首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The mammalian AMP-activated protein kinase is a heterotrimeric serine/threonine protein kinase with multiple isoforms for each subunit (alpha, beta, and gamma) and is activated under conditions of metabolic stress. It is widely expressed in many tissues, including the brain, although its expression pattern throughout the CNS is unknown. We show that brain mRNA levels for the alpha2 and beta2 subunits were increased between embryonic days 10 and 14, whereas expression of alpha1, beta1, and gamma1 subunits was consistent at all ages examined. Immunostaining revealed a mainly neuronal distribution of all isoforms. The alpha2 catalytic subunit was highly expressed in neurons and activated astrocytes, whereas the alpha1 catalytic subunit showed low expression in neuropil. The gamma1 noncatalytic subunit was highly expressed by neurons, but not by astrocytes. Expression of the beta1 and beta2 noncatalytic subunits varied, but some neurons, such as granule cells of olfactory bulb, did not express detectable levels of either beta isoform. Preferential nuclear localization of the alpha2, beta1, and gamma1 subunits suggests new functions of the AMP-activated protein kinase, and the different expression patterns and cellular localization between the two catalytic subunits alpha1 and alpha2 point to different physiological roles.  相似文献   

2.
G proteins play important roles in transmembrane signal transduction, and various isoforms of each subunit, alpha, beta and gamma, are highly expressed in the brain. The Ggamma5 subunit is a minor isoform in the adult brain, but we have previously shown it to be highly expressed in the proliferative region of the ventricular zone in the rat embryonic brain. We show here that Ggamma5 is also selectively localized in a proliferative region in the adult rat brain, including the subventricular zone of the lateral ventricle and rostral migratory stream. The Galphai2 subunit colocalized with Ggamma5 in these regions, the two subunits being present in neuronal precursors and ependymal cells but not in proliferating astrocytes. In addition, intense staining of Ggamma5 was seen in axons of the olfactory neurons, which are known to regenerate. These results suggest specific roles for Ggamma5 in precursor cells during neurogenesis so that this isoform might be a useful biological marker.  相似文献   

3.
Recombinant cDNAs encoding the alpha-subunits of Gi1, Gi2, Gi3, Go and Gs were transfected into COS cells with the pCD-PS mammalian expression vector. Expression of each G alpha was verified using subtype-specific peptide antisera on immunoblots. Quantitative immunoblotting of alpha and beta subunits indicated: i) that there was no change in expression of endogenous beta subunits, and ii) overexpression of alpha subunits could achieve a ratio of alpha:beta greater than 25:1. Despite the excess of alpha over beta, the G alpha subunits were found predominantly in the membrane fraction. The results demonstrate that G alpha subunits can attach to the membrane independently of beta gamma subunits.  相似文献   

4.
Isoprenylation of C-terminal cysteine in a G-protein gamma subunit   总被引:11,自引:0,他引:11  
The predicted amino acid sequences for the Gi alpha 1 and G gamma 6 subunits of brain heterotrimeric G-proteins both contain C-terminal Cys-A-A-X elements (A is an aliphatic residue and X is any amino acid). This domain represents the site of Cys thioether modification by isoprenoids in p21ras, nuclear lamins, and fungal mating factors. We now show that G gamma 6, translated in reticulocyte lysate, is efficiently labeled with the isoprenoid precursor, [3H]mevalonate. Alteration of the sequence of G gamma 6 so that a Gly was substituted for Cys in the C-terminal Cys-A-A-X element rendered the protein incapable of undergoing isoprenoid modification. In contrast to G gamma 6, the Gi alpha 1 subunit did not appear to undergo isoprenylation when translated in reticulocyte lysate. Transient expression of the protein in COS cells, which were able to isoprenylate the p21 product of transfected H-ras, also failed to demonstrate isoprenylation of Gi alpha 1. The modification of the gamma subunit by a hydrophobic moiety may have important implications for the assembly of the brain G-protein beta gamma complexes into the cell membrane.  相似文献   

5.
6.
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) consist of a nucleotide-binding alpha subunit and a high-affinity complex of beta and gamma subunits. There is molecular heterogeneity of beta and gamma, but the significance of this diversity is poorly understood. Different G protein beta and gamma subunits have been expressed both singly and in combinations in Sf9 cells. Although expression of individual subunits is achieved in all cases, beta gamma subunit activity (support of pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1) is detected only when beta and gamma are expressed concurrently. Of the six combinations of beta gamma tested (beta 1 or beta 2 with gamma 1, gamma 2, or gamma 3), only one, beta 2 gamma 1, failed to generate a functional complex. Each of the other five complexes has been purified by subunit exchange chromatography using Go alpha-agarose as the chromatographic matrix. We have detected differences in the abilities of the purified proteins to support ADP-ribosylation of Gi alpha 1; these differences are attributable to the gamma component of the complex. When assayed for their ability to inhibit calmodulin-stimulated type-I adenylylcyclase activity or to potentiate Gs alpha-stimulated type-II adenylylcyclase, recombinant beta 1 gamma 1 and transducin beta gamma are approximately 10 and 20 times less potent, respectively, than the other complexes examined. Prenylation and/or further carboxyl-terminal processing of gamma are not required for assembly of the beta gamma subunit complex but are indispensable for high affinity interactions of beta gamma with either G protein alpha subunits or adenylylcyclases.  相似文献   

7.
Somatostatin (SRIF) induces its biological effects by interacting with membrane-bound receptors that are linked to cellular effector systems via G proteins. We have studied SRIF receptor-G protein associations by solubilizing the SRIF receptor from rat brain and AtT-20 cells and immunoprecipitating the receptor-G protein complex with peptide-directed antisera against the different subunits of the G protein heterotrimer. Antiserum 8730, which selectively interacts with all Gi alpha subtypes, maximally and specifically immunoprecipitated SRIF receptor-Gi alpha complexes. To identify the subtypes of Gi alpha that are coupled to SRIF receptors, the subtype-selective antisera 3646, 1521, and 1518, which specifically interact with Gi alpha 1, Gi alpha 2, and Gi alpha 3, respectively, were used to immunoprecipitate SRIF receptor-Gi alpha complexes. Antiserum 3646 immunoprecipitated SRIF receptor-Gi alpha 1 complexes from both brain and AtT-20 cells. Antiserum 1521 immunoprecipitated Gi alpha 2 from both brain and AtT-20 cells but did not immunoprecipitate SRIF receptors from these tissues. Antiserum 1518 immunoprecipitated AtT-20 cell SRIF receptors but uncoupled brain SRIF receptor-G protein complexes. This result was confirmed with another peptide-selective antiserum, SQ, directed against Gi alpha 3. The findings from these studies indicate that Gi alpha 1 and Gi alpha 3 are coupled to SRIF receptors, whereas Gi alpha 2 is not. Even though brain and AtT-20 cell SRIF receptors were both coupled to Gi alpha, the receptors from these tissues differed in their coupling to Go alpha. Antiserum 2353, which is directed against Go alpha, immunoprecipitated SRIF receptors from AtT-20 cells, but did not immunoprecipitate or uncouple SRIF receptor-G protein complexes from rat brain. To determine the beta subunits associated with the SRIF receptor, antisera directed against G beta 36 and G beta 35 were used to immunoprecipitate SRIF receptor-G protein complexes from brain. Peptide-directed antiserum against G beta 36 selectively immunoprecipitated solubilized brain SRIF receptors. However, antiserum directed against the G beta 35 subunit did not immunoprecipitate brain SRIF receptors, suggesting that brain SRIF receptors may preferentially associate with G beta 36. In addition to coimmunoprecipitating with Gi alpha and G beta, brain SRIF receptors coimmunoprecipitated the G protein gamma subunits, G gamma 2 and G gamma 3. These results provide the first evidence that SRIF receptors are coupled to different subunits of G proteins and suggest that selectivity exists in the association of different G protein subunits with the SRIF receptor.  相似文献   

8.
The developing chicken embryo lens provides a unique model for examining the relationship between alpha6 integrin expression and cell differentiation, since multiple stages of differentiation are expressed concurrently at one stage of development. We demonstrate that alpha6 integrin is likely to mediate the inductive effects of laminin on lens differentiation as well as to function in a matrix-independent manner along the cell-cell interfaces of the differentiating cortical lens fiber cells. Both alpha6 isoform expression and its linkage to the cytoskeleton were regulated in a differentiation-specific manner. The association of alpha6 integrin with the Triton-insoluble cytoskeleton increased as the lens cells differentiated, reaching its highest levels in the cortical fiber region where the lens fiber cells are formed. In this region of the lens alpha6 integrin was uniquely localized along the cell-cell borders of the differentiating fiber cells, similar to beta1. alpha6beta4, the primary transmembrane protein of hemidesmosomes, is also expressed in the lens, but in the absence of hemidesmosomes. Differential expression of alpha6A and alpha6B isoforms with lens cell differentiation was seen at both the mRNA and the protein levels. RT-PCR studies demonstrated that alpha6B was the predominant isoform expressed both early in development, embryonic day 4, and in the epithelial regions of the day 10 embryonic lens. Isoform switching, with alpha6A now the predominant isoform, occurred in the fiber cell zones. Immunoprecipitation studies showed that alpha6B, which is characteristic of undifferentiated cells, was expressed by the lens epithelial cells but was dramatically reduced in the lens fiber zones. Expression of alpha6B began to drop as the cells initiated their differentiation and then dropped precipitously in the cortical fiber zone. In contrast, expression of the alpha6A isoform remained high until the cells became terminally differentiated. alpha6A was the predominant isoform expressed in the cortical fiber region. The down-regulation of alpha6B relative to alpha6A provides a developmental switch in the process of lens fiber cell differentiation.  相似文献   

9.
The interaction of several preparations of purified beta gamma dimers with two types of guanosine-nucleotide-binding-regulatory-(G)-protein alpha subunits, a recombinant bv alpha i3, made in Sf9 Spodoptera frugiperda cells by the baculovirus (bv) expression system, and alpha s, either purified from human erythrocyte Gs-type GTP-binding protein, and activated by NaF/AlCl3, or unpurified as found in a natural membrane, were studied. The beta gamma dimers used were from bovine rod outer segments (ROS), bovine brain, human erythrocytes (hRBC) and human placenta and contained distinct ratios of beta subunits that, upon electrophoresis, migrated as two bands with approximate M(r) of 35,000 and 36,000, as well as distinct complements of at least two gamma subunits each. When tested for their ability to recombine at submaximal concentrations with bv alpha i3, ROS, brain, hRBC and placental beta gamma dimers exhibited apparent affinities that were the same within a factor of two. When bovine brain, placental and ROS beta gamma dimers were tested for their ability to promote deactivation of Gs, brain and placental beta gamma dimers were equipotent and at least 10-fold more potent than that of ROS beta gamma dimers; likewise, brain beta gamma and placental dimers were equipotent in inhibiting GTP-activated and GTP-plus-isoproterenol-activated adenylyl cyclase, while ROS beta gamma dimers were less potent when assayed at the same concentration. The possibility that different alpha subunits may distinguish subsets of beta gamma dimers from a single cell was investigated by analyzing the beta gamma composition of three G proteins, Gs, Gi2 and Gi3, purified to near homogeneity from a single cell type, the human erythrocyte. No evidence for an alpha-subunit-specific difference in beta gamma composition was found. These findings suggests that, in most cells, alpha subunits interact indistinctly with a common pool of beta gamma dimers. However, since at least one beta gamma preparation (ROS) showed unique behavior, it is clear that there may be mechanisms by which some combinations of beta gamma dimers may exhibit selectivity for the alpha subunits they interact with.  相似文献   

10.
The mammalian Protocadherin (Pcdh) alpha, beta, and gamma gene clusters encode a large family of cadherin-like transmembrane proteins that are differentially expressed in individual neurons. The 22 isoforms of the Pcdhg gene cluster are diversified into A-, B-, and C-types, and the C-type isoforms differ from all other clustered Pcdhs in sequence and expression. Here, we show that mice lacking the three C-type isoforms are phenotypically indistinguishable from the Pcdhg null mutants, displaying virtually identical cellular and synaptic alterations resulting from neuronal apoptosis. By contrast, mice lacking three A-type isoforms exhibit no detectable phenotypes. Remarkably, however, genetically blocking apoptosis rescues the neonatal lethality of the C-type isoform knockouts, but not that of the Pcdhg null mutants. We conclude that the role of the Pcdhg gene cluster in neuronal survival is primarily, if not specifically, mediated by its C-type isoforms, whereas a separate role essential for postnatal development, likely in neuronal wiring, requires isoform diversity.  相似文献   

11.
Heterotrimeric guanine-nucleotide-binding regulatory proteins (G proteins) have been classified into several subtypes on the basis of the properties of their alpha subunits, though a notable multiplicity of gamma subunits has also been demonstrated. To investigate whether each subtype of alpha subunit is associated with a particular gamma subunit, various oligomeric G proteins, purified from bovine tissues, were subjected to gel electrophoresis in a Tricine buffer system. All G proteins examined were shown to have more than two kinds of gamma subunit. Of the brain G proteins, GoA, GoB, and Gi1 contain the same set of three gamma subunits, but Gi2 contains only two of these subunits. Lung Gi1 and Gi2 and spleen Gi2 and Gi3 had similar sets of two gamma subunits, one of which was distinct from the gamma subunits of brain G proteins. These observations indicate that each subtype of alpha subunit is associated with a variety of beta gamma subunits, and that the combinations differ among cells. For analyses of the structural diversity of the gamma subunits, beta gamma subunits were purified from the total G proteins of each tissue and subjected to reverse-phase HPLC under denaturing conditions, where none of the beta subunits were eluted from the column. Three distinct gamma subunits were isolated in this way from brain beta gamma subunits. In contrast, lung and spleen beta gamma subunits contained at least five gamma subunits, the elution positions and electrophoretic mobilities of which were indistinguishable between the two tissues. Among several gamma subunits, two subspecies appeared to be common to the three tissues. In fact, in each case, the partial amino acid sequence of the most abundant gamma subunit in each tissue was identical, and the sequences coincided exactly with that of 'gamma 6' [Robishaw, J. D., Kalman, V. K., Moomaw, C. R. & Slaughter, C. A. (1989) J. Biol. Chem. 264, 15758-15761]. Fast-atom-bombardment mass spectrometry analysis indicated that this abundant gamma subunit in lung and spleen was geranylgeranylated and carboxymethylated at the C-terminus, as was 'gamma 6' from brain. In addition to abundant gamma subunits, other tissue-specific gamma subunits were also shown to be geranylgeranylated by gas-chromatography-coupled mass spectrometry analysis of Raney nickel-treated gamma subunits. These results suggest that most gamma subunits associated with many different subtypes of alpha subunit are geranylgeranylated in a variety of tissues, with the single exception being the retina where the G protein transducin has a farnesylated gamma subunit.  相似文献   

12.
13.
The alpha subunits of the heterotrimeric guanine nucleotide-binding proteins Gi1, Gi2, Gi3, G0, and Gs have been overexpressed in Sf9 cells using a baculovirus expression system. The Gi1 alpha, Gi2 alpha, Gi3 alpha, and G0 alpha have been purified to homogeneity from infected Spodoptera frugiperda (SF9) cells and characterized. Yields of up to 1.8 mg of purified recombinant G alpha have been obtained from 300-ml cultures of infected cells. The recombinant alpha subunits are myristoylated and are ADP-ribosylated by pertussis toxin only in the presence of beta gamma subunits. They bind guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) with low nM dissociation constants and stoichiometries of 0.8 mol/mol or greater. The rGi1 alpha, rGi2 alpha, and rGi3 alpha are capable of interacting with angiotensin II receptors based on their ability to restore high affinity angiotensin II binding in rat liver membranes shifted to a low affinity state with GTP gamma S.  相似文献   

14.
In many tissues, inwardly rectifying K channels are coupled to seven- helix receptors via the Gi/Go family of heterotrimeric G proteins. This activation proceeds at least partially via G beta gamma subunits. These experiments test the hypothesis that G beta gamma subunits activate the channel even if released from other classes of heterotrimeric G proteins. The G protein-gated K channel from rat atrium, KGA/GIRK1, was expressed in Xenopus oocytes with various receptors and G proteins. The beta 2-adrenergic receptor (beta 2AR), a Gs-linked receptor, activated large KGA currents when the alpha subunit, G alpha s, was also overexpressed. Although G alpha s augmented the coupling between beta 2AR and KGA, G alpha s also inhibited the basal, agonist-independent activity of KGA. KGA currents stimulated via beta 2AR activated, deactivated, and desensitized more slowly than currents stimulated via Gi/Go-linked receptors. There was partial occlusion between currents stimulated via beta 2AR and the m2 muscarinic receptor (a Gi/Go-linked receptor), indicating some convergence in the mechanism of activation by these two receptors. Although stimulation of beta 2AR also activates adenylyl cyclase and protein kinase A, activation of KGA via beta 2AR is not mediated by this second messenger pathway, because direct elevation of intracellular cAMP levels had no effect on KGA currents. Experiments with other coexpressed G protein alpha and beta gamma subunits showed that (a) a constitutively active G alpha s mutant did not suppress basal KGA currents and was only partially as effective as wild type G alpha s in coupling beta 2AR to KGA, and (b) beta gamma subunits increased basal KGA currents. These results reinforce present concepts that beta gamma subunits activate KGA, and also suggest that beta gamma subunits may provide a link between KGA and receptors not previously known to couple to inward rectifiers.  相似文献   

15.
H Tamir  A B Fawzi  A Tamir  T Evans  J K Northup 《Biochemistry》1991,30(16):3929-3936
Signal-transducing G-proteins are heterotrimers composed of GTP-binding alpha subunits in association with a tightly bound complex of beta and gamma subunits. While the alpha subunits are recognized as a family of diverse structures, beta and gamma subunits have also been found as heterogeneous isoforms. To investigate the diversity and tissue specificity of the beta gamma complexes, we have examined homogeneous oligomeric G-proteins from a variety of sources. The beta and gamma subunits isolated from the major-abundance G-proteins from bovine brain, bovine retina, rabbit liver, human placenta, and human platelets were purified and subjected to biochemical and immunological analysis. Protease mapping and immune recognition revealed an identical profile for each of the two distinctly migrating beta isoforms (beta 36 and beta 35) regardless of tissue or G-protein origin. Digestion with V8 protease revealed four distinct, clearly resolved terminal fragments for beta 36 and two for beta 35. Trypsin and chymotrypsin digestion yielded numerous bands, but again each form had a unique profile with no tissue specificity. Tryptic digestion was found to be conformationally specific with the most resistant structure being the native beta gamma complex. With increasing trypsin, the complex was digested but in a pattern distinct from that for denatured beta. In contrast to the two highly homologous beta structures, examination of this set of proteins revealed at least six distinct gamma peptides. Two unique gamma peptides were found in bovine retinal Gt and three gamma peptides in samples of bovine brain derived Go/Gi. Human placental and platelet Gi samples each contained a unique gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Neuronal differentiation of embryonic neural progenitor cells is regulated by both intrinsic and extrinsic signals. Since dynamic changes in cell shape typify neuronal differentiation, cell adhesion molecules could be relevant to this process. Although it has been reported that fibronectin-integrin interactions are important for the proliferation of neural progenitor cells, little is known about the contribution of integrins to neuronal differentiation. In order to address this shortfall, we examined integrin expression on cortical progenitor cells by using immunohistochemistry and FACS analysis of cells in which GFP expression was driven by regulatory (promoter) regions of the nestin gene (nestin-GFP(+)). We here report that high levels of nestin promoter activity correlated with high expression levels of alpha(5)beta(1) integrin (alpha(5)beta(1)(high) cells). FACS analysis of nestin-GFP(+) cortical cells revealed an additional subpopulation with reduced expression of alpha(5)beta(1) integrin (alpha(5)beta(1)(low) cells). The size of the alpha(5)beta(1)(low) subpopulation increased during cortical development. To investigate the correlation between integrin and neuronal differentiation, nestin-GFP(+) cortical progenitor cells were sorted into alpha(5)beta(1)(high) or alpha(5)beta(1)(low) populations, and each potential to differentiate was analyzed. We show that the nestin-GFP(+) alpha(5)beta(1)(high) population corresponded to broadly multipotential neural progenitor cells, whereas nestin-GFP(+) alpha(5)beta(1)(low) cells appeared to be committed to a neuronal fate. These findings suggest that alpha(5)beta(1) expression on cortical progenitor cells is developmentally regulated and its downregulation is involved in the process of neuronal differentiation.  相似文献   

17.
The distribution and levels of expression of Gs alpha, Gi1 alpha, Gi2 alpha, Gi3 alpha, Go alpha, and Gx alpha mRNAs were compared by Northern blot analysis using several rat tissues and selected human and rat cell lines. Gi1 alpha, Go alpha, and Gx alpha, were detected in a limited number of tissue and cells whereas Gi2 alpha, Gi3 alpha, and Gs alpha, were expressed in all the tissues and cells tested albeit in varying amounts. The expression of these six genes appears to be differentially regulated during postnatal development of the rat brain. High expression levels particularly of Go alpha, in young rat brain may be related to the formation of neurites during differentiation of nerve cells.  相似文献   

18.
19.
The regulation of GTP-binding proteins (G proteins) was examined during the course of differentiation of neuroblastoma N1E-115 cells. N1E-115 cell membranes possess three Bordetella pertussis toxin (PTX) substrates assigned to alpha-subunits (G alpha) of Go (a G protein of unknown function) and "Gi (a G protein inhibitory to adenylate cyclase)-like" proteins and one substrate of Vibrio cholerae toxin corresponding to an alpha-subunit of Gs (a G protein stimulatory to adenylate cyclase). In undifferentiated cells, only one form of Go alpha was found, having a pI of 5.8 Go alpha content increased by approximately twofold from the undifferentiated state to 96 h of cell differentiation. This is mainly due to the appearance of another Go alpha form having a pI of 5.55. Both Go alpha isoforms have similar sizes on sodium dodecyl sulfate-polyacrylamide gels, are recognized by polyclonal antibodies to bovine brain Go alpha, are ADP-ribosylated by PTX, and are covalently myristylated in whole N1E-115 cells. In addition, immunofluorescent staining of N1E-115 cells with Go alpha antibodies revealed that association of Go alpha with the plasma membrane appears to coincide with the expression of the most acidic isoform and morphological cell differentiation. In contrast, the levels of both Gi alpha and Gs alpha did not significantly change, whereas that of the common beta-subunit increased by approximately 30% over the same period. These results demonstrate specific regulation of the expression of Go alpha during neuronal differentiation.  相似文献   

20.
The GTP-binding regulatory proteins (G proteins) that transduce signals from receptors to effectors are composed of alpha, beta, and gamma subunits. Whereas the role of alpha subunits in directly regulating effector activity is widely accepted, it has recently been demonstrated that beta gamma subunits may also directly regulate effector activity. This has made clear the importance of identifying and characterizing beta and gamma subunits. We have isolated a cDNA clone encoding a new gamma subunit, referred to here as the gamma 7 subunit, using probes based on peptide sequences of a gamma subunit previously purified from bovine brain. The clone contains a 1.47-kilobase cDNA insert, which includes an open reading frame of 204 base pairs that predicts a 68-amino acid polypeptide with a calculated M(r) of 7553. The predicted protein shares amino acid identities with the other known gamma subunits, ranging from 38 to 68%. Also characteristic of gamma subunits is a carboxyl-terminal CAAX motif. The expression of the gamma 7 subunit as well as the gamma 2, gamma 3, and gamma 5 subunits was examined in several bovine tissues at both the mRNA and protein levels. Whereas the gamma 2 and gamma 3 subunits were selectively expressed in brain, the gamma 5 and gamma 7 subunits were expressed in a variety of tissues. Thus, the gamma 5 and gamma 7 subunits are the first G protein gamma subunits known that could participate in the regulation of widely distributed signal transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号