首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yersinia spp. use a type 3 secretion system (T3SS) to directly inject six proteins into macrophages, and any impairment of this process results in a profound reduction in virulence. We previously showed that the exoribonuclease polynucleotide phosphorylase (PNPase) was required for optimal T3SS functioning in Yersinia pseudotuberculosis and Yersinia pestis. Here we report that Y. pseudotuberculosis cells with reduced RNase E activity are likewise impaired in T3SS functioning and that phenotypically they resemble Delta pnp cells. RNase E does not affect expression levels of the T3SS substrates but instead, like PNPase, regulates a terminal event in the secretion pathway. This similarity, together with the fact that RNase E and PNPase can be readily copurified from Y. pseudotuberculosis cell extracts, suggests that these two RNases regulate T3SS activity through a common mechanism. This is the first report that RNase E activity impacts the T3SS as well as playing a more general role in infectivity.  相似文献   

2.
The reporter transposon-based system TnFuZ was used to identify exported proteins of the animal pathogen Corynebacterium pseudotuberculosis. Thirty-four out of 1,500 mutants had detectable alkaline phosphatase (PhoZ) activity. This activity was from 21 C. pseudotuberculosis loci that code for fimbrial and transport subunits and for hypothetical and unknown-function proteins.  相似文献   

3.
4.
The interaction between human neutrophils and the Gram negative gastrointestinal pathogen Yersinia pseudotuberculosis was investigated in vitro. Despite the wealth of data describing how Yersinia can affect the function of neutrophils, there are no published studies describing if neutrophil cells can affect the viability of Y. pseudotuberculosis. The wild-type IP32953 strain of Y. pseudotuberculosis was found to be resistant to killing by human neutrophils. Confocal examination and flow-cytometric analysis of this interaction revealed that bacteria were taken up.  相似文献   

5.
Corynebacterium pseudotuberculosis causes disease in several animal species, although distinct biovars exist that appear to be restricted to specific hosts. In order to facilitate a better understanding of the differences between biovars, we report here the complete genome sequence of the equine pathogen Corynebacterium pseudotuberculosis strain 1/06-A.  相似文献   

6.
Abstract Corynebacterium pseudotuberculosis is an intracellular bacterial pathogen causing a chronic abscessing disease in sheep and goats called caseous lymphadenitis. We are developing this bacterial species as a live vector system to deliver vaccine antigens to the animal immune system. Foreign genes expressed in bacterial hosts can be unstable so we undertook to delete the C. pseudotuberculosis chromosomal recA gene to determine whether a recA background would reduce the frequency of recombination in cloned DNA. Homologous DNA recombination within an isogenic recA C. pseudotuberculosis was 10–12-fold lower than that in the recA + parental strain. Importantly, the recA mutation had no detectable affect upon the virulence of C. pseudotuberculosis in a mouse model. Taken together these results suggest that a recA background may be useful in the further development of C. pseudotuberculosis as a vaccine vector.  相似文献   

7.
Corynebacterium pseudotuberculosis, a Gram-positive intracellular pathogen, is the etiological agent of caseous lymphadenitis or CLA. This bacterium infects goats and sheep and causes great economic losses worldwide annually, mainly for goat producers. Despite its importance, CLA is still poorly characterized. However, with advances in the genomic field, many C. pseudotuberculosis genes have already been characterized, mainly those related to virulence such as phospholipase D. Here, we examined the use of the several available genes of C. pseudotuberculosis and reviewed their applications in vaccine construction, more efficient diagnostics for CLA, and control of this disease, among other applications.  相似文献   

8.
In order to construct a DNA probe for the plague pathogen detection, we have obtained the recombinant plasmid pRD100 carrying an EcoRI-flanked 140 bp fragment from the genetically silent region of Yersinia pestis species-specific plasmid pYP1. When used as a DNA probe for hybridization of DNA from various strains of 25 bacterial species, this DNA fragment was shown to have the complementary sequences in all investigated Yersinia pestis strains (200), including the plasmid pYP1 lacking ones, and in all the studied Yersinia pseudotuberculosis serotype I strains (80). The search for the probe target in these species has led us to conclusion that it is a specific repeated DNA sequence present in more copies in Yersinia pestis than in Yersinia pseudotuberculosis serotype I. The hybridization of these sequences with the radioactive probe and 24 hours autography makes possible the detection of 1.3 x 10(5) cells of Yersinia pestis and 3 x 10(6) cells of Yersinia pseudotuberculosis serotype I immobilized on the nitrocellulose membranes. Use of the probe for analysis of the nitrocellulose membrane fixed spleen smears from animals that died of experimental plague made possible the detection of Yersinia pestis cells within 48 h.  相似文献   

9.
To improve the diagnostics of pseudotuberculosis by ELISA, a genetically engineered hybrid bifunctional protein (CmAP/OmpF) was obtained based on the pore-forming protein of the outer membrane of human pathogenic bacterium Yersinia pseudotuberculosis (OmpF) and the highly active alkaline phosphatase of marine bacterium Cobetia amphilecti KMM 296 (CmAP). The OmpF module in the fusion protein retains the properties of the diagnostic antigen of the pseudotuberculosis pathogen, and the CmAP module is an enzyme label for detecting porin complexes with specific antibodies. The CmAP/OmpF activity was successfully confirmed by the binding of antibodies to OmpF porin in murine antisera, as well as in the sera of patients with pseudotuberculosis. The use of hybrid complex CmAP/OmpF for the diagnostics of pseudotuberculosis will eliminate the use of enzyme-labeled secondary antibodies, usually necessary for detecting specific antibodies in the blood serum of patients, and thus simplify the procedure and shorten the analysis time.  相似文献   

10.
11.
12.
Yersinia pseudotuberculosis is an enteric human pathogen but is widespread in the environment. Pathogenicity is determined by a number of virulence factors, including the virulence plasmid pYV, the high-pathogenicity island (HPI), and the Y. pseudotuberculosis-derived mitogen (YPM), a superantigen. The presence of the 3 virulence factors varies among Y. pseudotuberculosis isolates. We developed a multilocus sequence typing (MLST) scheme to address the population structure of Y. pseudotuberculosis and the evolution of its pathogenicity. The seven housekeeping genes selected for MLST were mdh, recA, sucA, fumC, aroC, pgi, and gyrB. An MLST analysis of 83 isolates of Y. pseudotuberculosis, representing 19 different serotypes and six different genetic groups, identified 61 sequence types (STs) and 12 clonal complexes. Out of 26 allelic changes that occurred in the 12 clonal complexes, 13 were mutational events while 13 were recombinational events, indicating that recombination and mutation contributed equally to the diversification of the clonal complexes. The isolates were separated into 2 distinctive clusters, A and B. Cluster A is the major cluster, with 53 STs (including Y. pestis strains), and is distributed worldwide, while cluster B is restricted to the Far East. The YPM gene is widely distributed on the phylogenetic tree, with ypmA in cluster A and ypmB in cluster B. pYV is present in cluster A only but is sporadically absent in some cluster A isolates. In contrast, an HPI is present only in a limited number of lineages and must be gained by lateral transfer. Three STs carry all 3 virulence factors and can be regarded as high-pathogenicity clones. Isolates from the same ST may not carry all 3 virulence factors, indicating frequent gain or loss of these factors. The differences in pathogenicity among Y. pseudotuberculosis strains are likely due to the variable presence and instability of the virulence factors.  相似文献   

13.
Strains (105) of Yersinia pseudotuberculosis isolated in Brazil between 1982 and 1990 were bio-serotyped. They were also studied for plasmid profile, autoagglutination and calcium dependence at 37 °C, Congo red uptake, pyrazinamidase activity, esculin hydrolysis, salicin fermentation and drug sensitivity: 95·24% were biotype 2, serogroup O:3; 2·86% were biotype 1, serogroup O:1; and 1·90% were biotype 2, non-agglutinable. Plasmids were found in 77·14% of the strains (one in each strain). There was total correlation between the presence of the virulence plasmid and autoagglutination, calcium dependence at 37 °C and Congo red uptake. The esculin, salicin and pyrazinamidase tests were not efficient in differentiating pathogenic from non-pathogenic Y. pseudotuberculosis isolates. All strains were highly sensitive to the drugs used. These results indicate that Y. pseudotuberculosis is a potential pathogen for humans in Brazil, especially because the bio-serogroups detected among animals are those most frequently associated with human diseases.  相似文献   

14.
The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has made exploration of questions surrounding the evolution of pathogenesis tractable. Here we present the results of a detailed comparison of the genomes of Yersinia pseudotuberculosis IP32593 and three strains of Yersinia pestis (CO92, KIM10, and 91001). There appear to be between 241 and 275 multigene families in these organisms. There are 2,568 genes that are identical in the three Y. pestis strains, but differ from the Y. pseudotuberculosis strain. The changes found in some of these families, such as the kinases, proteases, and transporters, are illustrative of how the evolutionary jump from the free-living enteropathogen Y. pseudotuberculosis to the obligate host-borne blood pathogen Y. pestis was achieved. We discuss the composition of some of the most important families and discuss the observed divergence between Y. pseudotuberculosis and Y. pestis homologs.  相似文献   

15.
Periplasmic PPIases (peptidylprolyl cis-trans isomerases) catalyse the cis-trans isomerization of peptidyl-prolyl bonds, which is a rate-limiting step during protein folding. We demonstrate that the surA, ppiA, ppiD, fkpA and fklB alleles each encode a periplasmic PPIase in the bacterial pathogen Yersinia pseudotuberculosis. Of these, four were purified to homogeneity. Purified SurA, FkpA and FklB, but not PpiD, displayed detectable PPIase activity in vitro. Significantly, only Y. pseudotuberculosis lacking surA caused drastic alterations to the outer membrane protein profile and FA (fatty acid) composition. They also exhibited aberrant cellular morphology, leaking LPS (lipopolysaccharide) into the extracellular environment. The SurA PPIase is therefore most critical for maintaining Y. pseudotuberculosis envelope integrity during routine culturing. On the other hand, bacteria lacking either surA or all of the genes ppiA, ppiD, fkpA and fklB were sensitive to hydrogen peroxide and were attenuated in mice infections. Thus Y. pseudotuberculosis exhibits both SurA-dependent and -independent requirements for periplasmic PPIase activity to ensure in vivo survival and a full virulence effect in a mammalian host.  相似文献   

16.
YopJ, a virulence factor of Yersinia pseudotuberculosis, can bind to several key intracellular signaling proteins, members of the MAPKK family, preventing their activation and protecting the pathogen from host defense mechanisms.  相似文献   

17.
18.
Zhang Y  Bliska JB 《Cytokine》2011,53(2):158-162
The relationship between concentrations of cytokines and microbial pathogen levels during infection is not clear. In a sub-lethal murine infection model using Gram-negative bacterial pathogen Yersinia pseudotuberculosis, the serum concentrations (C) of pro-inflammatory cytokines tumor necrosis factor α (TNFα), interferon γ (IFNγ), interleukine-1β (IL-1β) and interleukine-18 (IL-18) formed a mathematical relationship with the splenic pathogen levels (P) as measured by colony forming unit. Naming parameters "m" and "k" for magnitude and kinetics, respectively, the relationship is depicted as C=mP(k). When reanalyzing the TNFα and IFNγ concentrations and the bacterial levels that were determined by other groups during infection with another strain of Y. pseudotuberculosis or with Yersinia pestis, this relationship was maintained. Interestingly, the changes in the values of "m" and "k" were consistent with the progress of the host immune response during infection; while deviation from this relationship was observed in individuals that seemed to be unable to control infection. Furthermore, in a murine model of ricin intoxication the local concentrations of the cytokine monocyte chemotactic protein 1 (MCP-1) and the concentrations of injected castor bean toxin ricin also conform to this relationship. C=mP(k) could be a general relationship in host cytokine response to pathogens or pathogen-associated molecular patterns. If confirmed, this type of analysis will be very useful in identifying the steps in a host immune response with which a pathogen interferes. It will also help to determine the specific functions of a host factor in the immune response.  相似文献   

19.
Yersinia pestis, the causative agent of plague, seems to have evolved from a gastrointestinal pathogen, Yersinia pseudotuberculosis, in just 1,500-20,000 years--an 'eye blink' in evolutionary time. The third pathogenic Yersinia, Yersinia enterocolitica, also causes gastroenteritis but is distantly related to Y. pestis and Y. pseudotuberculosis. Why do the two closely related species cause remarkably different diseases, whereas the distantly related enteropathogens cause similar symptoms? The recent availability of whole-genome sequences and information on the biology of the pathogenic yersiniae have shed light on this paradox, and revealed ways in which new, highly virulent pathogens can evolve.  相似文献   

20.
Since its recent emergence from the enteropathogen Yersinia pseudotuberculosis, Y. pestis, the plague agent, has acquired an intradermal (id) route of entry and an extreme virulence. To identify pathophysiological events associated with the Y. pestis high degree of pathogenicity, we compared disease progression and evolution in mice after id inoculation of the two Yersinia species. Mortality studies showed that the id portal was not in itself sufficient to provide Y. pseudotuberculosis with the high virulence power of its descendant. Surprisingly, Y. pseudotuberculosis multiplied even more efficiently than Y. pestis in the dermis, and generated comparable histological lesions. Likewise, Y. pseudotuberculosis translocated to the draining lymph node (DLN) and similar numbers of the two bacterial species were found at 24 h post infection (pi) in this organ. However, on day 2 pi, bacterial loads were higher in Y. pestis-infected than in Y. pseudotuberculosis-infected DLNs. Clustering and multiple correspondence analyses showed that the DLN pathologies induced by the two species were statistically significantly different and identified the most discriminating elementary lesions. Y. pseudotuberculosis infection was accompanied by abscess-type polymorphonuclear cell infiltrates containing the infection, while Y. pestis-infected DLNs exhibited an altered tissue density and a vascular congestion, and were typified by an invasion of the tissue by free floating bacteria. Therefore, Y. pestis exceptional virulence is not due to its recently acquired portal of entry into the host, but is associated with a distinct ability to massively infiltrate the DLN, without inducing in this organ an organized polymorphonuclear cell reaction. These results shed light on pathophysiological processes that draw the line between a virulent and a hypervirulent pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号