首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the concentration of free iron in the human host is low, efficient iron-acquisition mechanisms constitute important virulence factors for pathogenic bacteria. In Gram-negative bacteria, TonB-dependent outer membrane receptors are implicated in iron acquisition. It is far less clear how other metals that are also scarce in the human host are transported across the bacterial outer membrane. With the aim of identifying novel vaccine candidates, we characterized in this study a hitherto unknown receptor in Neisseria meningitidis. We demonstrate that this receptor, designated ZnuD, is produced under zinc limitation and that it is involved in the uptake of zinc. Upon immunization of mice, it was capable of inducing bactericidal antibodies and we could detect ZnuD-specific antibodies in human convalescent patient sera. ZnuD is highly conserved among N. meningitidis isolates and homologues of the protein are found in many other Gram-negative pathogens, particularly in those residing in the respiratory tract. We conclude that ZnuD constitutes a promising candidate for the development of a vaccine against meningococcal disease for which no effective universal vaccine is available. Furthermore, the results suggest that receptor-mediated zinc uptake represents a novel virulence mechanism that is particularly important for bacterial survival in the respiratory tract.  相似文献   

2.
目的:鱼类病原菌荧光假单胞菌是一种革兰氏阴性菌,在水产上可以引起多种经济鱼类的疾病,作为一种鱼类病原菌目前对其致病机理还知之甚少。本研究从鱼类病原菌荧光假单胞菌TSS中克隆得到了一个Ton B依赖型的外膜受体(命名为P698),分析了其与细菌致病性的关系,研究了P698作为亚单位疫苗的免疫保护效应。方法:通过序列分析、荧光定量PCR、基因敲除、体外蛋白重组等方法研究P698的蛋白结构、表达情况以及其与细菌毒力的联系和免疫原性。结果:研究发现P698具有Ton B依赖型外膜受体家族的典型结构。与正常培养条件相比,在缺铁条件下培养的TSS中p698基因的表达没有明显变化。通过插入失活获得p698缺失的突变株TSSP,生长分析发现跟野生株相比,突变株TSSP的生长能力有明显降低。在以大菱鲆为模型的活体侵染实验中发现,与野生株相比,突变株的体内侵染复制能力都有明显降低。为检测P698的免疫保护性,我们对P698进行了体外重组表达,获得了重组蛋白。用重组P698蛋白作亚单位疫苗免疫大菱鲆,在免疫后一个月的鱼体检测到了特异抗体的存在,并且受免疫鱼对于致死剂量的TSS攻毒表现出了显著的保护效应。结论:我们的研究结果表明P698与细菌的侵染有一定相关性,并且作为亚单位疫具有一定的免疫保护效应。  相似文献   

3.
TonB-dependent transporters (TBDTs) are bacterial outer membrane proteins that are usually involved in the uptake of certain key nutrients, for example iron. In the genome of Salmonella enterica ssp. enterica serovar Typhi, the yncD gene encodes a putative TBDT and was identified recently as an in vivo-induced antigen. In the present study, a yncD-deleted mutant was constructed to evaluate the role of the yncD gene in virulence. Our results showed that the mutant is attenuated in a mouse model by intraperitoneal injection and its virulence is restored by the transformation of a complement plasmid. The competition experiments showed that the survival ability of the yncD-deleted mutant decreases significantly in vivo. To evaluate its vaccine potential, the yncD-deleted mutant was inoculated intranasally in the mouse model. The findings demonstrated a significant immunoprotection against the lethal wild-type challenge. The regulation analysis showed that yncD gene promoter is upregulated under acidic condition. The present study demonstrates that the yncD gene plays an important role in bacterial survival inside the host and is suitable for the construction of attenuated vaccine strains as a candidate target gene.  相似文献   

4.
Iron acquisition systems in the pathogenic Neisseria   总被引:1,自引:0,他引:1  
Pathogenic neisseriae have a repertoire of high-affinity iron uptake systems to facilitate acquisition of this essential element in the human host. They possess surface receptor proteins that directly bind the extracellular host iron-binding proteins transferrin and lactoferrin. Alternatively, they have siderophore receptors capable of scavenging iron when exogenous siderophores are present. Released intracellular haem iron present in the form of haemoglobin, haemoglobin-haptoglobin or free haem can be used directly as a source of iron for growth through direct binding by specific surface receptors. Although these receptors may vary in complexity and composition, the key protein involved in the transport of iron (as iron, haem or iron-siderophore) across the outer membrane is a TonB-dependent receptor with an overall structure presumably similar to that determined recently for Escherichia coli FhuA or FepA. The receptors are potentially ideal vaccine targets in view of their critical role in survival in the host. Preliminary pilot studies indicate that transferrin receptor-based vaccines may be protective in humans.  相似文献   

5.
Neisseria gonorrhoeae has evolved a repertoire of iron acquisition systems that facilitate essential iron uptake in the human host. Acquisition of iron requires both the energy-harnessing cytoplasmic membrane protein, TonB, as well as specific outer membrane TonB-dependent transporters (TdTs.) Survival within host epithelial cells is important to the pathogenesis of gonococcal disease and may contribute to the persistence of infection. However, the mechanisms by which gonococci acquire iron within this intracellular niche are not currently understood. In this study, we investigated the survival of gonococcal strain FA1090 within ME180 human cervical epithelial cells with respect to high affinity iron acquisition. Intracellular survival was dependent upon iron supplied by the host cell. TonB was expressed in the host cell environment and this protein was critical to gonococcal intracellular survival. Furthermore, expression of the characterized outer membrane transporters TbpA, FetA and LbpA and putative transporters TdfG, TdfH and TdfJ were not necessary for intracellular survival. Conversely, intracellular survival was dependent on expression of the putative transporter, TdfF. Expression of TdfF was detected in the presence of epithelial cell culture media containing fetal bovine serum. Expression was further modulated by iron availability. To our knowledge, this study is the first to demonstrate the specific requirement for a single iron transporter in the survival of a bacterial pathogen within host epithelial cells.  相似文献   

6.
Pyochelin is a siderophore and virulence factor common to Burkholderia cepacia and several Pseudomonas strains. We describe at 2.0 A resolution the crystal structure of the pyochelin outer membrane receptor FptA bound to the iron-pyochelin isolated from Pseudomonas aeruginosa. One pyochelin molecule bound to iron is found in the protein structure, providing the first three-dimensional structure at the atomic level of this siderophore. The pyochelin molecule provides a tetra-dentate coordination of iron, while the remaining bi-dentate coordination is ensured by another molecule not specifically recognized by the protein. The overall structure of the pyochelin receptor is typical of the TonB-dependent transporter superfamily, which uses the proton motive force from the cytoplasmic membrane through the TonB-ExbB-ExbD energy transducing complex to transport ferric ions across the bacterial outer membrane: a transmembrane 22 beta-stranded barrel occluded by a N-terminal domain that contains a mixed four-stranded beta-sheet. The N-terminal TonB box is disordered in two crystal forms, and loop L8 is found to point towards the iron-pyochelin complex, suggesting that the receptor is in a transport-competent conformation.  相似文献   

7.
Heme, an iron supply for vibrios pathogenic for fish   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
10.
We have previously developed a mouse model based on transient bacteraemia in normal B10.M mice to evaluate the protective efficacy of outer membrane vesicle vaccines against serogroup B meningococci. To obtain a course of infection similar to that observed in man, we have in this work modified the mouse model by administration of human holo-transferrin upon bacterial challenge. Co-challenge with holo-transferrin induced increasing bacteraemia and subsequent death in normal non-immune mice, but not in vaccinated animals. The model system is dependent on challenge with meningococci expressing the transferrin receptor which is obtained by culturing the bacteria under iron restriction. The modified model system for protection against meningococcal infection presented here makes it possible to measure outer membrane vesicle vaccine induced protection by using bacteraemia as well as survival as parameters.  相似文献   

11.
Iron uptake in proteobacteria by TonB-dependent outer membrane transporters represents a well-explored subject. In contrast, the same process has been scarcely investigated in cyanobacteria. The heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 is known to secrete the siderophore schizokinen, but its transport system has remained unidentified. Inspection of the genome of strain PCC 7120 shows that only one gene encoding a putative TonB-dependent iron transporter, namely alr0397, is positioned close to genes encoding enzymes involved in the biosynthesis of a hydroxamate siderophore. The expression of alr0397, which encodes an outer membrane protein, was elevated under iron-limited conditions. Inactivation of this gene caused a moderate phenotype of iron starvation in the mutant cells. The characterization of the mutant strain showed that Alr0397 is a TonB-dependent schizokinen transporter (SchT) of the outer membrane and that alr0397 expression and schizokinen production are regulated by the iron homeostasis of the cell.  相似文献   

12.
13.
Bacteria are able to survive in low-iron environments by sequestering this metal ion from iron-containing proteins and other biomolecules such as transferrin, lactoferrin, heme, hemoglobin, or other heme-containing proteins. In addition, many bacteria secrete specific low molecular weight iron chelators termed siderophores. These iron sources are transported into the Gram-negative bacterial cell through an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. In different strains the outer membrane receptors can bind and transport ferric siderophores, heme, or Fe3+ as well as vitamin B12, nickel complexes, and carbohydrates. The energy that is required for the active transport of these substrates through the outer membrane receptor is provided by the TonB/ExbB/ExbD complex, which is located in the cytoplasmic membrane. In this minireview, we will briefly examine the three-dimensional structure of TonB and the current models for the mechanism of TonB-dependent energy transduction. Additionally, the role of TonB in colicin transport will be discussed.  相似文献   

14.
The Neisseris meningitidis haemoglobin receptor gene, hmbR, was cloned by complementation in a porphyrin-requiring Escherichia coli mutant. hmbR encodes an 89.5 kDa outer membrane protein which shares amino acid homology with the TonB-dependent receptors of Gram-negative bacteria. HmbR had the highest similarity to Neisseria transferrin and lactoferrin receptors. The utilization of haemoglobin as an iron source required internalization of the haemin moiety by the cell. The mechanism of haemin internalization via the haemoglobin receptor was TonB-dependent in E. coli. A N. meningitidis hmbR mutant was unable to use haemoglobin but could still use haemin as a sole iron source. The existence of a second N. meningitidis receptor gene, specific for haemin, was shown by the isolation of cosmids which did not hybridize with the hmbR probe, but which were able to complement an E. coli hemA aroB mutant on haemin-supplemented plates. The N. meningitidis hmbR mutant was attenuated in an infant rat model for meningococcal infection, indicating that haemoglobin utilization is important for N. meningitidis virulence.  相似文献   

15.
Gram-negative pathogenic bacteria have evolved novel strategies to obtain iron from host haem-sequestering proteins. These include the production of specific outer membrane receptors that bind directly to host haem-sequestering proteins, secreted haem-binding proteins (haemophores) that bind haem/haemoglobin/haemopexin and deliver the complex to a bacterial cell surface receptor and bacterial proteases that degrade haem-sequestering proteins. Once removed from haem-sequestering proteins, haem may be transported via the bacterial outer membrane receptor into the cell. Recent studies have begun to define the steps by which haem is removed from bacterial haem proteins and transported into the cell. This review describes recent work on the discovery and characterization of these systems. Reference is also made to the transport of haem in serum (via haemoglobin, haemoglobin/haptoglobin, haemopexin, albumin and lipoproteins) and to mechanisms of iron removal from the haem itself (probably via a haem oxygenase pathway in which the protoporphyrin ring is degraded). Haem protein-receptor interactions are discussed in terms of the criteria that govern protein-protein interactions in general, and connections between haem transport and the emerging field of metal transport via metallochaperones are outlined.  相似文献   

16.
17.
18.
肠杆菌共同抗原(Enterobacterial common antigen,ECA)是由多糖重复单元组成的多聚糖,几乎表达于所有肠杆菌细菌外膜,具有生物学功能。ECA由多基因协同作用而合成,这些基因在肠杆菌细菌基因组上成簇存在,形成ECA抗原基因簇。ECA是重要的毒力因子,在肠杆菌细菌入侵宿主、体内存活等过程中有一定作用。同时,ECA在维持细菌外膜渗透屏障、鞭毛表达、群集运动及抗胆酸胆盐等方面也有重要作用。此外,锚定在细菌脂多糖核心区的ECALPS还是细菌重要的表面抗原,能激发宿主产生高水平抗体,可以作为疫苗研究的靶点。结合笔者的研究,文中对ECA纯化、基因结构和合成、免疫特性、生物学功能及应用等方面进行了综述。  相似文献   

19.
IrgA is an iron-regulated virulence factor for infection in an animal model with classical Vibrio cholerae strain 0395. We detected gene sequences hybridizing to irgA at high stringency in clinical isolates in addition to 0395, including another classical strain of V. cholerae, three V. cholerae strains of the El Tor biotype, three non-O1 isolates of V. cholerae, and individual isolates of Vibrio parahaemolyticus, Vibrio fluvialis, and Vibrio alginolyticus. No hybridization to irgA was seen with chromosomal DNA from Vibrio vulnificus or Aeromonas hydrophila. To verify that irgA is the structural gene for the major iron-regulated outer membrane protein of V. cholerae, we determined the amino-terminal sequence of this protein recovered after gel electrophoresis and demonstrated that it corresponds to the amino acid sequence of IrgA deduced from the nucleotide sequence. Gel electrophoresis showed that two El Tor strains of V. cholerae had a major iron-regulated outer membrane protein identical in size and appearance to IrgA in strain 0395, consistent with the findings of DNA hybridization. We have previously suggested that IrgA might be the outer membrane receptor for the V. cholerae siderophore, vibriobactin. Biological data presented here, however, show that a mutation in irgA had no effect on the transport of vibriobactin and produced no defect in the utilization of iron from ferrichrome, ferric citrate, haemin or haemoglobin. The complete deduced amino acid sequence of IrgA demonstrated homology to the entire class of Escherichia coli TonB-dependent proteins, particularly Cir. Unlike the situation with Cir, however, we were unable to demonstrate a role for IrgA as a receptor for catechol-substituted cephalosporins. The role of IrgA in the pathogenesis of V. cholerae infection, its function as an outer membrane receptor, and its potential interaction with a TonB-like protein in V. cholerae remain to be determined.  相似文献   

20.
Infection, survival, and proliferation of pathogenic bacteria in humans depend on their capacity to impair host responses and acquire nutrients in a hostile environment. Among such nutrients is heme, a co-factor for oxygen storage, electron transport, photosynthesis, and redox biochemistry, which is indispensable for life. Porphyromonas gingivalis is the major human bacterial pathogen responsible for severe periodontitis. It recruits heme through HmuY, which sequesters heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. Here we report that heme binding does not significantly affect the secondary structure of HmuY. The crystal structure of heme-bound HmuY reveals a new all-β fold mimicking a right hand. The thumb and fingers pinch heme iron through two apical histidine residues, giving rise to highly symmetric octahedral iron co-ordination. The tetrameric quaternary arrangement of the protein found in the crystal structure is consistent with experiments in solution. It shows that thumbs and fingertips, and, by extension, the bound heme groups, are shielded from competing heme-binding proteins from the host. This may also facilitate heme transport to HmuR for internalization. HmuY, both in its apo- and in its heme-bound forms, is resistant to proteolytic digestion by trypsin and the major secreted proteases of P. gingivalis, gingipains K and R. It is also stable against thermal and chemical denaturation. In conclusion, these studies reveal novel molecular properties of HmuY that are consistent with its role as a putative virulence factor during bacterial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号