM, respectively. Competition binding experiments reveal that SRP and TF bind simultaneously to the ribosome with little affinity interference, showing that the factors have separate binding sites on L23. This makes an alternating binding mode for TF and SRP less plausible.  相似文献   

5.
We analysed complexes formed during recognition of the lacUV5 promoter by E. coli RNA polymerase using formaldehyde as a DNA-protein and protein-protein cross-linking reagent. Most of the cross-linked complexes specific for the open complex (RPO) contain the beta' subunit of RNA polymerase cross-linked with promoter DNA in the regions: -50 to -49; -5 to -10; + 5 to +8 and +18 to +21. The protein-protein cross-linking pattern of contacting subunits is the same for the RNA polymerase in solution and in RPO: there are strong sigma-beta' and beta-beta' interactions. In contrast, only beta-beta' cross-links were detected in the closed (RPC) and intermediate (RPI) complexes. In presence of lac repressor before or after formation of the RPO cross-linking pattern is similar with that of RPI (RPC) complex.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
DNA binding domain of Sp1 encompassing three Cys2His2-type Zn-finger motifs is cloned and expressed in E.coli. The Sp1 fragment shows metal-dependent folding and DNA binding. The Zn(II)-induced folding of the three fingers is probably cooperative. Release of one equivalent of Zn decreases but does not abolish DNA binding activity of Sp1.  相似文献   

14.
15.
16.
The E site (exit site for deacyl-tRNA) has been shown to be allosterically linked to the A site (aminoacyl-tRNA binding site), in that occupation of the E site reduces the affinity of the A site, and vice versa, whereas the intervening peptidyl-tRNA binding site (P site) keeps its high affinity. Here the question is analysed of whether or not the low affinity state of the A site caused by an occupied E site is of importance for the ribosomal accuracy of the aminoacyl-tRNA selection. In a poly(U) dependent system with high accuracy in poly(Phe) synthesis, the acceptance of the cognate ternary complex Phe-tRNA--EF-Tu--GTP (which has the correct anticodon with respect to the codon at the A site) was compared with the competing acceptance of ternary complexes with near-cognate Leu-tRNA(Leu) (which has a similar anticodon) or non-cognate Asp-tRNA(Asp) (which has a dissimilar anticodon), by monitoring the formation of AcPhePhe, AcPheLeu or AcPheAsp, respectively. Cognate (but not near-cognate) occupation of the E site reduced synthesis of the 'wrong' dipeptide AcPheLeu only marginally relative to that of the cognate AcPhe2, whereas the formation of AcPheAsp was decreased as much as 14-fold, thereby reducing it to the background level. It follows that the allosteric interplay between E and A sites, i.e. the low affinity of the A site induced by the occupation of the E site, excludes the interference of non-cognate complexes in the decoding process and thus reduces the number of aminoacyl-tRNA species competing for A site binding by an order of magnitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
19.
20.
T Pape  W Wintermeyer    M V Rodnina 《The EMBO journal》1998,17(24):7490-7497
The kinetic mechanism of elongation factor Tu (EF-Tu)-dependent binding of Phe-tRNAPhe to the A site of poly(U)-programmed Escherichia coli ribosomes has been established by pre-steady-state kinetic experiments. Six steps were distinguished kinetically, and their elemental rate constants were determined either by global fitting, or directly by dissociation experiments. Initial binding to the ribosome of the ternary complex EF-Tu.GTP.Phe-tRNAPhe is rapid (k1 = 110 and 60/micromM/s at 10 and 5 mM Mg2+, 20 degreesC) and readily reversible (k-1 = 25 and 30/s). Subsequent codon recognition (k2 = 100 and 80/s) stabilizes the complex in an Mg2+-dependent manner (k-2 = 0.2 and 2/s). It induces the GTPase conformation of EF-Tu (k3 = 500 and 55/s), instantaneously followed by GTP hydrolysis. Subsequent steps are independent of Mg2+. The EF-Tu conformation switches from the GTP- to the GDP-bound form (k4 = 60/s), and Phe-tRNAPhe is released from EF-Tu.GDP. The accommodation of Phe-tRNAPhe in the A site (k5 = 8/s) takes place independently of EF-Tu and is followed instantaneously by peptide bond formation. The slowest step is dissociation of EF-Tu.GDP from the ribosome (k6 = 4/s). A characteristic feature of the mechanism is the existence of two conformational rearrangements which limit the rates of the subsequent chemical steps of A-site binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号