首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cuticular melanism and innate immune parameters can share common physiological pathways in insects, and this functional connection may contribute to the maintenance of insect colour polymorphisms. However, evidence linking colouration and immune function has been equivocal, particularly when tested in wild populations. The present study investigates phenotypic links between colouration and immune function in migratory Mormon crickets (Anabrus simplex, Haldeman), in which juveniles occur in conspicuous colour variants but mature to become uniformly melanic adults. Wild‐caught insects are used to evaluate the relationship between juvenile colouration and three immune parameters: encapsulation ability, lysozyme‐like activity and phenoloxidase activity. As nymphs, brown crickets are better able to encapsulate an inert implant introduced into the haemocoel than green crickets, although the difference is slight and ceases after they all become darkly‐coloured adults. By contrast, adults that develop from brown nymphs have a higher basal phenoloxidase activity than those that develop from green nymphs, regardless of the fact that all adults are brown. Intrinsic factors other than colouration exert larger effects on immunity: males show stronger encapsulation responses but lower phenoloxidase activity than females, suggesting a sex‐specific trade‐off between these two immune parameters, and adults exhibit higher immune function than nymphs. In summary, modest support is found for a correlation between cuticular melanism and increased immune function in wild Mormon crickets. Additional intrinsic factors such as developmental stage and sex appear to interact with colouration and have a more substantial connection to immune function in the wild.  相似文献   

2.
Insects have innate immunity that may be weakened by resource allocation to growth. I measured enzymatic immunity, encapsulation response, and susceptibility to fungal infection in Mormon crickets of known age. Although the concentrations of circulating spontaneous and total phenoloxidase (PO) increased with age from the most recent molt in late instar nymphs (5th, 6th, and 7th) and 0-5 day old adults, mean values did not differ between stadia, indicating that circulating PO titers are knocked back with each molt. In contrast, encapsulation rate increased throughout nymphal development and adult maturation. No longer required to molt, adult PO titers increased steadily with age. Survivorship also increased with the age at which Metarhizium acridum fungus was applied to adults. I conclude that immunity relevant to defense against fungi continues to develop well into the adult stage. With each molt setting the insects back in circulating PO titers, very young adults are much like nymphs in enzymatic immunity.  相似文献   

3.
Carbohydrates and protein comprise two of the major macronutrients and many animals regulate their dietary intake of both. In the field, the carbohydrate (C) to protein (P) intake of Mormon crickets Anabrus simplex Haldeman (Orthoptera: Tettigoniidae) is indicative of a nutritional imbalance affecting both migration and immunity. In the present study, dietary choice experiments in the laboratory are used to investigate the preferences of Mormon cricket nymphs and adults for C and P. Diets of differing C : P ratios and amounts are presented in pairs to permit Mormon crickets to reach an intake target of C : P from four unique starting points. After the last pair of diets is removed, phenoloxidase (PO) and anti‐bacterial activity are assayed. Both males and females at the adult and nymphal stages show a strong preference for the diet richest in macronutrients, with an equal preference for C or P. When given a choice between a high C diet or a high P diet, Mormon crickets select both at random, balancing their daily intake of C and P. Weight gain is dependent on the mass of P consumed, with a conversion factor greater than four times that of C consumed. As predicted, Mormon cricket nymphs and adults that consume more P have higher titres of total phenoloxidase and, in addition, lysozyme‐like anti‐bacterial activity is independent of dietary treatment. In nature, omnivores might consume an excess of one macronutrient because they often find the other through active searching of their local habitat. However, environmental change and interspecific or intraspecific competition can challenge the ability of an organism to encounter the required nutrients on a local scale, contributing to long‐distance migratory behaviours.  相似文献   

4.
1. Mormon crickets form large migratory bands that march over rangeland in the western United States seeking salt and protein. Immune defence is particularly relevant to survival in migratory bands, but little is known about the role of nutrition in insect immunocompetence. We hypothesised that immune defences are compromised in these migratory bands due to nutrient limitations. 2. In a migratory band in Utah, we investigated whether access to a protein relative to a carbohydrate diet would immediately reduce migratory activity, as had been shown for Mormon crickets in a previous study in Idaho, and whether the protein diet would enhance immune defence responses. 3. Radio‐tracking Mormon crickets in the field, we found that locomotor activity was significantly and positively associated with body mass. Body mass‐adjusted locomotor activity declined marginally following access to a protein diet, whereas spontaneous phenoloxidase (PO) activity was enhanced by the same diet. The encapsulation response and lysozyme‐like activity were directly proportional to body mass, but unaffected by the dietary treatments in the short term. Within 6 h of feeding on protein or carbohydrates, Mormon crickets exhibited measurable effects on the immune system. 4. We conclude that nutrition impacts immune function in migrating insects in the field. Spontaneous PO activity may be limited by dietary deficiency in a protein‐seeking band of Mormon crickets.  相似文献   

5.
Cannibalism has been shown to be important to the collective motion of mass migratory bands of insects, such as locusts and Mormon crickets. These mobile groups consist of millions of individuals and are highly destructive to vegetation. Individuals move in response to attacks from approaching conspecifics and bite those ahead, resulting in further movement and encounters with others. Despite the importance of cannibalism, the way in which individuals make attack decisions and how the social context affects these cannibalistic interactions is unknown. This can be understood by examining the decisions made by individuals in response to others. We performed a field investigation which shows that adult Mormon crickets were more likely to approach and attack a stationary cricket that was side-on to the flow than either head- or abdomen-on, suggesting that individuals could reduce their risk of an attack by aligning with neighbours. We found strong social effects on cannibalistic behaviour: encounters lasted longer, were more likely to result in an attack, and attacks were more likely to be successful if other individuals were present around a stationary individual. This local aggregation appears to be driven by positive feedback whereby the presence of individuals attracts others, which can lead to further crowding. This work improves our understanding of the local social dynamics driving migratory band formation, maintenance and movement at the population level.  相似文献   

6.
Field efficacy of the entomopathogenic Ascomycetes Beauveria bassiana strain GHA and Metarhizium brunneum strain F52 was evaluated against nymphs of the Mormon cricket, Anabrus simplex. Fungi were applied with a new apparatus that allows simulated aerial sprays to 0.1-m2 areas in the field. The Mormon crickets were then individually housed in cylindrical, metal hardware cloth cages on treated grass. Both fungi demonstrated only marginal success in reducing immature Mormon cricket survival in the field cages. After 28 days, the field mortality of insects, corrected for control deaths, was 28 and 45% for B. bassiana and M. brunneum, respectively. Field-exposed but laboratory-incubated insects, however, suffered 90–100% mortality within 12 days with initial deaths occurring on Day 6 (Beauveria) or Day 5 (Metarhizium), indicating a lethal rate was applied and acquired by the crickets in the field. Potential daily body temperatures were determined for the entire post-treatment observation period using special thermal surrogates. High ambient temperatures and/or thermoregulation by Mormon crickets, in excess of the upper thermal limits of both fungi, prevented higher mortality from being expressed in the field. Thermal surrogates were used to develop models for predicting onset of mortality from infections. The surrogate data indicated mortality should begin between 8 and 26 days after treatment with M. brunneum and 11 and 33 days after treatment with B. bassiana. The timing of mortality in field cages was consistent with the upper boundaries of the temporal models developed from the thermal surrogates, i.e., at or after 28 days after treatment.  相似文献   

7.
1. Semi-arid rangeland productivity is limited by precipitation, and yet droughts are projected to increase in frequency and duration with unknown impacts on insect populations. As some katydids prolong diapause and remain in an egg bank as a blastoderm for multiple growing seasons, is it possible that drought could prolong diapause and promote outbreaks by synchronising embryonic development and hatching of Mormon crickets, Anabrus simplex, after moisture is restored? 2. In this study, a high-elevation Wyoming population (WY) was compared with a mid-elevation Idaho (ID) and a low-elevation Oregon population (OR). It was predicted that eggs from the drier ID and OR habitats would be more tolerant of desiccation. Developmental state and water loss of eggs were measured after drought treatments, and when moisture was restored. 3. The two drier treatments had significantly more WY eggs prolonging diapause until after drought ended compared with the two wetter treatments. Whether WY eggs developed in the second or subsequent warm periods was independent of drought treatments. Significantly fewer OR embryos developed in the driest treatment compared with the others, whereas almost all ID eggs developed irrespective of the drought treatment. 4. In conclusion, Mormon crickets can delay embryonic development to improve drought tolerance. Although drought did not synchronise development and hatching, diapause plasticity allowed insects to cope and await more favourable conditions. 5. Unexpectedly, eggs from WY (the highest, wettest site) were more tolerant, because postponing development resulted in less water loss than in developed embryos. OR egg loss was also reduced by prolonging diapause, relative to ID, which developed in even the driest conditions.  相似文献   

8.
Food may act as a proximate factor in the regulation of avian seasonal breeding. Food cues could provide particularly important seasonal information to birds living in variable tropical environments, but this has not yet been tested. Spotted antbirds (Hylophylax n. naevioides) inhabiting a humid forest in central Panama (9 degrees N) likely use changes in the tropical photoperiod to time reproduction on a long-term, seasonal basis. We predicted that these insectivorous birds also adjust reproduction to short-term cues such as food availability because the onset of the rainy season and the resulting increase in insect abundance varies considerably between years. To test this prediction, prior to their breeding season (when they had half-maximal gonads), we either exposed captive male spotted antbirds to an ad libitum standard diet only or added live crickets to this diet. Males that received live crickets significantly increased gonad sizes within 3 weeks over controls on the standard diet. Moreover, in six additional experiments cricket availability always increased song rate, usually within a few days. The stimulatory effect of live crickets on song activity may function independent of nutritional aspects: Freshly killed crickets, providing similar nutritional content as live crickets, did not stimulate the birds' song activity. However, song activity increased to intermediate levels when live crickets were shown under a clear plastic wrap, i.e., when birds could see but not eat crickets. We hypothesize that the opportunity to see and handle live insects stimulates song and reproductive activity in these birds. Our data indicate for the first time that a tropical rainforest bird can use food cues to evaluate the suitability of local environmental conditions for breeding. J. Exp. Zool. 286:494-504, 2000.  相似文献   

9.
The flight potential of Nephotettix virescens (Distant), the most important vector of rice tungro virus disease, was assessed using tethered flight techniques. Most individuals tested were not willing to fly in response to stimulation, or flew for very short times. A small proportion of leafhoppers flew for long periods and one female flew for almost 7 h, indicating the potential for long distance dispersal of insects and inoculum. Few individuals flew before four days of age and thereafter flight profiles were similar for insects aged between four and 12 days. Mature females were more flight willing when kept as adults in mixed groups with males than when caged separately. There was no consistent effect on flight performance when insects were reared on rice varieties with different levels of leafhopper resistance. The flight activity of N. virescens was greater when leafhoppers were reared on mature, compared with young, rice plants. Leafhoppers reared through one generation on tungro-diseased rice plants were less willing to fly than individuals maintained on healthy plants of the same age and variety, whereas those tested after a 24-h access period to tungro-diseased plants were more flight-willing. The results are discussed in relation to the spread of tungro and to management interventions for the control of the disease.  相似文献   

10.
Since the discovery of adult neurogenesis, a major issue is the role of newborn neurons and the function-dependent regulation of adult neurogenesis. We decided to use an animal model with a relatively simple brain to address these questions. In the adult cricket brain as in mammals, new neurons are produced throughout life. This neurogenesis occurs in the main integrative centers of the insect brain, the mushroom bodies (MBs), where the neuroblasts responsible for their formation persist after the imaginal molt. The rate of production of new neurons is controlled not only by internal cues such as morphogenetic hormones but also by external environmental cues. Adult crickets reared in an enriched sensory environment experienced an increase in neuroblast proliferation as compared with crickets reared in an impoverished environment. In addition, unilateral sensory deprivation led to reduced neurogenesis in the MB ipsilateral to the lesion. In search of a functional role for the new cells, we specifically ablated MB neuroblasts in young adults using brain-focused gamma ray irradiation. We developed a learning paradigm adapted to the cricket, which we call the "escape paradigm." Using this operant associative learning test, we showed that crickets lacking neurogenesis exhibited delayed learning and reduced memory retention of the task when olfactory cues were used. Our results suggest that environmental cues are able to influence adult neurogenesis and that, in turn, newly generated neurons participate in olfactory integration, optimizing learning abilities of the animal, and thus its adaptation to its environment. Nevertheless, odor learning in adult insects cannot always be attributed to newly born neurons because neurogenesis is completed earlier in development in many insect species. In addition, many of the irradiated crickets performed significantly better than chance on the operant learning task.  相似文献   

11.
The use of edible insects has a long history in China, where they have been consumed for more than 2000 years. In general, the level of acceptance is high for the consumption of insects in China. Many studies on edible insects have been conducted in the last 20 years, and the scope of the research includes the culture of entomophagy and the identification, nutritional value, farming and breeding of edible insects, in addition to food production and safety. Currently, 324 species of insects from 11 orders are documented that are either edible or associated with entomophagy in China, which include the common edible species, some less commonly consumed species and some medicinal insects. However, only approximately 10 to 20 types of insects are regularly consumed. The nutritional values for 174 species are available in China, including edible, feed and medicinal species. Although the nutritional values vary among species, all the insects examined contain protein, fat, vitamins and minerals at levels that meet human nutritional requirements. Edible insects were, and continue to be, consumed by different ethnic groups in many parts of China. People directly consume insects or food products made from insects. The processing of products from insect protein powder, oil and chitin, and the development of healthcare foods has been studied in China. People also consume insects indirectly by eating livestock that were fed insects, which may be a more acceptable pathway to use insects in human diets. Although limited, the data on the food safety of insects indicate that insects are safe for food or feed. Incidences of allergic reactions after consuming silkworm pupae, cicadas and crickets have been reported in China. Insect farming is a unique breeding industry in rural China and is a source of income for local people. Insects are reared and bred for human food, medicine and animal feed using two approaches in China: the insects are either fully domesticated and reared completely in captivity or are partially raised in captivity, and the insect habitat is manipulated to increase production. Depending on the type of relationship the insect has with humans, plants and the environment, different farming strategies are used. The social and scientific communities must work together to promote the use of insects as food and feed.  相似文献   

12.
Low calcium (Ca) contents and low calcium:phosphorus (Ca:P) ratios of mealworm larvae and house crickets can result in imbalances of Ca and phosphorus (P) in diets of avian species when these insects form more than a minor proportion of the diet. Appropriate dietary Ca and Ca:P levels are particularly important for normal growth and bone development in chicks, especially of long‐legged species such as bustards. Two experiments were carried out to evaluate the efficacy of a selection of practicable dietary options for increasing the Ca levels and Ca:P ratios of cultured mealworm larvae and immature house crickets used for feeding bustards. Dietary treatments contained higher levels of Ca than the insects' standard culture diet components but similar P levels. Dietary treatment significantly increased Ca level and Ca:P ratio of both mealworm larvae and immature house crickets but did not affect P content of either species. Acceptable insect Ca and Ca:P levels were achieved by maintaining insects on commercial high‐Ca diet products for as little as 24 hours. Other factors that may have influenced the Ca levels of mealworm larvae and house crickets include physical form and overall nutrient composition of their diets. Zoo Biol 19:1–9, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

13.
Mushroom bodies are the main integrative structures of insect brain. They receive sensory information from the eyes, the palps, and the antennae. In the house cricket, Acheta domesticus, a cluster of mushroom body neuroblasts keeps producing new interneurons during an insect's life span. The aim of the present work is to study the impact of environmental stimuli on mushroom body neurogenesis during adulthood. Crickets were reared either in an enriched environment, where they received complex environmental and congeneric stimulations or isolated in small cages and deprived of most visual, auditory, and olfactory stimuli. They then were injected with a S-phase marker, 5-bromo, 2'-deoxyuridine (BrdU) and sacrificed at different periods of their life. Neurogenesis and cell survival were estimated by counting the number of BrdU-labeled cells in the mushroom bodies. Environmentally enriched crickets were found to have an increased number of newborn cells in their mushroom bodies compared with crickets housed in cages with an impoverished environment. This effect of external factors on neurogenesis seems to be limited to the beginning of imaginal life. Furthermore, no cell loss could be detected among the newborn neurons in either environmental situation, suggesting that cell survival was not affected by the quality of the environment. Considering vertebrate studies which showed that enriched environment increases hippocampal cell survival and improves animal performances in spatial learning tests, we suggest that the increased number of interneurons produced in an integrative brain structure after exposure to enriched environment could contribute to adaptive behavioral performances in adult insects.  相似文献   

14.
Vilaplana L  Redman EM  Wilson K  Cory JS 《Oecologia》2008,155(2):237-246
Larvae of the African armyworm, Spodoptera exempta, are darker and more resistant to baculovirus infection when reared in groups (gregarious form) compared to being reared singly (solitary form). Lepidoptera that survive virus challenge as larvae could potentially retain a sublethal virus infection which is then transmitted vertically to the next generation. Here we examine whether gregarious and solitary forms of the armyworm differ in the costs of surviving virus infection and in their capacity to transmit an active baculovirus infection to their offspring. Pupae of larvae reared gregariously that survived virus challenge weighed significantly less than uninfected individuals, but this was not so for those reared solitarily. This did not, however, translate into differences in fecundity, at least under laboratory conditions. As found in previous studies, pre-oviposition period was shorter for solitary than gregarious insects, and it was also shorter for females that had been challenged with virus as larvae. Both the prevalence of egg batches containing larvae that died from nucleopolyhedrovirus (NPV) infection and the proportion of infected larvae within each egg batch were significantly increased (approximately doubled) when parental moths were previously challenged with the virus during their larval state. This demonstrates that horizontal transmission in one generation can elevate vertical transmission to the next generation. Moreover, prevalence of overt infection in the offspring generation was two to three times greater when parental moths were reared solitarily as larvae than when reared gregariously. Disease prevalence and proportional infection were both independent of the sex of the infected parent and whether or not the egg batch was surface-sterilized to remove potential contaminants. This suggests that the eggs are infected internally (transovarial) rather than externally (transovum). These results help to shed light on the observed temporal pattern of virus epizootics in eastern Africa.  相似文献   

15.
When sexual signals are perceived during growth and development they can provide information regarding the social conditions likely to be encountered as an adult. Perception of cues related to the presence and density of future mates and potential competitors can result in altered adult phenotypes. Previous studies have shown that adult male Teleogryllus oceanicus field crickets from a Kauai, Hawaii population reared alone and without hearing conspecific song are more phonotactic than those reared with song. These naïve males also reduce investment in body size and immunity. Here we examined whether another source of population density information, the presence of other males, affects behavior, size, and immunity. Specifically, we examined satellite behavior as evidenced by strength of phonotaxis, body condition, and immune response in males reared singly and in groups in the presence and absence of conspecific song. Body condition did not vary with rearing density, and immune response did not vary with either acoustic environment or rearing density. Interestingly, group-housed males were more phonotactic than singly-housed males. This pattern was largely driven by the low levels of phonotaxis exhibited by males that were singly-housed in the presence of conspecific song. These findings suggest that males respond to social cues in addition to conspecific song, but that these cues do not necessarily provide concordant information.  相似文献   

16.
It is well known that increasing the ambient temperature increases the metabolic rate and consequently, the foraging rate of most insects. However, temperature experienced during the immature stages of insects affects their adult size (an inverse relationship). Because body size is generally correlated to foraging success, we hypothesized that temperature indirectly influences the foraging efficiency of adult insects through developmental effects. We first investigated the role of parasitoid: host body size ratio on the handling time of Aphidius colemani (Viereck) (Hymenoptera: Braconidae), then tested the prediction that increasing temperature during immature development increases the handling time of adults. As expected, parasitoids took longer to handle large aphids than small aphids. However, large parasitoids did not have shorter handling times than small parasitoids except when attacking large (adult) aphids. Developmental temperature had the predicted effect on parasitoids: Individuals reared at 25°C were smaller than those insects reared at 15°C. Parasitoids reared at 15°C had similar short handling times for both first instar and adult aphids, whereas parasitoids reared at 25°C took longer to handle adult aphids than first instar aphids. The size-mediated effect of temperature through development on parasitoid efficiency was opposite to the more familiar direct effect of temperature through metabolic rate. We conclude that the net effect of temperature on foraging insects will depend on its relative influence on immature and adult stages.  相似文献   

17.
We investigated the life history consequences of changes in diet between larval and adult life stages in the polyphagous lady beetle Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). Beetles were reared on three larval diets: greenbug, Schizaphis graminum Rondani (Homoptera: Aphididae), eggs of the flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), and bee pollen. The reproductive performance of females was then evaluated on an adult diet of either greenbug or moth eggs. Moth eggs appeared to be the most suitable diet for larvae, yielding the largest adults, and pollen the least suitable, resulting in the smallest adults and greatly extended developmental time. Pollen‐reared beetles tended to have lower fecundity and fertility than those reared on animal protein, regardless of adult diet. Female fitness was generally increased by a change in diet upon emergence to the alternative source of animal protein, suggesting that dietary complementation occurred across life stages. Among females reared on greenbug, a change of diet to moth eggs reduced the period required for production of 12 clutches and increased egg fertility compared to continued feeding on greenbug. Among females reared on moth eggs, a change of diet to greenbug increased fecundity compared to continued feeding on moth eggs. Among females fed an adult diet of greenbug, those fed moth eggs as larvae had faster production of 12 clutches and higher fecundity. We discuss these novel results in the context of coccinellid life history and ecology and their potential implications for other insects that are predatory as both larvae and adults.  相似文献   

18.
A detailed analysis was made of the locomotor activity of Acheta domesticus under conditions of 12 hr light and 12 hr darkness (LD 12 : 12) and of continuous darkness (DD). Under LD 12 : 12 it was found that there are three types of insects: (1) those beginning the period of increased locomotor activity immediately after darkness falls, (2) considerably before this time, and (3) considerably after this time. Under DD conditions the greater amount of the insects have a free-running rhythm shorter than 24 hr, while only a small percentage have a rhythm of more than 24 hr.Destruction of the neurosecretory cells of the pars intercerebralis by means of radio waves leads to the formation of hyperactivity and loss of locomotor activity rhythm when more than half of these cells are destroyed.Injection of reserpine into the insect's haemolymph with doses of 10 μg/g of body weight results in a reduction in locomotor activity and produces arrhythmicity for 2 to 3 days under LD 12 : 12 conditions. Under DD conditions, however, this same dose results in a total and irretrievable loss of free-running rhythm. Histological studies of the brain of crickets following injection of reserpine show a large degree of accumulation of neurosecretion in the cells of the pars intercerebralis as compared with control insects.A hypothesis is put forward as to the way in which the brain centres regulating locomotor rhythm act in crickets.  相似文献   

19.
One of a pair of cerci was ablated in the first-, fourth- and last-instar nymphs of the cricket, Gryllus bimaculatus. The insects were then reared until the final molt, after which the intensity-response (I-R) relationships for four giant interneurons (GIs) 8-1, 9-1, 9-2 and 9-3 with regard to a controlled air current stimulus were measured. In order to examine the functional changes during postembryonic development and the differences in the physiological plasticity of GIs between nymphs and adults, the obtained I-R curves for each GI were compared with those measured in intact and unilaterally cercus-ablated adult crickets. Each GI showed a distinctive change in response magnitudes after the long-term unilateral cercal ablation. In most cases, the I-R curves for each GI in the crickets ablated from nymphal periods were different from those in the adult crickets mentioned above. Moreover, the pattern of change in response magnitude was different from GI to GI. In contrast to these observations, it was reported that some important characteristics of the wind-evoked escape behavior such as relative occurrence and escape direction in unilaterally cercus-ablated crickets investigated after a long-term rearing were almost identical with those in intact crickets. Therefore, the results obtained in the present study suggest that functional changes occur not only in GIs but also in many other neural elements in the escape-eliciting system in order to maintain the features of wind-evoked escape behavior.  相似文献   

20.
Spores ofNosema locustae Canning were applied with aerial equipment for experimental control of the Mormon cricket,Anabrus simplex Haldeman. The application resulted in infections in crickets during the season of application and the season following application. Spores were observed in cricket feces which indicated probable vertical transmission between generations. Reduced densities of crickets during the second season suggested effective control byN. locustae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号