首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The West Nile virus strain Kunjin virus (WNV(KUN)) NS4A protein is a multifunctional protein involved in membrane proliferation, stimulation of cellular pathways, and evasion of host defense and is a major component of the WNV(KUN) RNA replication complex. We identified a highly conserved region ((120)P-E-P-E(123)) upstream of the viral protease dibasic cleavage site and investigated whether this motif was required for WNV(KUN) replication. Single point mutations to alanine and a PEPE deletion mutation were created in a full-length infectious WNV(KUN) molecular clone. All mutations drastically impaired viral replication and virion production, except that of the P122A mutant, which was slightly attenuated. These mutations were subsequently transferred to a WNV(KUN) replicon to specifically assess effects on RNA replication alone. Again, all mutants, except P122A, showed severely reduced negative-sense RNA production as well as decreased viral protein production. Correspondingly, immunofluorescence analyses showed a lack of double-stranded RNA (dsRNA) labeling and a dispersed localization of the WNV(KUN) proteins, suggesting that replication complex formation was additionally impaired. Attempts to rescue replication via conservative mutants largely failed except for substitution of Asp at E121, suggesting that a negative charge at this residue is equally important. Analysis of viral protein processing suggested that cleavage of the 2K peptide from NS4A did not occur with the mutant constructs. These observations imply that the combined effects of proline and negatively charged residues within the PEPE peptide are essential to promote the cleavage of 2K from NS4A, which is a prerequisite for efficient WNV replication.  相似文献   

2.
3.
4.
Samuel MA  Diamond MS 《Journal of virology》2005,79(21):13350-13361
West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-alpha/beta) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-alpha/beta receptor-deficient (IFN- alpha/betaR-/-) mice and primary neuronal cultures. IFN-alpha/betaR-/- mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 +/- 0.7 and 3.8+/- 0.5 days after infection with 10(0) and 10(2) PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 10(2) PFU showed 62% mortality and a MTD of 11.9 +/- 1.9 days. IFN-alpha/betaR-/- mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-alpha/betaR-/- mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-beta either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-alpha/beta controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.  相似文献   

5.
We previously showed that a noncoding subgenomic flavivirus RNA (sfRNA) is required for viral pathogenicity, as a mutant West Nile virus (WNV) deficient in sfRNA production replicated poorly in wild-type mice. To investigate the possible immunomodulatory or immune evasive functions of sfRNA, we utilized mice and cells deficient in elements of the type I interferon (IFN) response. Replication of the sfRNA mutant WNV was rescued in mice and cells lacking interferon regulatory factor 3 (IRF-3) and IRF-7 and in mice lacking the type I alpha/beta interferon receptor (IFNAR), suggesting a contribution for sfRNA in overcoming the antiviral response mediated by type I IFN. This was confirmed by demonstrating rescue of mutant virus replication in the presence of IFNAR neutralizing antibodies, greater sensitivity of mutant virus replication to IFN-α pretreatment, partial rescue of its infectivity in cells deficient in RNase L, and direct effects of transfected sfRNA on rescuing replication of unrelated Semliki Forest virus in cells pretreated with IFN-α. The results define a novel function of sfRNA in flavivirus pathogenesis via its contribution to viral evasion of the type I interferon response.  相似文献   

6.
It has been shown previously that the nonstructural protein NS1 of influenza virus is an alpha/beta interferon (IFN-alpha/beta) antagonist, both in vitro and in experimental animal model systems. However, evidence of this function in a natural host has not yet been obtained. Here we investigated the role of the NS1 protein in the virulence of a swine influenza virus (SIV) isolate in pigs by using reverse genetics. The virulent wild-type A/Swine/Texas/4199-2/98 (TX/98) virus and various mutants encoding carboxy-truncated NS1 proteins were rescued. Growth properties of TX/98 viruses with mutated NS1, induction of IFN in tissue culture, and virulence-attenuation in pigs were analyzed and compared to those of the recombinant wild-type TX/98 virus. Our results indicate that deletions in the NS1 protein decrease the ability of the TX/98 virus to prevent IFN-alpha/beta synthesis in pig cells. Moreover, all NS1 mutant viruses were attenuated in pigs, and this correlated with the amount of IFN-alpha/beta induced in vitro. These data suggest that the NS1 protein of SIV is a virulence factor. Due to their attenuation, NS1-mutated swine influenza viruses might have a great potential as live attenuated vaccine candidates against SIV infections of pigs.  相似文献   

7.
We explored the immunogenic properties of influenza A viruses with altered NS1 genes (NS1 mutant viruses). NS1 mutant viruses expressing NS1 proteins with an impaired RNA-binding function or insertion of a longer foreign sequence did not replicate in murine lungs but still were capable of inducing a Th1-type immune response resulting in significant titers of virus-specific serum and mucosal immunoglobulin G2 (IgG2) and IgA, but with lower titers of IgG1. In contrast, replicating viruses elicited high titers of serum and mucosal IgG1 but less serum IgA. Replication-deficient NS1 mutant viruses induced a rapid local release of proinflammatory cytokines such as interleukin-1beta (IL-1beta) and IL-6. Moreover, these viruses also elicited markedly higher levels of IFN-alpha/beta in serum than the wild-type virus. Comparable numbers of virus-specific primary CD8(+) T cells were determined in all of the groups of immunized mice. The most rapid onset of the recall CD8(+)-T-cell response upon the wild-type virus challenge was detected in mice primed with NS1 mutant viruses eliciting high levels of cytokines. It is noteworthy that there was one NS1 mutant virus encoding NS1 protein with a deletion of 40 amino acids predominantly in the RNA-binding domain that induced the highest levels of IFN-alpha/beta, IL-6 and IL-1beta after infection. Mice that were immunized with this virus were completely protected from the challenge infection. These findings indicate that a targeted modification of the RNA-binding domain of the NS1 protein is a valuable technique to generate replication-deficient, but immunogenic influenza virus vaccines.  相似文献   

8.
The interferon (IFN) response is the first line of defense against viral infections, and the majority of viruses have developed different strategies to counteract IFN responses in order to ensure their survival in an infected host. In this study, the abilities to inhibit IFN signaling of two closely related West Nile viruses, the New York 99 strain (NY99) and Kunjin virus (KUN), strain MRM61C, were analyzed using reporter plasmid assays, as well as immunofluorescence and Western blot analyses. We have demonstrated that infections with both NY99 and KUN, as well as transient or stable transfections with their replicon RNAs, inhibited the signaling of both alpha/beta IFN (IFN-alpha/beta) and gamma IFN (IFN-gamma) by blocking the phosphorylation of STAT1 and its translocation to the nucleus. In addition, the phosphorylation of STAT2 and its translocation to the nucleus were also blocked by KUN, NY99, and their replicons in response to treatment with IFN-alpha. IFN-alpha signaling and STAT2 translocation to the nucleus was inhibited when the KUN nonstructural proteins NS2A, NS2B, NS3, NS4A, and NS4B, but not NS1 and NS5, were expressed individually from the pcDNA3 vector. The results clearly demonstrate that both NY99 and KUN inhibit IFN signaling by preventing STAT1 and STAT2 phosphorylation and identify nonstructural proteins responsible for this inhibition.  相似文献   

9.
The herpes simplex virus (HSV) virion host shutoff (vhs) protein, the product of the UL41 (vhs) gene, is an important determinant of HSV virulence. vhs has been implicated in HSV interference with host antiviral immune responses, down-regulating expression of major histocompatibility complex molecules to help HSV evade host adaptive immunity. The severe attenuation of vhs-deficient viruses in vivo could reflect their inability to escape immune detection. To test this hypothesis, BALB/c or congenic SCID mice were infected intravaginally (i.vag.) with the HSV type 2 (HSV-2) vhs null mutant 333d41 or the vhs rescue virus 333d41(R). vhs-deficient virus remained severely attenuated in SCID mice compared with rescue virus, indicating that vhs regulation of adaptive immune responses does not influence HSV pathogenesis during acute infection. Innate antiviral effectors remain intact in SCID mice; prominent among these is alpha/beta interferon (IFN-alpha/beta). The attenuation of HSV-2 vhs mutants could reflect their failure to suppress IFN-alpha/beta-mediated antiviral activity. To test this hypothesis, 129 and congenic IFN-alpha/beta receptor-deficient (IFN-alpha/betaR(-/-)) mice were infected i.vag. with wild-type virus, vhs null mutants 333-vhsB or 333d41, or the vhs rescue virus 333d41(R). Whereas vhs-deficient viruses showed greatly reduced replication in the genital mucosa of 129 mice compared with wild-type or vhs rescue viruses, they were restored to nearly wild-type levels of replication in IFN-alpha/betaR(-/-) mice over the first 2 days postinfection. Only wild-type and vhs rescue viruses caused severe genital disease and hind limb paralysis in 129 mice, but infection of IFN-alpha/betaR(-/-) mice restored the virulence of vhs-deficient viruses. vhs-deficient viruses replicated as vigorously as wild-type and rescue viruses in the nervous systems of IFN-alpha/betaR(-/-) mice. Restoration was specific for the vhs mutation, because thymidine kinase-deficient HSV-2 did not regain virulence or the capacity to replicate in the nervous systems of IFN-alpha/betaR(-/-) mice. Furthermore, the defect in the IFN-alpha/beta response was required for restoration of vhs-deficient virus replication and virulence, but the IFN-alpha/beta-stimulated protein kinase R pathway was not involved. Finally, vhs of HSV-2 has a unique capacity to interfere with the IFN-alpha/beta response in vivo, because an HSV-1 vhs null mutant did not recover replication and virulence after i.vag. inoculation into IFN-alpha/betaR(-/-) mice. These results indicate that vhs plays an important role early in HSV-2 pathogenesis in vivo by interfering with the IFN-alpha/beta-mediated antiviral response.  相似文献   

10.
11.
Alpha/beta interferons (IFN-alpha/beta) are not only a powerful first line of defense against pathogens but also have potent immunomodulatory activities. Many viruses have developed mechanisms of subverting the IFN system to enhance their virulence. Previous studies have demonstrated that the nonstructural (NS) genes of bovine respiratory syncytial virus (BRSV) counteract the antiviral effects of IFN-alpha/beta. Here we demonstrate that, in contrast to wild-type BRSVs, recombinant BRSVs (rBRSVs) lacking the NS proteins, and those lacking NS2 in particular, are strong inducers of IFN-alpha/beta in bovine nasal fibroblasts and bronchoalveolar macrophages. Furthermore, whereas the NS deletion mutants replicated to wild-type rBRSV levels in cells lacking a functional IFN-alpha/beta system, their replication was severely attenuated in IFN-competent cells and in young calves. These results suggest that the NS proteins block the induction of IFN-alpha/beta gene expression and thereby increase the virulence of BRSV. Despite their poor replication in the respiratory tract of young calves, prior infection with virus lacking either the NS1 or the NS2 protein induced serum antibodies and protection against challenge with virulent BRSV. The greater level of protection induced by the NS2, than by the NS1, deletion mutant, was associated with higher BRSV-specific antibody titers and greater priming of BRSV-specific, IFN-gamma-producing CD4(+) T cells. Since there were no detectable differences in the ability of these mutants to replicate in the bovine respiratory tract, the greater immunogenicity of the NS2 deletion mutant may be associated with the greater ability of this virus to induce IFN-alpha/beta.  相似文献   

12.
13.
14.
Venezuelan equine encephalitis virus (VEE) is an important equine and human pathogen of the Americas. In the adult mouse model, cDNA-derived, virulent V3000 inoculated subcutaneously (s.c.) causes high-titer peripheral replication followed by neuroinvasion and lethal encephalitis. A single change (G to A) at nucleotide 3 (nt 3) of the 5' untranslated region (UTR) of the V3000 genome resulted in a virus (V3043) that was avirulent in mice. The mechanism of attenuation by the V3043 mutation was studied in vivo and in vitro. Kinetic studies of virus spread in adult mice following s.c. inoculation showed that V3043 replication was reduced in peripheral organs compared to that of V3000, titers in serum also were lower, and V3043 was cleared more rapidly from the periphery than V3000. Because clearance of V3043 from serum began 1 to 2 days prior to clearance of V3000, we examined the involvement of alpha/beta interferon (IFN-alpha/beta) activity in VEE pathogenesis. In IFN-alpha/betaR(-/-) mice, the course of the wild-type disease was extremely rapid, with all animals dying within 48 h (average survival time of 30 h compared to 7.7 days in the wild-type mice). The mutant V3043 was as virulent as the wild type (100% mortality, average survival time of 30 h). Virus titers in serum, peripheral organs, and the brain were similar in V3000- and V3043-infected IFN-alpha/betaR(-/-) mice at all time points up until the death of the animals. Consistent with the in vivo data, the mutant virus exhibited reduced growth in vitro in several cell types except in cells that lacked a functional IFN-alpha/beta pathway. In cells derived from IFN-alpha/betaR(-/-) mice, the mutant virus showed no growth disadvantage compared to the wild-type virus, suggesting that IFN-alpha/beta plays a major role in the attenuation of V3043 compared to V3000. There were no differences in the induction of IFN-alpha/beta between V3000 and V3043, but the mutant virus was more sensitive than V3000 to the antiviral actions of IFN-alpha/beta in two separate in vitro assays, suggesting that the increased sensitivity to IFN-alpha/beta plays a major role in the in vivo attenuation of V3043.  相似文献   

15.
The host determinants that contribute to attenuation of the naturally occurring nonpathogenic strain of West Nile virus (WNV), the Kunjin strain (WNV(KUN)), remain unknown. Here, we show that compared to a highly pathogenic North American strain, WNV(KUN) exhibited an enhanced sensitivity to the antiviral effects of type I interferon. Our studies establish that the virulence of WNV(KUN) can be restored in cells and mice deficient in specific interferon regulatory factors (IRFs) or the common type I interferon receptor. Thus, WNV(KUN) is attenuated primarily through its enhanced restriction by type I interferon- and IRF-3-dependent mechanisms.  相似文献   

16.
Flavivirus nonstructural (NS) proteins are involved in RNA replication and modulation of the host antiviral response; however, evidence is mounting that some NS proteins also have essential roles in virus assembly. Kunjin virus (KUN) NS2A is a small, hydrophobic, transmembrane protein that is part of the replication complex and inhibits interferon induction. Previously, we have shown that an isoleucine (I)-to-asparagine (N) substitution at position 59 of the NS2A protein blocked the production of secreted virus particles in cells electroporated with viral RNA carrying this mutation. We now show that prolonged incubation of mutant KUN NS2A-I59N replicon RNA, in an inducible BHK-derived packaging cell line (expressing KUN structural proteins C, prM, and E), generated escape mutants that rescued the secretion of infectious virus-like particles. Sequencing identified three groups of revertants that included (i) reversions to wild-type, hydrophobic Ile, (ii) pseudorevertants to more hydrophobic residues (Ser, Thr, and Tyr) at codon 59, and (iii) pseudorevertants retaining Asn at NS2A codon 59 but containing a compensatory mutation (Thr-to-Pro) at NS2A codon 149. Engineering hydrophobic residues at NS2A position 59 or the compensatory T149P mutation into NS2A-I59N replicon RNA restored the assembly of secreted virus-like particles in packaging cells. T149P mutation also rescued virus production when introduced into the full-length KUN RNA containing an NS2A-I59N mutation. Immunofluorescence and electron microscopy analyses of NS2A-I59N replicon-expressing cells showed a distinct lack of virus-induced membranes normally present in cells expressing wild-type replicon RNA. The compensatory mutation NS2A-T149P restored the induction of membrane structures to a level similar to those observed during wild-type replication. The results further confirm the role of NS2A in virus assembly, demonstrate the importance of hydrophobic residues at codon 59 in this process, implicate the involvement of NS2A in the biogenesis of virus-induced membranes, and suggest a vital role for the virus-induced membranes in virus assembly.  相似文献   

17.
The NS1 protein of influenza A/WSN/33 virus is a 230-amino-acid-long protein which functions as an interferon alpha/beta (IFN-alpha/beta) antagonist by preventing the synthesis of IFN during viral infection. In tissue culture, the IFN inhibitory function of the NS1 protein has been mapped to the RNA binding domain, the first 73 amino acids. Nevertheless, influenza viruses expressing carboxy-terminally truncated NS1 proteins are attenuated in mice. Dimerization of the NS1 protein has previously been shown to be essential for its RNA binding activity. We have explored the ability of heterologous dimerization domains to functionally substitute in vivo for the carboxy-terminal domains of the NS1 protein. Recombinant influenza viruses were generated that expressed truncated NS1 proteins of 126 amino acids, fused to 28 or 24 amino acids derived from the dimerization domains of either the Saccharomyces cerevisiae PUT3 or the Drosophila melanogaster Ncd (DmNcd) proteins. These viruses regained virulence and lethality in mice. Moreover, a recombinant influenza virus expressing only the first 73 amino acids of the NS1 protein was able to replicate in mice lacking three IFN-regulated antiviral enzymes, PKR, RNaseL, and Mx, but not in wild-type (Mx-deficient) mice, suggesting that the attenuation was mainly due to an inability to inhibit the IFN system. Remarkably, a virus with an NS1 truncated at amino acid 73 but fused to the dimerization domain of DmNcd replicated and was also highly pathogenic in wild-type mice. These results suggest that the main biological function of the carboxy-terminal region of the NS1 protein of influenza A virus is the enhancement of its IFN antagonist properties by stabilizing the NS1 dimeric structure.  相似文献   

18.
West Nile virus (WNV) causes a severe central nervous system (CNS) infection in humans, primarily in the elderly and immunocompromised. Prior studies have established an essential protective role of several innate immune response elements, including alpha/beta interferon (IFN-alpha/beta), immunoglobulin M, gammadelta T cells, and complement against WNV infection. In this study, we demonstrate that a lack of IFN-gamma production or signaling results in increased vulnerability to lethal WNV infection by a subcutaneous route in mice, with a rise in mortality from 30% (wild-type mice) to 90% (IFN-gamma(-/-) or IFN-gammaR(-/-) mice) and a decrease in the average survival time. This survival pattern in IFN-gamma(-/-) and IFN-gammaR(-/-) mice correlated with higher viremia and greater viral replication in lymphoid tissues. The increase in peripheral infection led to early CNS seeding since infectious WNV was detected several days earlier in the brains and spinal cords of IFN-gamma(-/-) or IFN-gammaR(-/-) mice. Bone marrow reconstitution experiments showed that gammadelta T cells require IFN-gamma to limit dissemination by WNV. Moreover, treatment of primary dendritic cells with IFN-gamma reduced WNV production by 130-fold. Collectively, our experiments suggest that the dominant protective role of IFN-gamma against WNV is antiviral in nature, occurs in peripheral lymphoid tissues, and prevents viral dissemination to the CNS.  相似文献   

19.
We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-alpha/beta) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-alpha/beta gene expression. IRF-3 activation and, as a consequence, IFN-beta mRNA induction are inhibited in wild-type (PR8) influenza virus-infected cells but not in cells infected with an isogenic virus lacking the NS1 gene (delNS1 virus). Furthermore, NS1 is shown to be a general inhibitor of the interferon signaling pathway. Inhibition of IRF-3 activation can be achieved by the expression of wild-type NS1 in trans, not only in delNS1 virus-infected cells but also in cells infected with a heterologous RNA virus (Newcastle disease virus). We propose that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号