首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In addition to their role in pre-mRNA splicing, the human spliceosomal proteins U1A and U2B" are important models of how RNP motif-containing proteins execute sequence-specific RNA binding. Genes encoding U1A and U2B" have been isolated from potato and thereby provide the only evolutionary comparison available for both proteins and represent the only full-length genes encoding plant spliceosomal proteins to have been cloned and characterized. In vitro RNA binding experiments revealed the ability of potato U2B" to interact with human U2A' to enhance sequence-specific binding and to distinguish cognate RNAs of either plant or animal origin. A comparison of the sequence of U1A and U2B" proteins indicated that multiple residues which could affect RNP motif conformation probably govern the specific distinction in RNA binding by these proteins. Since human U1A modulates polyadenylation in vertebrates, the possibility that plant U1A might be exploited in the characterization of this process in plants was examined. However, unlike vertebrate U1A, neither U1A from potato nor Arabidopsis bound their own mRNA and no evidence for binding to upstream efficiency elements in polyadenylation signals was obtained, suggesting that plant U1A is not involved in polyadenylation.  相似文献   

3.
Nuclear ribonucleoprotein complexes containing U1 and U2 RNA.   总被引:4,自引:0,他引:4  
N B Raj  T S Ro-Choi  H Busch 《Biochemistry》1975,14(20):4380-4385
Nuclear ribonucleoprotein (RNP) complexes that contain the U1 and U2 RNA of chromatin of Novikoff hepatoma cells were extracted with 0.01 M Tris-HCl (pH 8.0) after the nuclei were initially washed with 0.075 M NaCl and 0.025 M EDTA (pH 8.0). These RNP complexes were purified by chromatography on Sepharose 6B columns and centrifugation on sucrose density gradients. The identity of the U1 and U2 RNA in these particles was established by their electrophoretic mobility in polyacrylamide gels and their T1 RNase fingerprints which were identical with those of authentic U1 and U2 RNA (R. Reddy et al. (1974), J. Biol. Chem.249, 6486-6494; H. Shibata et al. (1974), Mol. Cell. Biochem. 4, 3-19). The nuclear riboncleoproteins had a buoyant density of 1.47 g/ml in CsCl gradients. Two-dimensional polyacrylamide gel electrophoresis of their proteins showed these RNP complexes contain 10 polypeptide spots, of which two are phosphorylated in vivo.  相似文献   

4.
Heterogeneity of human U1 snRNAs.   总被引:8,自引:5,他引:3       下载免费PDF全文
E Lund 《Nucleic acids research》1988,16(13):5813-5826
I demonstrate that the U1 snRNAs of human cells are heterogeneous in sequence. Polyacrylamide gel and RNase T1 fingerprint analyses of U1 RNAs isolated from a variety of human cultured cells, including HeLa, 293, K562 and NT2/D1, show that minor variants of the human U1 RNA (hUla) comprise between 5% and 15% of the total U1 RNAs in these established cell lines. The patterns of variants are cell line specific, suggesting that expression of these minor species of hUla RNAs reflect polymorphisms of the hUla true genes rather than existence of an additional class of human embryonic U1 genes. Also, the hUla variants described here are not the products of previously identified human U1 Class I pseudogenes.  相似文献   

5.
In order to obtain information on the nature of the amino acid residues involved in the activity of ribonuclease U1 [EC 3.1.4.8], various chemical modifications of the enzyme were carried out. RNase U1 was inactivated by reaction with iodoacetate at pH 5.5 with concomitant incorporation of 1 carboxymethyl group per molecule of the enzyme. The residue specifically modified by iodoacetate was identified as one of the glutamic acid residues, as in the case of RNase T1. The enzyme was also inactivated extensively by reaction with iodoacetamide at pH 8.0 with the loss of about one residue each of histidine and lysine. When RNase U1 was treated with a large excess of phenylglyoxal, the enzymatic activity and binding ability toward 3'-GMP were lost, with simultaneous modification of about 1 residue of arginine. The reaction of citraconic anhydride with RNase U1 led to the loss of enzymatic activity and modification of about 1 residue of lysine. The inactivated enzyme, however, retained binding ability toward 3'-GMP. These results indicate that there are marked similarities in the active sites of RNases T1 and U1.  相似文献   

6.
Analysis of in vitro binding of U1-A protein mutants to U1 snRNA.   总被引:6,自引:1,他引:5       下载免费PDF全文
Despite the great sequence similarity between U1A and U2B", both proteins do have a difference in RNA binding specificity and in the way they bind to their cognate RNAs. The U1A protein is able to bind in vitro U1 RNA independently of other factors. The U2B" protein binds specifically to U2 RNA in the presence of the U2A' protein only. We have compared the effect on RNA binding of multiple double point mutations at analogous positions in the U1A and U2B" protein. The results obtained show that amino acids at almost all of the analogous positions tested in U1A and U2B" have a comparable qualitative effect on RNA binding although the quantitative effect of mutations on U2B" is more severe than on U1A. Using U1A mutants with internal duplications a distinct area of the RNP motif of the U1A protein was identified which appears not to be directly involved in U1 RNA binding. In addition, roles of the highly conserved RNP1 and RNP2 sequences of the N-terminal RNP motif of the U1A protein, are investigated by replacing them with the analogous U1-70K sequences.  相似文献   

7.
The five spliceosomal snRNAs (U1, U2, U4, U5, and U6) undergo an ordered sequence of conformational changes as mRNA splicing progresses. We have shown that an antisense RNA oligonucleotide complementary to U5 snRNA induces a novel U1/U4/U5 complex that may be a transitional stage in the displacement of U1 from the 5' splice site by U5. Here we identify a novel site-specific crosslink between the 5' end of U1 and the invariant loop of U5 snRNA. This crosslink can be induced in nuclear extract by an antisense oligonucleotide directed against U5 snRNA, but can also be detected during an early step of the splicing reaction in the absence of oligonucleotide. Our data indicate proximity between U1 and U5 snRNPs before the first catalytic step of splicing, and may suggest that U1 helps to direct U5 to the 5' splice site.  相似文献   

8.
U2 RNA shares a structural domain with U1, U4, and U5 RNAs.   总被引:49,自引:9,他引:40       下载免费PDF全文
C Branlant  A Krol  J P Ebel  E Lazar  B Haendler    M Jacob 《The EMBO journal》1982,1(10):1259-1265
We previously reported common structural features within the 3'-terminal regions of U1, U4, and U5 RNAs. To check whether these features also exist in U2 RNA, the primary and secondary structures of the 3'-terminal regions of chicken, pheasant, and rat U2 RNAs were examined. Whereas no difference was observed between pheasant and chicken, the chicken and rat sequences were only 82.5% homologous. Such divergence allowed us to propose a unique model of secondary structure based on maximum base-pairing and secondary structure conservation. The same model was obtained from the results of limited digestion of U2 RNA with various nucleases. Comparison of this structure with those of U1, U4, and U5 RNAs shows that the four RNAs share a common structure designated as domain A, and consisting of a free single-stranded region with the sequence Pu-A-(U)n-G-Pup flanked by two hairpins. The hairpin on the 3' side is very stable and has the sequence Py-N-Py-Gp in the loop. The presence of this common domain is discussed in connection with relationships among U RNAs and common protein binding sites.  相似文献   

9.
We have characterized a recombinant Drosophila melanogaster RNA binding protein, D25, by virtue of its antigenic relationship to mammalian U1 and U2 small nuclear ribonucleoprotein (U snRNP) proteins. Sequence analysis revealed that D25 bears strong similarity to both the human U1 snRNP-A (U1-A) and U2 snRNP-B" (U2-B") proteins. However, at residues known to be critical for the RNA binding specificities of U1-A and U2-B" D25 sequence is more similar to U2-B". Using direct RNA binding assays D25 selected U1 RNA from either HeLa or Drosophila Kc cell total RNA. Furthermore, D25 bound U1 RNA when transfected into mammalian cells. Thus, D25 appears to be a Drosophila homolog of the mammalian U1-A protein, despite its sequence similarity to U2-B".  相似文献   

10.
In vitro assembly of U1 snRNPs.   总被引:47,自引:10,他引:37       下载免费PDF全文
J Hamm  M Kazmaier    I W Mattaj 《The EMBO journal》1987,6(11):3479-3485
An efficient system for the in vitro assembly of U1 snRNPs is described. RNA-protein interactions in a series of U1 snRNA mutants assembled both in vivo and in vitro were studied in order to verify the accuracy of the system. Two discrete protein binding sites are defined by immunoprecipitation with antibodies against different protein components of the U1 snRNP and a newly developed protein sequestering assay. The U1 snRNP-specific proteins 70K and A require only the 5'-most stem-loop structure of U1 snRNA for binding, the common U snRNP proteins require the conserved Sm binding site (AUnG). Interactions between these two groups of proteins are detected. These results are combined to derive a model of the U1 snRNP structure. The potential use of the in vitro system in the functional analysis of U1 snRNP proteins is discussed.  相似文献   

11.
We recently determined the crystal structure of the RNP domain of the U1 small nuclear ribonucleoprotein A and identified Arg and Lys residues involved in U1 RNA binding. These residues are clustered around the two highly conserved segments, RNP1 and RNP2, located in the central two beta strands. We have now studied the U1 RNA binding of mutants where potentially hydrogen bonding residues on the RNA binding surface were replaced by non-hydrogen bonding residues. In the RNP2 segment, the Thr11----Val and Asn15----Val mutations completely abolished, and the Tyr13----Phe and Asn16----Val mutations substantially reduced the U1 RNA binding, suggesting that these residues form hydrogen bonds with the RNA. In the RNP1 segment Arg52----Gln abolished, but Arg52----Lys only slightly affected U1 RNA binding, suggesting that Arg52 may form a salt bridge with phosphates of U1 RNA. Ethylation protection experiments of U1 RNA show that the backbone phosphates of the 3' two-thirds of loop II and the 5' stem are in contact with the U1 A protein. The U1 A protein-U1 RNA binding constant is substantially reduced by A----G and G----A replacements in loop II, but not by C----U or U----C replacements. Based on these biochemical data we propose a structure for the complex between the U1 A ribonucleoprotein and U1 RNA.  相似文献   

12.
The expression of mouse embryonic U1 snRNA (mU1b) genes is subject to stage- and tissue-specific control, being restricted to early embryos and adult tissues that contain a high proportion of stem cells capable of further differentiation. To determine the mechanism of this control we have sought to distinguish between differential RNA stability and regulation of U1 gene promoter activity in several cell types. We demonstrate here that mU1b RNA can accumulate to high levels in permanently transfected mouse 3T3 and C127 fibroblast cells which normally do not express the endogenous U1b genes, and apparently can do so without significantly interfering with cell growth. Expression of transfected chimeric U1 genes in such cells is much more efficient when their promoters are derived from a constitutively expressed mU1a gene rather than from an mU1b gene. In transgenic mice, introduced U1 transgenes with an mU1b 5' flanking region are subject to normal tissue-specific control, indicating that U1b promoter activity is restricted to tissues that normally express U1b genes. Inactivation of the embryonic genes during normal differentiation is not associated with methylation of upstream CpG-rich sequences; however, in NIH 3T3 fibroblasts, the 5' flanking regions of endogenous mU1b genes are completely methylated, indicating that DNA methylation serves to imprint the inactive state of the mU1b genes in cultured cells. Based on these results, we propose that the developmental control of U1b gene expression is due to differential activity of mU1a and mU1b promoters rather than to differential stability of U1a and U1b RNAs.  相似文献   

13.
The four major nucleoplasmic small nuclear ribonucleoprotein particles U1, U2, U4/U6 and U5 can be extensively purified from HeLa cells by immunoaffinity chromatography using a monoclonal anti-trimethylguanosine antibody. The snRNP particles in active splicing extracts are selectively bound to the immunoaffinity matrix, and are then gently eluted by competition with an excess of free nucleoside. Biochemical complementation studies show that the purified snRNPs are active in pre-mRNA splicing, but only in the presence of additional non-snRNP protein factors. All the RNPs that are necessary for splicing can be purified in this manner. The active snRNPs are characterized with respect to their polypeptide composition, and shown to be distinct from several other activities implicated in splicing.  相似文献   

14.
15.
Differences observed between plant and animal pre-mRNA splicing may be the result of primary or secondary structure differences in small nuclear RNAs (snRNAs). A cDNA library of pea snRNAs was constructed from anti-trimethylguanosine (m3(2,2,7)G immunoprecipitated pea nuclear RNA. The cDNA library was screened using oligo-deoxyribonucleotide probes specific for the U1, U2, U4 and U5 snRNAs. cDNA clones representing U1, U2, U4 and U5 snRNAs expressed in seedling tissue have been isolated and sequenced. Comparison of the pea snRNA variants with other organisms suggest that functionally important primary sequences are conserved phylogenetically even though the overall sequences have diverged substantially. Structural variations in U1 snRNA occur in regions required for U1-specific protein binding. In light of this sequence analysis, it is clear that the dicot snRNA variants do not differ in sequences implicated in RNA:RNA interactions with pre-mRNA. Instead, sequence differences occur in regions implicated in the binding of small ribonucleoproteins (snRNPs) to snRNAs and may result in the formation of unique snRNP particles.  相似文献   

16.
17.
Crosslinking of hnRNP proteins to pre-mRNA requires U1 and U2 snRNPs.   总被引:24,自引:6,他引:18       下载免费PDF全文
Proteins interacting with pre-mRNAs during early stages of spliceosome formation in a HeLa nuclear extract were investigated by photochemical RNA-protein crosslinking. The level of protein crosslinking to a beta-globin pre-mRNA was positively correlated with the presence of an intron. Proteins of 110,000, 59,000 and 39,000 mol. wt. were crosslinked to the beta-globin pre-mRNA, the latter of which was identified as the A1 hnRNP protein. Comparable experiments with an adenovirus pre-mRNA revealed crosslinked proteins of 110,000, 56,000 and 45,000 mol. wt., with the latter identified as belonging to the C group hnRNP proteins. Crosslinking of hnRNP proteins to both the beta-globin and adenovirus pre-mRNAs was eliminated by oligodeoxynucleotide-directed RNase H excision of an internal region (nt 28-42) of U2 RNA, but was not affected by oligo/RNase H cleavage of the 5'-terminal 15 nucleotides of U2 RNA. Cleavage of the 5'-terminal 15 nucleotides of U1 RNA preferentially eliminated crosslinking of the hnRNP A1 protein to both pre-mRNAs. The requirement of intact U1 snRNP for A1 protein crosslinking was further demonstrated by the fact that although micrococcal nuclease-treated extracts did not support crosslinking of A1 hnRNP protein to beta-globin pre-mRNA, crosslinking was restored by addition of a U1 snRNP-enriched fraction.  相似文献   

18.
Transcription boundaries of U1 small nuclear RNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

19.
Properties of a U1 RNA enhancer-like sequence.   总被引:17,自引:6,他引:11       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号