首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrodynamics of mangrove swamps and their coastal waters   总被引:4,自引:4,他引:0  
Eric Wolanski 《Hydrobiologia》1992,247(1-3):141-161
Mangrove swamps help control the tidal hydrodynamics of many tropical estuaries. They generate an asymmetry of the tidal currents in both the tidal creeks and the mangrove swamps. This results in self-scouring of the tidal channels. Mangrove land reclamation results in siltation of the channel. Mangrove swamps control the flushing rates of the estuaries through the lateral trapping effect. Lateral trapping leads to the aggregation of mangrove litter along slick lines. Evapotranspiration plays a role in the hot dry season by forming a salinity maximum zone which isolates the estuary from the coastal waters for several months of the year. In the absence of runoff, evapotranspiration in the hot dry season generates an inverse estuarine circulation which can trap high salinity mangrove water, and mangrove detritus, along the bottom of a mangrove creek. This bottom layer can become anaerobic. Groundwater flow appears to play a key role in the nutrient budget of mangrove creeks, exporting salt left behind by evapotranspiration, and inhibiting runoff after rainfall. Particulates and dissolved nutrients outwelled from mangrove swamps to coastal waters are retained in a coastal boundary layer. This coastal boundary layer water can be trapped along the shore for long periods if the coast is straight and mangrove-fringed and the coastal waters are shallow. Headlands inhibit coastal trapping because they enhance mixing. Nutrient-rich coastal boundary layer waters may be ejected offshore as tidal jets peeling off headlands and locally enriching offshore waters.  相似文献   

2.
Transport of sediment in mangrove swamps   总被引:1,自引:1,他引:0  
Eric Wolanski 《Hydrobiologia》1995,295(1-3):31-42
The transport of suspended sediment in mangrove swamps is controlled by three dominant processes. First, the transport processes in the estuaries and coastal waters draining the swamp, including flocculation, tidal pumping, baroclinic circulation, trapping of the smallest particles in the turbidity maximum zone, and the effect of the mangrove tidal prism. Second, the mechanical and chemical reactions in mangrove waters destroying flocs of cohesive sediment in suspension. Third, biological processes have a dominant influence on the ultimate fate of clay particles in mangroves.  相似文献   

3.
黄振远  王瑁  王文卿 《生态学报》2007,27(3):1206-1216
传统上认为红树林输出的有机质产生巨大的能流,支持了巨大的河口和近岸水域生态系统的次级生产。但能量标签技术的研究结果却显示红树林输出的有机质的作用并没有如此巨大。用红树碎屑难消化特性来解释此现象,此外数学模型模拟分析发现潮汐的稀释作用也可以解释这种现象。但这两者都不能解释,在其他初级生产者稀少时,红树材输出的有机质可以被大量利用的现象。在有红树林的河口和近海岸水域生态系统中,藻类等非红树初级生产者具有比红树植物更高的初级生产力,而且更容易被动物获得和消化。可以认为是藻类等巨大初级生产力的竞争作用导致红树初级生产在消费者组织中很难被发现,如此上面提到的难题就能得到很好的解决。此外能量标签技术检测出的是红树的初级生产在消费者组织中的相对比率,不是绝对数量值,从此角度看,能量标签技术的结果与传统观点不是矛盾而是互相补充的关系。由此推测红树的初级生产应该还是被消费者所利用,只是它们在消费者初级营养来源组成中占的比例并不大,但其绝对数量并不少。这与传统观点认为的红树的初级生产被大量利用,支撑了具有巨大的次级生产稍有不同。此外,能量标签技术在红树林生态系统中的适用性尚未检验;计算食物组成的数学工具不是很完善;实验设计上考虑的不够全面;对定量研究有一定的影响。  相似文献   

4.
Freshwater discharge from rivers is a powerful forcing agent in coastal ecosystems. It not only generates strong ecological effects in estuaries, but also drives the dynamics of nearshore marine waters where prominent river plumes form biogeochemical hot spots in coastal seas worldwide. Large plumes from major rivers exert important controls on pelagic processes. The majority of estuaries are smaller, however, and the importance of the smaller plumes they generate is unknown. We measured the degree of coupling between freshwater flow and inshore zooplankton in such a plume from a subtropical estuary on the east coast of Australia. Flow regimes encompassed long periods of low freshwater input, punctuated by pulsed freshets that initiated the formation of buoyant, lower‐salinity plumes in the nearshore marine zone. Plumes stimulated phytoplankton biomass in the receiving waters, and ultimately changes in zooplankton assemblages. Zooplankton responded strongly to river discharge: (1) in the absence of substantial freshwater flows and plumes, zooplankton was broadly similar in density and biomass across the estuarine‐marine gradient; (2) freshets that generated significant plumes strongly modified hydrological conditions and lowered zooplankton in the estuarine and nearshore waters, and (3) after the initial freshet, zooplankton in the residual plume was at a higher density in nearshore than shelf waters. We demonstrate that coupling between riverine and coastal pelagic systems operates in small plumes, but that there is substantial temporal variance linked to fluctuations in freshwater delivery. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Six charophyte, 13 mollusc, four ostracod and nine fish otolith taxa are taxonomically described, and one fruit, one seed and two foraminiferal taxa are briefly noted from the Lower Cyrena Beds and the Lower Coloured Molasse of the Sindelsdorf section near Penzberg (approximately 50 km south of Munich). Our palaeoecological and lithological data from the Lower Cyrena Beds suggest a delta plain with lagoons, estuaries, slowly flowing rivers, lakes and swamps. Faunal and floral elements of the Lower Coloured Molasse indicate lacustrine environments. The gastropod Tympanotonos and the tropical to subtropical fish fauna (Eleotridae, Ambassidae and Cyprinodontidae) suggest a warm, at least subtropical climate. Furthermore, Tympanotonos suggests comparisons with Recent molluscan faunas of the mangrove swamps of the West African coast, and thus hints at mangrove vegetation bordering the coasts of the Upper Bavarian Molasse Sea. A biostratigraphical classification for the Oligocene Molasse deposits of the Penzberg Syncline is established for the first time based on otoliths and charophytes. The Lower Cyrena Beds are attributed to the newly defined otolith zone OT-O1/2 and probably correspond to the oldest part of the Chara microcera Zone. The lowermost part of the Lower Coloured Molasse can be correlated both with otolith zone OT-O2 and the Chara microcera Zone. The Sindelsdorf section lies within the Rupelian–Chattian transition zone and thus the chronostratigraphic age is approximately 29–28 Ma.  相似文献   

6.
Mangrove waters from the Itacurussa Experimental Forest (IEF), SE Brazilare enriched in reactive-Hg (15 ± 2.0 pM) and total-Hg (28 ±2.5 pM) relative to open bay waters (4.5 ± 3.0 pM and 19 ±8.5 pM, for reactive-Hg and total-Hg respectively). Mercury concentrationsand reactivity varied according to tidal flux in mangrove creek waters.Reactive-Hg concentrations were higher in ebb tide waters ranging from 4.5to 8.5 pM, than in flood water (< 1.0 to 3.5 pM), whereas total-Hgconcentrations were higher in flood waters, from 40 to 360 pM, than inebb water (30 to 250 pM). Low-Hg, open bay waters are enriched in Hgwhen flowing over mud flats prior to entering the IEF, where it mixes withpore waters containing extremely high Hg concentrations (up to 2,500pM). Similar distributions of Hg and DOC in pore waters, suggests thatDOC may facilitate Hg migration through the sedimentary column, asshown for other estuarine areas. Mud flat pore waters are the more likelysource of total Hg to mangrove waters, but not for reactive Hg. Theseresults suggest that mangroves act as a sink to total Hg, as has been shownfor other trace metals at the IEF and other mangrove forests. On the otherhand mangroves act as a source of reactive Hg to adjacent coastal waters.The mechanisms involved in this processes have not been studied in thispaper. However, the similar distribution of DOC and Hg among thedifferent water masses of the IEF, suggest that the dynamics of Hg-DOCcomplexes may play a dominant role.  相似文献   

7.
This study investigated the importance of gap formation in mangrove swamps on the island of Kosrae, Federated States of Micronesia, in order to understand better both natural processes of forest development and the effects of harvesting trees for firewood in these wetlands. Measurements were concentrated in seven plots located near four rivers: three in fringe zones and four in basin zones. Each plot was a cluster of five points and covered an area of ca 1.3 ha. From every point in each of the seven plots, the nearest canopy gap ≥10 m2 was located; 25 of the 35 gaps were formed by harvesting. Porewater salinity was significantly higher under the canopy in fringe mangrove forests than in basin mangrove forests. Although gaps were small (mean gap size = 158 m2; median gap size = 92 m2), soil temperatures were significantly higher in gaps of both zones. Soil redox potential was significantly lower and porewater salinity significantly higher in the gaps than under the canopy in the basin zone only. Higher porewater salinity may be attributed to high evaporation rates from the soil and high transpiration rates from trees surrounding gaps. There were significantly more seedlings in gaps than under the canopy only in the fringe zones. Although gap formation alters the soil environment of Kosraean mangrove swamps, high freshwater input may buffer these effects in basin mangrove swamps by reducing porewater salinity. Current harvesting rates do not appear to be changing canopy species composition, but large gaps, especially in mangrove forests in more arid areas, may lead to major changes.  相似文献   

8.
The contribution made by saltmarsh to the production of estuarine zooplankton was examined through a comparison of inputs and outputs of tidal water at a site on Towra Point, NSW, Australia. Saltmarsh proved to be a net exporter of crab and gastropod larvae, although it functioned as a sink for copepods and amphipods. Further, the highest density of zooplankton in estuarine nearshore habitats (saltmarsh, mangrove, seagrass, and open water) during a high tide event was found in the saltmarsh. The presence of high concentrations of zooplankton, predominantly crab and gastropod larvae, in the saltmarsh and lesser extent in the mangrove represents a source of food for estuarine fish.  相似文献   

9.
Coringa mangrove forest is located in the Godavari delta, Andhra Pradesh, India. The mangrove community consisted of more than 13 species of mangrove and other plants in the present study area. The following three dominant mangrove plants,Avicennia marina, Excoecaria agallocha andSonneratia apetala were found to be present on the banks of a major channel of the Godavari river running through the forest. The structure and species distribution of mangrove, in the Channel Nagathana Kalaya has been described. The area behind the belt consisting ofAcanthus ilicifolius andMyriostachya wightiana is generally colonized byE. agallocha andA. marina. The zone has been called theAvicennia andExcoecaria zone. Adjacent to this zone species likeAegiceras corniculatum andA. officinalis were the common species. In the flat clayey soil,Suaeda maritima was found to grow. In areas of high elevation, devoid of inundation of tidal seawater during the high tidal period, species such asM. wightiana andAcanthus were found to colonize both the banks of the channels.An analysis of species diversity, indicated a definite trend in the distribution of mangrove from the mouth of the estuarine region to the inland waters.The levels of atmospheric pollutants such as sulphur dioxide (SO2), oxides of nitrogen (NOx), ammonia (NH3) and suspended particle matter (SPM) were within the legal limits.  相似文献   

10.
Ye Y  Pang B P  Chen G C  Chen Y 《农业工程》2011,31(3):169-173
In addition to carbon accumulation in plants, processes of organic carbon in mangrove ecosystems include origins of sediment organic carbon, carbon fluxes between mangroves and their adjacent systems (coastal waters and atmosphere), and cycling processes. Sediment organic carbon originates from suspending solids in coastal waters, mangrove plants and benthic algae. In mangroves with low organic carbon content in sediments, tidal seawater is the main origin of sediment organic carbon, while in mangroves with high sediment organic carbon contents, sediment organic carbon mainly originates from mangrove plants. Due to tidal flush, there is large material exchange between mangrove ecosystems and their adjacent coastal waters. In China, exports of organic carbon in litter falls and dissolved organic carbon from mangroves to their adjacent coastal waters have not been documented. Processes of mangrove litter falls, including production, decomposition, export and animal consumption, determine linkages among organic carbon among mangrove plants, secondary production and coastal ocean. Consumers especially benthic animals may influence organic carbon in mangrove ecosystems, because (1) their consumption rates are high, and their selective feeding on some food sources will change the relative quantities of export, bury and mineralization of organic carbon from different origins; (2) their consumption is much more than assimilation, resulting in the changes in sizes, forms and qualities of non-assimilated organic matters, and then the changes in availability of export, consumption or mineralization of organic carbon. Respiration and sulfate reduction are important mineralization processes of organic carbon in mangrove sediments. Mineralization rates of organic carbon in mangrove sediments are influenced by quantities, activities and particle sizes of organic matters, and other factors such as forest ages, root activities and animal burrowing activities. Researches on processes of mangrove organic carbon should be based on open systems, and ecological processes of organic carbon should be coupled with vegetation restoration.  相似文献   

11.
In addition to carbon accumulation in plants, processes of organic carbon in mangrove ecosystems include origins of sediment organic carbon, carbon fluxes between mangroves and their adjacent systems (coastal waters and atmosphere), and cycling processes. Sediment organic carbon originates from suspending solids in coastal waters, mangrove plants and benthic algae. In mangroves with low organic carbon content in sediments, tidal seawater is the main origin of sediment organic carbon, while in mangroves with high sediment organic carbon contents, sediment organic carbon mainly originates from mangrove plants. Due to tidal flush, there is large material exchange between mangrove ecosystems and their adjacent coastal waters. In China, exports of organic carbon in litter falls and dissolved organic carbon from mangroves to their adjacent coastal waters have not been documented. Processes of mangrove litter falls, including production, decomposition, export and animal consumption, determine linkages among organic carbon among mangrove plants, secondary production and coastal ocean. Consumers especially benthic animals may influence organic carbon in mangrove ecosystems, because (1) their consumption rates are high, and their selective feeding on some food sources will change the relative quantities of export, bury and mineralization of organic carbon from different origins; (2) their consumption is much more than assimilation, resulting in the changes in sizes, forms and qualities of non-assimilated organic matters, and then the changes in availability of export, consumption or mineralization of organic carbon. Respiration and sulfate reduction are important mineralization processes of organic carbon in mangrove sediments. Mineralization rates of organic carbon in mangrove sediments are influenced by quantities, activities and particle sizes of organic matters, and other factors such as forest ages, root activities and animal burrowing activities. Researches on processes of mangrove organic carbon should be based on open systems, and ecological processes of organic carbon should be coupled with vegetation restoration.  相似文献   

12.
Along the west coast of South America mangroves are found only outside the area influenced by the cold Peruvian Current. At 6° S (near ‘Cerro Illescas’) the current turns west to the open sea in the direction of the Galapagos Islands. Dense mangrove vegetation with a tree height up to 15 m occurs only north of 3° 35′ S from the delta of the river Tumbes (Peru). At 3° 44′ S some small individuals of Rhizophora and at 5° 30′ S a small stand of Avicennia can be found. In the transition zone between 3° 35′ and 6° S no mangrove forest occurs. The reasons for the lack of mangal in the transition zone are:
  1. Evapotranspiration and atmospheric humidity show significant differences between the mangrove region and the transition zone. In this zone soil conditions like salinity, water and organic matter content and the geological structure can also be considered as inhibiting mangrove growth.
  2. Topographic conditions in this zone are not suitable for mangal and the lack of a regular annual flow from rivers provides a sharp limit for the existence of mangal in the delta of the river Tumbes. Nevertheless, cultivation of mangrove species south of the mangrove region is possible and seems promising.
  相似文献   

13.
The behavior of groundwater and physical properties of bottom sediment in a riverine-type mangrove forest which is composed of a tidal creek and fringing mangrove swamps were investigated through field observations at Iriomote Island, Japan. After the tidal water ebbed from the swamp surface to the creek, groundwater levels at swamp sites near the creek fell by up to 15 cm by the next flood tide, although the fall was negligible at sites far from the creek and at the open coast outside the mangrove forest. The amount of groundwater discharged to the creek from the swamp depended strongly both on the tidal range and the presence of the steep bank which separates the tidal creek from the fringing mangrove swamp. Based on the fall of groundwater level, the bulk hydraulic conductivity of the swamp was estimated to be 1.5×10−2 cm/s. This value is two to three orders of magnitude larger than that measured in a laboratory using small scale sediment core samples collected in the swamp. These results suggest that the presence of crowded, intricate and large animal burrows as well as sediment layers rich in mangrove humus increases permeability in the mangrove swamp. Further, it is suggested that the mangrove topography with the steep bank of the tidal creek plays an important role which enhances material exchanges through groundwater between the mangrove swamp and the adjacent offshore waters.  相似文献   

14.
Ichthyological Research - Sillago ciliata is widely distributed in estuarine and nearshore coastal waters along the Australian east coast where it is a key target species in recreational and...  相似文献   

15.
Dark carbon fixation (DCF), through which chemoautotrophs convert inorganic carbon to organic carbon, is recognized as a vital process of global carbon biogeochemical cycle. However, little is known about the response of DCF processes in estuarine and coastal waters to global warming. Using radiocarbon labelling method, the effects of temperature on the activity of chemoautotrophs were investigated in benthic water of the Yangtze estuarine and coastal areas. A dome-shaped thermal response pattern was observed for DCF rates (i.e., reduced rates at lower or higher temperatures), with the optimum temperature (Topt) varying from about 21.9 to 32.0°C. Offshore sites showed lower Topt values and were more vulnerable to global warming compared with nearshore sites. Based on temperature seasonality of the study area, it was estimated that warming would accelerate DCF rate in winter and spring but inhibit DCF activity in summer and fall. However, at an annual scale, warming showed an overall promoting effect on DCF rates. Metagenomic analysis revealed that the dominant chemoautotrophic carbon fixation pathways in the nearshore area were Calvin-Benson-Bassham (CBB) cycle, while the offshore sites were co-dominated by CBB and 3-hydroxypropionate/4-hydroxybutyrate cycles, which may explain the differential temperature response of DCF along the estuarine and coastal gradients. Our findings highlight the importance of incorporating DCF thermal response into biogeochemical models to accurately estimate the carbon sink potential of estuarine and coastal ecosystems in the context of global warming.  相似文献   

16.
Growth in length, condition, and gonads of a food fish, Dormitator latifrons , were studied in the Chone River basin, Ecuador, in 1981. The river was bordered by floodplains in the upstream freshwater zone, and by mangrove swamps and shrimp farms in the downstream estuarine zone. The climate was marked by wet (January to April) and dry (May to December) seasons. During the dry season, an earth dam in the river prevented movement of water and fish between upstream and downstream zones. At the end of the dry season, most of the upstream floodplains were dry, and the main fish refuges were in downstream areas in deep pools in the river upstream. During the floods, fish migrated from downstream areas towards upstream floodplains. Growth rates and condition increased when water levels were high or salinity was low and decreased when water levels were low or salinity was high. Seasonal changes in gonads and abundance of juveniles indicated that reproduction occurred during the floods, but there was some reproduction in the dry season. Reproduction occurred in upstream and downstream zones and appeared to be stimulated by a complex of factors, including water levels, currents and salinity. The yield in flood plain sites was estimated as c. 115 kg ha−1 in 1981.  相似文献   

17.
The influence of the food content and the particle size of the substratum on the distribution and relative abundance of Metapenaeus macleayi (Haswell) has been investigated by periodic trawl sampling for prawns and laboratory studies of their food, feeding, and burrowing behaviour.M. macleayi are opportunistic omnivores; they pick up material from the bottom with their chelipeds and convey it to the mouthparts where edible matter is sorted and ingested. They burrow into the sediment with their pereopods and pleopods, and are usually totally buried beneath the surface. A respiratory water current enters a tube formed by the antennal scales and the antennules, flows over the gills and then out of the carapace; this current is regularly reversed with increased strength, presumably to carry away de-oxygenated water. The results of experiments on substratum preference with adequately nourished juveniles suggest that the particle size of the sediment is more important than the food in the substratum in determining the distribution; the apparent preference of juveniles for a fine sandy substratum both in the laboratory and in the natural habitat may be attributed to the minimum threshold velocity of the sand particles.Adults are most abundant in turbid coastal waters arising from estuarine discharge and here the size of the sediment particles appears to be less important than the food content of the substratum in determining the distribution. The mangrove and reed swamps in the Hunter region play an important rôle in the food requirements of juvenile and adult prawns.  相似文献   

18.
Zooplankton, sampled at five stations from the upper Sangga estuary (7 km upstream) in Matang Mangrove Forest Reserve (MMFR), Malaysia, to 16 km offshore, comprised more than 47% copepod. Copepod abundance was highest at nearshore waters (20,311 ind m−3), but decreased toward both upstream (15,572 ind m−3) and offshore waters (12,330 ind m−3). Copepod abundance was also higher during the wetter NE monsoon period as compared to the drier SW monsoon period, but vice versa for copepod species diversity. Redundancy analysis (RDA) shows that copepod community structure in the upper estuary, nearshore and offshore waters differed, being influenced by spatial and seasonal variations in environmental conditions. The copepods could generally be grouped into estuarine species (dominantly Acartia spinicauda Mori, Acartia sp1, Oithona aruensis Früchtl, and Oithona dissimilis Lindberg), stenohaline species (Acartia erythraea Giesbrecht, Acrocalanus gibber Giesbrecht, Paracalanus aculateus Giesbrecht, and Corycaeus andrewsi Farran) and euryhaline species (Parvocalanus crassirostris Dahl, Oithona simplex Farran, and Bestiolina similis (Sewell)). Shifts in copepod community structure due to monsoonal effects on water parameters occurred at the lower estuary. Copepod peak abundance in mangrove waters could be associated with the peak chlorophyll a concentration prior to it. Evidence of copepod consumption by many species of young fish and shrimp larvae in the MMFR estuary implies the considerable impact of phytoplankton and microphytobenthos on mangrove trophodynamics.  相似文献   

19.
Mangrove sediments from three different mangrove ecosystems (Coringa Wildlife Sanctuary in the Godavari Delta, Andhra Pradesh, India, and Galle and Pambala, south-west Sri Lanka) were analysed for their organic carbon content, elemental ratios (C:N) and carbon stable isotope composition. Organic carbon content (0.6 – 31.7% dry weight), C/N ratios (7.0 – 27.3) and 13C (between –29.4 and –20.6) showed a wide range of values. Lower stocks of organic carbon coincided with low C/N (atom) ratios and less negative 13C values, indicating import of marine or estuarine particulate suspended matter. High organic carbon stocks coincided with high C/N ratios and 13C values close, but not equal, to those of the mangrove vegetation. The variations observed in this study and published literature data could be adequately described by a simple two-end mixing model, whereby marine/estuarine suspended matter and mangrove litter were taken as end members. Thus, while in some mangrove ecosystems or vegetation zones, organic carbon stocks can be very high and are almost entirely of mangrove origin, there also appear to be cases in which deposited estuarine or marine suspended matter is the dominant source of organic carbon and nitrogen in mangrove sediments. This situation is remarkably similar to that observed in temperate salt marsh ecosystems where the importance of local vascular plant production to the sediment organic carbon pool is equally variable. The observed high variability in organic matter origin is thought to have a major impact on the overall carbon dynamics in intertidal mangrove ecosystems.  相似文献   

20.
Woody debris is abundant in hurricane‐impacted forests. With a major hurricane affecting South Florida mangroves approximately every 20 yr, carbon storage and nutrient retention may be influenced greatly by woody debris dynamics. In addition, woody debris can influence seedling regeneration in mangrove swamps by trapping propagules and enhancing seedling growth potential. Here, we report on line‐intercept woody debris surveys conducted in mangrove wetlands of South Florida 9–10 yr after the passage of Hurricane Andrew. The total volume of woody debris for all sites combined was estimated at 67 m3/ha and varied from 13 to 181 m3/ha depending upon differences in forest height, proximity to the storm, and maximum estimated wind velocities. Large volumes of woody debris were found in the eyewall region of the hurricane, with a volume of 132 m3/ha and a projected woody debris biomass of approximately 36 t/ha. Approximately half of the woody debris biomass averaged across all sites was associated as small twigs and branches (fine woody debris), since coarse woody debris >7.5 cm felled during Hurricane Andrew was fairly well decomposed. Much of the small debris is likely to be associated with post‐hurricane forest dynamics. Hurricanes are responsible for large amounts of damage to mangrove ecosystems, and components of associated downed wood may provide a relative index of disturbance for mangrove forests. Here, we suggest that a fine:coarse woody debris ratio ≤0.5 is suggestive of a recent disturbance in mangrove wetlands, although additional research is needed to corroborate such findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号