首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(2+) influx through L-type channels is critical for numerous physiological functions. Relatively little is known about modulation of neuronal L-type Ca(2+) channels. We studied modulation of neuronal Ca(V)1.2c channels heterologously expressed in HEK293 cells with each of the known muscarinic acetylcholine receptor subtypes. Galphaq/11-coupled M1, M3, and M5 receptors each produced robust inhibition of Ca(V)1.2c, whereas Galphai/o-coupled M2 and M4 receptors were ineffective. Channel inhibition through M1 receptors was studied in detail and was found to be kinetically slow, voltage-independent, and pertussis toxin-insensitive. Slow inhibition of Ca(V)1.2c was blocked by coexpressing RGS2 or RGS3T or by intracellular dialysis with antibodies directed against Galphaq/11. In contrast, inhibition was not reduced by coexpressing betaARK1ct or Galphat. These results indicate that slow inhibition required signaling by Galphaq/11, but not Gbetagamma, subunits. Slow inhibition did not require Ca(2+) transients or Ca(2+) influx through Ca(V)1.2c channels. Additionally, slow inhibition was insensitive to pharmacological inhibitors of phospholipases, protein kinases, and protein phosphatases. Intracellular BAPTA prevented slow inhibition via a mechanism other than Ca(2+) chelation. The cardiac splice-variant of Ca(V)1.2 (Ca(V)1.2a) and a splice-variant of the neuronal/neuroendocrine Ca(V)1.3 channel also appeared to undergo slow muscarinic inhibition. Thus, slow muscarinic inhibition may be a general characteristic of L-type channels having widespread physiological significance.  相似文献   

2.
How many different calcium channels does it take to make a nervous system? The answer: more than any of us predicted. In 1975 Hagiwara and colleagues published the first evidence that functionally different calcium channels are expressed in cells. By 1999, the calcium channel family could boast ten members, each member defined by a unique set of attributes to support their cellular functions and by unique amino acid sequences. Although nine of these genes are expressed in the nervous system, that number still seemed insufficient to support the wide spectrum of neuronal functions controlled by voltage-gated calcium channels. This discrepancy is probably explained by alternative pre-messenger RNA splicing which substantially expands the number of protein activities available from a limited number of genes. Like many other ion channel genes, each Ca(V)alpha(1) gene has the capacity to generate perhaps thousands of unique splice isoforms with unique functional properties. The high level of conservation among alternatively spliced exons in Ca(V)2.2 genes of different species and in some cases closely related genes implies biological importance. A number of Ca(V)alpha(1) isoforms have been identified from neural tissue but until recently we lacked direct evidence linking a specific splice site in a calcium channel gene to a specific function in an identified neuron population. Our recent studies show that alternative pre-mRNA splicing of a pair of 32 amino acid encoding exons in the C-terminus of Ca(V)2.2, e37a and e37b, underlie the expression of two mutually exclusive N-type channel isoforms. The inclusion of e37a creates a module that couples the N-type channel to a powerful form of G protein-dependent inhibition. The inhibitory pathway that works through e37a is voltage-independent, requires G(i/o) and tyrosine kinase activation, and is used by mu opioid and GABA(B) receptors to downregulate N-type channel activity. Combined with our previous studies that show enrichment of e37a in nociceptors, our data suggest a molecular basis for the high susceptibility of N-type currents in sensory neurons to voltage-independent inhibition following G protein activation.  相似文献   

3.
We describe ATP-dependent inhibition of the 75-105-pS (in 250 mM Cl-) anion channel (SCl) from the sarcoplasmic reticulum (SR) of rabbit skeletal muscle. In addition to activation by Ca2+ and voltage, inhibition by ATP provides a further mechanism for regulating SCl channel activity in vivo. Inhibition by the nonhydrolyzable ATP analog 5'-adenylylimidodiphosphate (AMP-PNP) ruled out a phosphorylation mechanism. Cytoplasmic ATP (approximately 1 mM) inhibited only when Cl- flowed from cytoplasm to lumen, regardless of membrane voltage. Flux in the opposite direction was not inhibited by 9 mM ATP. Thus ATP causes true, current rectification in SCl channels. Inhibition by cytoplasmic ATP was also voltage dependent, having a K(I) of 0.4-1 mM at -40 mV (Hill coefficient approximately 2), which increased at more negative potentials. Luminal ATP inhibited with a K(I) of approximately 2 mM at +40 mV, and showed no block at negative voltages. Hidden Markov model analysis revealed that ATP inhibition 1) reduced mean open times without altering the maximum channel amplitude, 2) was mediated by a novel, single, voltage-independent closed state (approximately 1 ms), and 3) was much less potent on lower conductance substates than the higher conductance states. Therefore, the SCl channel is unlikely to pass Cl- from cytoplasm to SR lumen in vivo, and balance electrogenic Ca2+ uptake as previously suggested. Possible roles for the SCl channel in the transport of other anions are discussed.  相似文献   

4.
Stargazin, a transmembrane protein expressed in the nervous system, shares similarities with the γ? subunit of skeletal muscle calcium channels. It was thus termed γ? subunit of neuronal calcium channels. Stargazin downregulates the expression of Ca(V)2 channels, however, its functional modulation of these channels remains debated. We have reported that Stargazin modulates Ca(V)2.2 channel by a Gβγ-dependent mechanism and suggested that Stargazin is not a true subunit of this channel, since all its effects on channel function are dependent on the presence of Gβγ. Moreover, Stargazin also modulated the GIRK channel in a Gβγ-dependent fashion. Here we report that Gβγ-dependent modulation by Stargazin of the biophysical properties of Ca(V)2.2 is unrelated to its negative effect on channel expression and current amplitude. Finally, we suggest that this Gβγ dependent modulation of Stargazin may have physiological relevance, since it was still present when we used Ca2(+) as charge carrier, instead of Ba2(+).  相似文献   

5.
This article reviews the types and roles of voltage-independent Ca(2+) channels involved in the endothelin-1 (ET-1)-induced functional responses such as vascular contraction, cell proliferation, and intracellular Ca(2+)-dependent signaling pathways and discusses the molecular mechanisms for the activation of voltage-independent Ca(2+) channels by ET-1. ET-1 activates some types of voltage-independent Ca(2+) channels, such as Ca(2+)-permeable nonselective cation channels (NSCCs) and store-operated Ca(2+) channels (SOCC). Extracellular Ca(2+) influx through these voltage-independent Ca(2+) channels plays essential roles in ET-1-induced vascular contraction, cell proliferation, activation of epidermal growth factor receptor tyrosine kinase, regulation of proline-rich tyrosine kinase, and release of arachidonic acid. The experiments using various constructs of endothelin receptors reveal the importance of G(q) and G(12) families in activation of these Ca(2+) channels by ET-1. These findings provide a potential therapeutic mechanism of a functional interrelationship between G(q)/G(12) proteins and voltage-independent Ca(2+) channels in the pathophysiology of ET-1, such as in chronic heart failure, hypertension, and cerebral vasospasm.  相似文献   

6.
This study provides evidence for a novel mechanism of voltage-gated Ca(2+) channel regulation in mammalian spermatogenic cells by two agents that affect sperm capacitation and the acrosome reaction (AR). Patch-clamp experiments demonstrated that serum albumin induced an increase in Ca(2+) T current density in a concentration-dependent manner, and significant shifts in the voltage dependence of both steady-state activation and inactivation of the channels. These actions were not related to the ability of albumin to remove cholesterol from the membrane. In contrast, beta-estradiol significantly inhibited Ca(2+) channel activity in a concentration-dependent and essentially voltage-independent fashion. In mature sperm this dual regulation may influence capacitation and/or the AR.  相似文献   

7.
Activator of G protein Signaling 1 (AGS1) and Ras homologue enriched in striatum (Rhes) define a new group of Ras-like monomeric G proteins whose signaling properties and physiological roles are just beginning to be understood. Previous results suggest that AGS1 and Rhes exhibit distinct preferences for heterotrimeric G proteins, with AGS1 selectively influencing Galphai and Rhes selectively influencing Galphas. Here, we demonstrate that AGS1 and Rhes trigger nearly identical modulation of N-type Ca(2+) channels (Ca(V)2.2) by selectively altering Galphai-dependent signaling. Whole-cell currents were recorded from HEK293 cells expressing Ca(V)2.2 and Galphai- or Galphas-coupled receptors. AGS1 and Rhes reduced basal current densities and triggered tonic voltage-dependent (VD) inhibition of Ca(V)2.2. Additionally, each protein attenuated agonist-initiated channel inhibition through Galphai-coupled receptors without reducing channel inhibition through a Galphas-coupled receptor. The above effects of AGS1 and Rhes were blocked by pertussis toxin (PTX) or by expression of a Gbetagamma-sequestering peptide (masGRK3ct). Transfection with HRas, KRas2, Rap1A-G12V, Rap2B, Rheb2, or Gem failed to duplicate the effects of AGS1 and Rhes on Ca(V)2.2. Our data provide the first demonstration that AGS1 and Rhes exhibit similar if not identical signaling properties since both trigger tonic Gbetagamma signaling and both attenuate receptor-initiated signaling by the Gbetagamma subunits of PTX-sensitive G proteins. These results are consistent with the possibility that AGS1 and Rhes modulate Ca(2+) influx through Ca(V)2.2 channels under more physiological conditions and thereby influence Ca(2+)-dependent events such as neurosecretion.  相似文献   

8.
Voltage-dependent calcium channels are classified into low voltage-activated and high voltage-activated channels. We have investigated the molecular basis for this difference in voltage dependence of activation by constructing chimeras between a low voltage-activated channel (Ca(V)3.1) and a high voltage-activated channel (Ca(V)1.2), focusing on steady-state activation properties. Wild type and chimeras were expressed in oocytes, and two-electrode voltage clamp recordings were made of calcium channel currents. Replacement of domains I, III, or IV of the Ca 3.1 channel with the corresponding domain of Ca(V)1.2 led (V)to high voltage-activated channels; for these constructs the current/voltage (I/V) curves were similar to those for Ca(V)1.2 wild type. However, replacement of domain II gave only a small shift to the right of the I/V curve and modulation of the activation kinetics but did not lead to a high voltage-activating channel with an I/V curve like Ca 1.2. We also investigated the role of the voltage sensor (V)S4 by replacing the S4 segment of Ca(V)3.1 with that of Ca 1.2. For domain I, there was no shift in the I/V curve (V)as compared with Ca(V)3.1, and there were relatively small shifts to the right for domains III and IV. Taken together, these results suggest that domains I, III, and IV (rather than domain II) are apparently critical for channel opening and, therefore, contribute strongly to the difference in voltage dependence of activation between Ca 3.1 and Ca(V)1.2. However, the S4 segments in domains I, (V)III, and IV did not account for this difference in voltage dependence.  相似文献   

9.
Ca(V)1/Ca(V)2 channels, comprised of pore-forming α(1) and auxiliary (β,α(2)δ) subunits, control diverse biological responses in excitable cells. Molecules blocking Ca(V)1/Ca(V)2 channel currents (I(Ca)) profoundly regulate physiology and have many therapeutic applications. Rad/Rem/Rem2/Gem GTPases (RGKs) strongly inhibit Ca(V)1/Ca(V)2 channels. Understanding how RGKs block I(Ca) is critical for insights into their physiological function, and may provide design principles for developing novel Ca(V)1/Ca(V)2 channel inhibitors. The RGK binding sites within Ca(V)1/Ca(V)2 channel complexes responsible for I(Ca) inhibition are ambiguous, and it is unclear whether there are mechanistic differences among distinct RGKs. All RGKs bind β subunits, but it is unknown if and how this interaction contributes to I(Ca) inhibition. We investigated the role of RGK/β interaction in Rem inhibition of recombinant Ca(V)1.2 channels, using a mutated β (β(2aTM)) selectively lacking RGK binding. Rem blocked β(2aTM)-reconstituted channels (74% inhibition) less potently than channels containing wild-type β(2a) (96% inhibition), suggesting the prevalence of both β-binding-dependent and independent modes of inhibition. Two mechanistic signatures of Rem inhibition of Ca(V)1.2 channels (decreased channel surface density and open probability), but not a third (reduced maximal gating charge), depended on Rem binding to β. We identified a novel Rem binding site in Ca(V)1.2 α(1C) N-terminus that mediated β-binding-independent inhibition. The Ca(V)2.2 α(1B) subunit lacks the Rem binding site in the N-terminus and displays a solely β-binding-dependent form of channel inhibition. Finally, we discovered an unexpected functional dichotomy amongst distinct RGKs- while Rem and Rad use both β-binding-dependent and independent mechanisms, Gem and Rem2 use only a β-binding-dependent method to inhibit Ca(V)1.2 channels. The results provide new mechanistic perspectives, and reveal unexpected variations in determinants, underlying inhibition of Ca(V)1.2/Ca(V)2.2 channels by distinct RGK GTPases.  相似文献   

10.
D-ala2-D-leu5-enkephalin (100 to 1000 nM) reduces HVA Ca2+ currents of approximately 60% in 92% of the adult rat sensory neurons tested. In 80% of the cells sensitive to enkephalin, the reduction in Ca2+ current amplitude was associated with a prolongation of the current activation that was relieved by means of conditioning pulses in a potential range only about 10 mV positive to the current activation range in control conditions. The time course of the current activation was fitted to a single exponential in control, (tau = 2.23 msec +/- 0.14 n = 38) and double exponential with enkephalin, (tau 1 = 2.18 msec +/- 0.25 and tau 2 = 9.6 msec +/- 1, test pulse to -10 mV, 22 degrees C). A strong conditioning depolarizing prepulse speeded up the activation time course, completely eliminating the slow, voltage-sensitive exponential component, but it was only partial effective in restoring the current amplitude to control values. The voltage-independent inhibitory component that was not relieved could be recovered only by washing out enkephalin. In the remaining 20% of the cells affected, enkephalin decreased Ca2+ current amplitude without prolongation of Ca2+ channel activation. In these cases the conditioning voltage pulse was not effective in relieving the inhibition that persisted also at strong positive test potentials, on the outward currents. The voltage-dependent inhibition occurred slowly after enkephalin superfusion (tau congruent to 12 sec), whereas the voltage-independent one developed about ten times more rapidly. Dopamine (100 microM) could also induce both voltage-dependent and independent modulations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The β-subunits of voltage-gated calcium channels regulate their functional expression and properties. Two mechanisms have been proposed for this, an effect on gating and an enhancement of expression. With respect to the effect on expression, β-subunits have been suggested to enhance trafficking by masking an unidentified endoplasmic reticulum (ER) retention signal. Here we have investigated whether, and how, β-subunits affect the level of Ca(V)2.2 channels within somata and neurites of cultured sympathetic neurons. We have used YFP-Ca(V)2.2 containing a mutation (W391A), that prevents binding of β-subunits to its I-II linker and found that expression of this channel was much reduced compared with WT CFP-Ca(V)2.2 when both were expressed in the same neuron. This effect was particularly evident in neurites and growth cones. The difference between the levels of YFP-Ca(V)2.2(W391A) and CFP-Ca(V)2.2(WT) was lost in the absence of co-expressed β-subunits. Furthermore, the relative reduction of expression of Ca(V)2.2(W391A) compared with the WT channel was reversed by exposure to two proteasome inhibitors, MG132 and lactacystin, particularly in the somata. In further experiments in tsA-201 cells, we found that proteasome inhibition did not augment the cell surface Ca(V)2.2(W391A) level but resulted in the observation of increased ubiquitination, particularly of mutant channels. In contrast, we found no evidence for selective retention of Ca(V)2.2(W391A) in the ER, in either the soma or growth cones. In conclusion, there is a marked effect of β-subunits on Ca(V)2.2 expression, particularly in neurites, but our results point to protection from proteasomal degradation rather than masking of an ER retention signal.  相似文献   

12.
Modulation of low voltage-activated Ca(V)3 T-type calcium channels remains poorly characterized compared with high voltage-activated Ca(V)1 and Ca(V)2 calcium channels. Notably, it is yet unresolved whether Ca(V)3 channels are modulated by protein kinases in mammalian cells. In this study, we demonstrate that protein kinase A (PKA) and PKC (but not PKG) activation induces a potent increase in Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3 currents in various mammalian cell lines. Notably, we show that protein kinase effects occur at physiological temperature ( approximately 30-37 degrees C) but not at room temperature ( approximately 22-27 degrees C). This temperature dependence could involve kinase translocation, which is impaired at room temperature. A similar temperature dependence was observed for PKC-mediated increase in high voltage-activated Ca(V)2.3 currents. We also report that neither Ca(V)3 surface expression nor T-current macroscopic properties are modified upon kinase activation. In addition, we provide evidence for the direct phosphorylation of Ca(V)3.2 channels by PKA in in vitro assays. Overall, our results clearly establish the role of PKA and PKC in the modulation of Ca(V)3 T-channels and further highlight the key role of the physiological temperature in the effects described.  相似文献   

13.
The contribution of Ca2+ entry through different voltage-activated Ca2+ channel (VACC) subtypes to the phosphorylation of extracellular signal regulated kinase (ERK) was examined in bovine adrenal-medullary chromaffin cells. High K+ depolarization (40 mM, 3 min) induced ERK phosphorylation, an effect that was inhibited by specific mitogen-activated protein kinase kinase inhibitors. By using selective inhibitors, we observed that depolarization-induced ERK phosphorylation completely depended on protein kinase C-alpha (PKC-alpha), but not on Ca2+/calmodulin-dependent protein kinase nor cyclic AMP-dependent protein kinase. Blockade of L-type Ca2+ channels by 3 microm furnidipine, or blockade of N channels by 1 micromomega-conotoxin GVIA reduced ERK phosphorylation by 70%, while the inhibition of P/Q channels by 1 micromomega-agatoxin IVA only caused a 40% reduction. The simultaneous blockade of L and N, or P/Q and N channels completely abolished this response, yet 23% ERK phosphorylation remained when L and P/Q channels were simultaneously blocked. Confocal imaging of cytosolic Ca2+ elevations elicited by 40 mm K+, showed that Ca2+ levels increased throughout the entire cytosol, both in the presence and the absence of Ca2+ channel blockers. Fifty-eight percent of the fluorescence rise depended on Ca2+ entering through N channels. Thus, ERK phosphorylation seems to depend on a critical level of Ca2+ in the cytosol rather than on activation of a given Ca2+ channel subtype.  相似文献   

14.
Voltage-gated Ca(2+) channels (VGCC) play a key role in many physiological functions by their high selectivity for Ca(2+) over other divalent and monovalent cations in physiological situations. Divalent/monovalent selection is shared by all VGCC and is satisfactorily explained by the existence, within the pore, of a set of four conserved glutamate/aspartate residues (EEEE locus) coordinating Ca(2+) ions. This locus however does not explain either the choice of Ca(2+) among other divalent cations or the specific conductances encountered in the different VGCC. Our systematic analysis of high- and low-threshold VGCC currents in the presence of Ca(2+) and Ba(2+) reveals highly specific selectivity profiles. Sequence analysis, molecular modeling, and mutational studies identify a set of nonconserved charged residues responsible for these profiles. In HVA (high voltage activated) channels, mutations of this set modify divalent cation selectivity and channel conductance without change in divalent/monovalent selection, activation, inactivation, and kinetics properties. The Ca(V)2.1 selectivity profile is transferred to Ca(V)2.3 when exchanging their residues at this location. Numerical simulations suggest modification in an external Ca(2+) binding site in the channel pore directly involved in the choice of Ca(2+), among other divalent physiological cations, as the main permeant cation for VGCC. In LVA (low voltage activated) channels, this locus (called DCS for divalent cation selectivity) also influences divalent cation selection, but our results suggest the existence of additional determinants to fully recapitulate all the differences encountered among LVA channels. These data therefore attribute to the DCS a unique role in the specific shaping of the Ca(2+) influx between the different HVA channels.  相似文献   

15.
16.
Park WS  Son YK  Ko EA  Ko JH  Lee HA  Park KS  Earm YE 《Life sciences》2005,77(5):512-527
We examined the effects of the protein kinase C (PKC) inhibitor, bisindolylmaleimide (BIM) (I), on voltage-dependent K+ (K(V)) channels in rabbit coronary arterial smooth muscle cells using whole-cell patch clamp technique. BIM (I) reversibly and dose-dependently inhibited the K(V) currents with an apparent Kd value of 0.27 microM. The inhibition of the K(V) current by BIM (I) was highly voltage-dependent between -30 and +10 mV (voltage range of channel activation), and the additive inhibition of the K(V) current by BIM (I) was voltage-dependence in the full activation voltage range. The rate constants of association and dissociation for BIM (I) were 18.4 microM(-1) s(-1) and 4.7 s(-1), respectively. BIM (I) had no effect on the steady-state activation and inactivation of K(V) channels. BIM (I) caused use-dependent inhibition of K(V) current, which was consistent with the slow recovery from inactivation in the presence of BIM (I) (recovery time constants were 856.95 +/- 282.6 ms for control, and 1806.38 +/- 110.0 ms for 300 nM BIM (I)). ATP-sensitive K+ (K(ATP)), inward rectifier K+ (K(IR)), Ca2+-activated K+ (BK(Ca)) channels, which regulate the membrane potential and arterial tone, were not affected by BIM (I). The PKC inhibitor, chelerythrine, and protein kinase A (PKA) inhibitor, PKA-IP, had little effect on the K(V) current and did not significantly alter the inhibitory effects of BIM (I) on the K(V) current. These results suggest that BIM (I) inhibits K(V) channels in a phosphorylation-independent, and voltage-, time- and use-dependent manner.  相似文献   

17.
Ca(2+)-activated K+ channels in human leukemic T cells   总被引:9,自引:0,他引:9  
Using the patch-clamp technique, we have identified two types of Ca(2+)-activated K+ (K(Ca)) channels in the human leukemic T cell line. Jurkat. Substances that elevate the intracellular Ca2+ concentration ([Ca2+]i), such as ionomycin or the mitogenic lectin phytohemagglutinin (PHA), as well as whole-cell dialysis with pipette solutions containing elevated [Ca2+]i, activate a voltage-independent K+ conductance. Unlike the voltage-gated (type n) K+ channels in these cells, the majority of K(Ca) channels are insensitive to block by charybdotoxin (CTX) or 4-aminopyridine (4-AP), but are highly sensitive to block by apamin (Kd less than 1 nM). Channel activity is strongly dependent on [Ca2+]i, suggesting that multiple Ca2+ binding sites may be involved in channel opening. The Ca2+ concentration at which half of the channels are activated is 400 nM. These channels show little voltage dependence over a potential range of -100 to 0 mV and have a unitary conductance of 4-7 pS in symmetrical 170 mM K+. In the presence of 10 nM apamin, a less prevalent type of K(Ca) channel with a unitary conductance of 40-60 pS can be observed. These larger-conductance channels are sensitive to block by CTX. Pharmacological blockade of K(Ca) channels and voltage-gated type n channels inhibits oscillatory Ca2+ signaling triggered by PHA. These results suggest that K(Ca) channels play a supporting role during T cell activation by sustaining dynamic patterns of Ca2+ signaling.  相似文献   

18.
Human airway epithelial cells were obtained by nasal brushing, thus avoiding the use of proteolytic enzymes for cell isolation. Whole-cell Cl- conductances were studied in these cells by means of the patch-clamp technique. During whole-cell recordings, cell swelling activated a Cl- conductance that was blocked by indanyloxyacetic acid (48 +/- 10% inhibition at 50 microM). The swelling-induced current outwardly rectified and showed inactivation at depolarizing voltages (> or = +60 mV) and activation at hyperpolarizing voltages (< or = -30 mV). The voltage sensitivity of current activation was approximately twice that of inactivation. Another Cl- current with different kinetics was observed when nonswollen airway cells were stimulated with ionomycin (2 microM) in the presence of 1 mM Ca2+. The Ca(2+)-induced current exhibited activation during depolarizing voltage steps (> or = +40 mV) and inactivation during hyperpolarizing voltage steps (< or = -40 mV). In contrast to the swelling-induced current, the activation of Ca(2+)-induced current was less sensitive to voltage compared with its inactivation. Tail current analysis suggested that Cl- channels having a linear current-voltage relation mediate the response to Ca2+. This study indicates that brushed human nasal epithelial cells possess Cl- conductances that are regulated by cell swelling and Ca2+ and that they represent a useful in vitro model for studying ion transport in epithelia.  相似文献   

19.
Ca(2+), Mg(2+), and K(+) activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca(2+), by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca(2+) activity was approximately 0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca(2+) in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca(2+)) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca(2+) within a physiological range of concentrations (0.1-1.0 mM). Aggregation of the physiological vacuolar Na(+) (60 mM) and Mg(2+) (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca(2+) variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca(2+) activates the SV channel in a voltage-independent manner with K(d)=0.7-1.5 microM. Comparison of the vacuolar Ca(2+) fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 microM) cytosolic Ca(2+), only 0.5% of SV channels are open. This mediates a Ca(2+) release of only a few pA per vacuole (approximately 0.1 pA per single SV channel). Overall, our data suggest that the release of Ca(2+) through SV channels makes little contribution to a global cytosolic Ca(2+) signal.  相似文献   

20.
IKx is a voltage-dependent K+ current in the inner segment of rod photoreceptors that shows many similarities to M-current. The depression of IKx by external Ba2+ was studied with whole-cell voltage clamp. Ba2+ reduced the conductance and voltage sensitivity of IKx tail currents and shifted the voltage range over which they appeared to more positive potentials. These effects showed different sensitivities to Ba2+: conductance was the least sensitive (K0.5 = 7.6 mM), voltage dependence intermediate (K0.5 = 2.4 mM) and voltage sensitivity the most sensitive (K0.5 = 0.2 mM). Ca2+, Co2+, Mn2+, Sr2+, and Zn2+ did not have actions comparable to Ba2+ on the voltage dependence or the voltage sensitivity of IKx tail currents. In high K+ (100 mM), the voltage range of activation of IKx was shifted 20 mV negative, as was the tau-voltage relation. High K+ did not prevent the effect of Ba2+ on conductance, but abolished its ability to affect voltage dependence and voltage sensitivity. Ba2+ also altered the apparent time-course of activation and deactivation of IKx. Low Ba2+ (0.2 mM) slowed both deactivation and activation, with most effect on deactivation; at higher concentrations (1-25 mM), deactivation and activation time courses were equally affected, and at the highest concentrations, 5 and 25 mM Ba2+, the time course became faster than control. Rapid application of 5 mM Ba2+ suggested that the time dependent currents in Ba2+ reflect in part the slow voltage-dependent block and unblock of IKx channels by Ba2+. This blocking action of Ba2+ was steeply voltage- dependent with an apparent electrical distance of 1.07. Ba2+ appears to interact with IKx channels at multiple sites. A model which assumes that Ba2+ has a voltage-independent and a voltage-dependent blocking action on open or closed IKx channels reproduced many aspects of the data; the voltage-dependent component could account for both the Ba(2+)- induced shift in voltage dependence and reduction in voltage sensitivity of IKx tail currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号