首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoporous carbon membranes could be very attractive for applications of ultrafiltration in the biotechnology industry because of their greater mechanical strength and longer membrane life. The objective of this study was to obtain quantitative data on the performance characteristics of nanoporous carbon membranes formed within a stainless steel support that was first modified by deposition of silica particles within the macroporous support. The nanoporous carbon membrane effectively removed small solutes from a protein solution using diafiltration, with performance comparable to that of commercial polymeric membranes. Protein fouling was evident, although the nanoporous carbon membranes were easily regenerated; cleaning with 0.5 N NaOH at 50 degrees C completely restored the water permeability for multiple cycles. The nanoporous carbon membranes were also compatible with steam sterilization. Significant increases in process flux could be obtained using periodic back-pulsing, with no evidence of any structural alterations in the membrane. These results clearly demonstrate the potential benefits and opportunities for using nanoporous carbon membranes for protein ultrafiltration.  相似文献   

2.
This work aimed to overcome chitosan (CS) membrane' drawbacks: mainly stiffness and hydrophobic surface by adding poly(vinyl alcohol) (PVA) and evaluate their biocompatibility. The chemical structure, crystalline and thermal properties were studied by FT-IR, XRD and DSC. The mechanical properties and wettability of CS/PVA membranes were studied by tensile test and static contact angle measurement. In vitro biocompatibility was also evaluated by MTS cytotoxicity assay and SEM examination. The results suggest that adding PVA into CS membrane could greatly improve CS membrane's flexibility and wettability. All the membranes prepared were biocompatible and have potential applications in GTR technology.  相似文献   

3.
Bacterial cellulose obtained through fermentation by the Acetobacter xylinum is of superior functional quality in comparison to plant cellulose. Various alkali treatment methods were used to process bio-chemically complex pellicle into a clean cellulose membrane/sheet. The effect of potassium hydroxide, sodium carbonate and potassium carbonate was found to be milder on the final cellulose product in contrast to the widely used sodium hydroxide treatment. These novel treatment methods also caused improvement in the tensile strength of the membranes in comparison to sodium hydroxide. The overall quality of the 0.1 M sodium carbonate- and potassium carbonate-treated cellulose was superior, as the membranes displayed maximum tensile strength and elongation next to the native membrane. The low tensile strength of sodium hydroxide-treated membrane is attributed to its higher swelling characteristics in alkali. Further, the low swelling property of sodium carbonate- and potassium carbonate-treated membranes resulted in their high oxygen transmission rates (low oxygen barrier). Hunter lab colour parameters were determined to assess the effect of different alkali treatments on the colour characteristics of the membranes. Further, based on the high mechanical strength and comparatively low oxygen transmission rates, the processed cellulose membranes may find application as a bio- packaging material for controlled atmosphere packaging, where hydrophilic membranes with high oxygen barrier and water vapour permeation are desirable.  相似文献   

4.
A multifunctional macromolecular thiol (TPVA) obtained by esterification of poly(vinyl alcohol) (PVA) with 3-mercaptopropionic acid was characterized by a combination of NMR, IR, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC), and was used as a wheat gluten (WG) reactive modifier. The effect of TPVA molecular weight (M(w) = 2000, 9500, 50 000, and 205 000) and blend composition (5, 20, and 40% w/w TPVA/WG) on the mechanical properties of compression-molded bars indicates that TPVA/WG blends increase the fracture strength by up to 76%, the elongation by 80%, and the modulus by 25% above WG. In contrast, typical WG additives such as glycerol and sorbitol improve flexibility but decrease modulus and strength. Preliminary investigations of suspension rheology, water uptake, molecular weight distribution and electron microscopy of TPVA/WG and PVA/WG blends illustrate the different protein interactions with PVA and TPVA. Further work is underway to determine whether TPVA and WG form protein conjugates or microphase-separated morphologies.  相似文献   

5.
Binary aqueous solutions of bovine serum albumin (BSA) and beta-lactoglobulin (bLG) were subject to flux-stepping and constant flux ultrafiltration to identify the apparent critical flux and to study the mechanisms and factors affecting fouling when the membrane is permeable to one protein component. Membranes from these filtration experiments were analyzed using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) to locate and quantify levels of fouling below and above the apparent critical flux. Hydrophilic (PLTK) regenerated cellulose and hydrophobic (PBTK) polysulfone asymmetric membranes were used, both of 30 kDa nominal molecular weight cut-off. For the hydrophilic PLTK membrane, protein deposition was shown to depend on electrostatic forces, exhibiting little or no fouling when the proteins had the same charge sign as that of the membrane. This was found to apply for both dilute equal mass-per-unit-volume and equimolar binary mixtures. For the PBTK membrane, hydrophobic protein-membrane attractive forces were sufficiently strong to cause deposition of bLG even in the presence of repulsive electrostatic forces. For the PBTK membrane deposition exceeded monolayer coverage below and above apparent critical flux conditions but for the PLTK membrane this generally occurred when the apparent critical flux was exceeded. MALDI-MS was shown to be a facile direct analytical technique for individually quantifying adsorbed proteins on membrane surfaces at levels as low as 50 fmol/mm(2). The high levels of compound specificity inherent to mass spectrometry make this approach especially suited to the quantification of individual components in mixed deposits. In this study, MALDI-MS was found to be successful in identifying and quantifying the protein species responsible for fouling.  相似文献   

6.
Membrane fouling commonly occurs in all filter types during virus filtration in protein‐based biopharmaceutical manufacturing. Mechanisms of decline in virus filter performance due to membrane fouling were investigated using a cellulose‐based virus filter as a model membrane. Filter performance was critically dependent on solution conditions; specifically, ionic strength. To understand the interaction between immunoglobulin G (IgG) and cellulose, sensors coated with cellulose were fabricated for surface plasmon resonance and quartz crystal microbalance with energy dissipation measurements. The primary cause of flux decline appeared to be irreversible IgG adsorption on the surface of the virus filter membrane. In particular, post‐adsorption conformational changes in the IgG molecules promoted further irreversible IgG adsorption, a finding that could not be adequately explained by DLVO theory. Analyses of adsorption and desorption and conformational changes in IgG molecules on cellulose surfaces mimicking cellulose‐based virus removal membranes provide an effective approach for identifying ways of optimizing solution conditions to maximize virus filter performance. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:379–386, 2018  相似文献   

7.
Cellulose acetate (CA) nanofibers webs deserve a special attention because of their very good water retention properties. CA nanofibers based biosensor in certain application come into contact with various liquids and requires high degree of wicking rate to transport liquid to its destination. Cellulose acetate (CA)/polyvinyl alcohol (PVA) blended nanofibers were prepared via co-electrospinning using double nozzle for jetting cellulose acetate and polyvinyl alcohol independently. The CA/PVA blend nanofibers webs were deacetylated in aqueous alkaline solution to convert CA in to regenerated cellulose and to remove PVA nanofibers from the raw web. The resultant nanofibers webs were characterized by wicking rate, water contact angle, SEM and FTIR analysis. The results revealed that by varying concentration of PVA solution enhances the wicking rate. Such a nanofibers web may be used in biosensor strip and other medical applications where the high wicking rates are desired.  相似文献   

8.
The miscibility and mechanical properties of poly vinyl alcohol (PVA) and poly acrylic acid (PAA)-composited membranes were studied with molecular simulation. The Flory–Huggins parameters (δ) were calculated to prove the good miscibility of PVA and PAA. The radial distribution functions of hydroxyl and carboxyl atoms and the average number of H-bonds were observed to indicate the degree of physical cross-linking between PVA and PAA. The influences of intermolecular physical cross-linking on the glass transition temperature and mechanical properties were estimated. The results revealed that the PVA/PAA membrane with a composition of 2:3 has the best plastic properties, which exhibits a good application value. All of the simulated results showed good agreement with the experimental data. It indicates that the method presented in this work has a promising application prospect.  相似文献   

9.
Equations were obtained from response surface models to show how the ultimate tensile strength (UTS) and percent elongation at break (%E) of solution-cast films vary with relative amounts of starch, poly(vinyl alcohol) (PVA), poly(ethylene-co-acrylic acid) (EAA) and glycerol in the formulation. Equations found from the response surface methodology were used to optimize the relative amounts of the four components with respect to the physical properties of cast films. The model showed that only glycerol content was important to predict the UTS of the films. The model for %E was more complicated, since there was a three-way interaction between EAA, PVA and glycerol. This model also contained two other terms: a two-way interaction evolving glycerol and EAA. and a (PVA)3 term. In general, %E increased as EAA, PVA and glycerol were increased together. However, increased amounts of EAA could decrease %E if EAA was the only component increased. It is believed that EAA forms complexes with both starch and PVA, thereby increasing compatibility of the two polyhydroxy polymers. As %E increases, UTS of the films decreases. All the films produced in this paper were made with starch contents above 50% to insure an optimum film formulation with at least 50% starch. A mixture of 55·6% starch, 2·8% EAA, 28·3% PVA and 13·3% glycerol is believed to be close to the optimum formulation to obtain films having at least 100%E and UTS of 25 MPA, while still maintaining starch concentrations above 50%.  相似文献   

10.
Molecular dynamics (MD) simulations were employed to study the influence of solvents on the structure and mechanical properties of physically crosslinked poly(vinyl alcohol) (PVA) gels. Firstly, three kinds of PVA precursor gels were made by adding water, dimethyl sulfoxide (DMSO) and a mixture of DMSO and water (4:1 by weight), respectively. The solvents in the precursor gels were then exchanged with water to obtain three kinds of PVA hydrogels. Solvent in the precursor gel with a mixture of DMSO and water was also exchanged with ethanol and DMSO, respectively. It was found that the tensile strength and failure strain of the PVA hydrogel prepared from precursor gel with a mixture of DMSO and water was the highest, and the polymer network was more homogeneous than the other two PVA hydrogels. The polymer network of PVA gel with ethanol or with DMSO was more heterogenous than with water, and the tensile strength and failure strain were much lower. The torsional activity of polymer chains of PVA gel with ethanol was much stronger than PVA gel with water and DMSO.  相似文献   

11.
The morphology of wheat protein (WG) blends with polyvinyl alcohol (PVA) and respectively with thiolated polyvinyl alcohol (TPVA) was investigated by atomic force (AFM) and transmission electron microscopy (TEM) as well as by modulated dynamic scanning calorimetry (MDSC). Thiolated additives based on PVA and other substrates were previously presented as effective means of improving the strength and toughness of compression molded native WG bars via disulfide-sulfhydryl exchange reactions. Consistent with our earlier results, AFM and TEM imaging clearly indicate that the addition of just a few mole percent of thiol to PVA was sufficient to dramatically change its compatibility with wheat protein. Thus, TPVA is much more compatible with WG and phase separates into much smaller domains than in the case of PVA, although there are still two phases in the blend: one WG-rich phase and another TPVA-rich phase. The WG/TPVA blend has phase domains ranging in size from 0.01 to 0.1 microm, which are roughly 10 times smaller than those of the WG/PVA blend. MDSC further illustrates the compatibilization of the protein with TPVA via the dependence of the transition temperatures on composition.  相似文献   

12.
This work investigates the fractionation of similar molecular weight proteins bovine serum albumin (69 kD) and bovine hemoglobin (67 kD) by ultrafiltration. Three different membranes, viz. regenerated cellulose, poly(sulfone) and surface modified poly(acrylonitrile), each with a nominal molecular cutoff rating of 100 kD, were examined. The experiments were conducted in dead end, crossflow and vortex flow filtration modes and the separation was studied as a function of feed pH and ionic strength. Under similar system hydrodynamics, the surface modified poly(acrylonitrile) membrane displayed the highest resolution with minimum membrane fouling. The separation could be improved further by operating at low applied pressure (40 kPa) and high mass transfer (> 20 × 10–6 m/s) in a vortex flow module. Under these conditions, the highest separation factor of 40 was obtained at the pI of hemoglobin.  相似文献   

13.
The aim of this work was to develop biodegradable films based on blends of Amaranthus cruentus flour and poly(vinyl alcohol). Five different PVA types were tested. Blends with higher hydrolysis (HD) degree PVA were more resistant, showing greater tensile strength (TS) and puncture force (PF). However, the films with PVA with lower HD showed more flexibility, greater elongation at break (ELO) and greater puncture deformation (PD), with the exception of PVA 325. The latter was chosen due to it superior mechanical performance (TS = 10.2 MPa, ELO = 89.8%, PF = 9.4 N and PD = 16.3%). When films based on blends of amaranth flour and PVA 325 (10–50%) were evaluated, all mechanical properties were enhanced with increase in PVA 325 content. The solubility in water of the films made with PVA and amaranth flour decreased with increasing PVA content, reaching 44% of soluble matter for the 50% PVA film. The formation of hydrogen bonds between the blend components was confirmed by the FTIR spectra analysis.  相似文献   

14.
A simple biosurfactant-based hydrophobization procedure for poly(vinyl alcohol) (PVA) cryogels was developed allowing effective immobilization of hydrocarbon-oxidizing bacteria. The resulting partially hydrophobized PVA cryogel granules (granule volume 5 microl) contained sufficient number (6.5 x 10(3)) of viable bacterial cells per granule, possessed high mechanical strength and spontaneously located at the interface in water-hydrocarbon system. Such interfacial location of PVA granules allowed high contact of immobilized biocatalyst with hydrophobic substrate and water phase, thus providing bacterial cells with mineral and organic nutrients. As a result, n-hexadecane oxidation efficiency of 51% after 10-day incubation was achieved using immobilized biocatalyst. PVA cryogels with increased hydrophobicity can be used for immobilization of bacterial cultures performing oxidative transformations of water-immiscible organic compounds. Immobilization of in situ biosurfactant producing Rhodococcus bacteria into PVA cryogel is discussed. PVA cryogel granules with entrapped alkanotrophic rhodococcal cells were stable after 10-month storage at room temperature.  相似文献   

15.
Enzyme-immobilization in membranes accomplished by fostering membrane fouling was evaluated. Four different membrane configurations and five membranes were compared for immobilization of alcohol dehydrogenase (ADH) in terms of enzyme loading, permeate flux and final biocatalytic conversion. The membrane configuration impacted the efficiency of the enzyme-immobilization as well as the biocatalytic-membrane reaction, and the “sandwich mode”, with an extra polypropylene support above the membrane skin layer, worked best due to its high flux and stable conversion. Among the membranes, a GR51PP polysulphone membrane allowed for the highest flux during the reaction with the enzyme-immobilized membrane. At the same time, the lowest enzyme loading and low reaction stability were achieved for this membrane. Satisfactory enzyme loadings, stable conversions, but low flux rates were obtained for the PLTK and PLGC regenerated cellulose membranes. With these two highly hydrophilic membranes, the ADH enzyme activity was fully retained even after 24 h of storage of the membrane. Filtration blocking and resistance models were used to analyze the fouling/immobilization mechanisms and give explanations for the different results. The work confirms that fouling-induced enzyme immobilization is a promising option for enhancing biocatalytic productivity, and highlights the significance of the membrane type and configuration for optimal performance.  相似文献   

16.
A comprehensive knowledge of the in vivo fate of polymers is essential for their potential application in humans. In this study, the body distribution, accumulation, and elimination processes of intraperitoneally (ip) administered poly(vinyl alcohol) (PVA) in mice were investigated in detail. Two derivatives of PVA (195 kDa) having covalently bound fluorescent dye labels were synthesized and used to follow PVA in vivo by noninvasive multispectral fluorescence imaging over several months. Detailed ex vivo fluorescence imaging was performed additionally and combined with tissue accumulation studies using confocal microscopy. Filtration and confocal imaging at appropriate synthetic membranes, used as models for glomerular filtration, confirmed a considerable PVA permeation. This investigation yields new scientific findings about the fate of PVA in vivo. PVA accumulated in fat tissue at high levels, which suggests that PVA is suitable not only for abdominal surgeries but also for controlled release applications after ip or subcutaneous injection.  相似文献   

17.
There is considerable clinical interest in the use of "second-generation" therapeutic proteins produced by conjugation of the native protein with various polymers including poly(ethylene glycol) (PEG). One of the challenges in the production of polymer-protein conjugates is the need to remove residual polymer, native (unreacted) protein, and any reaction byproducts from the final therapeutic formulation. The overall objective of this study was to evaluate the possibility of using ultrafiltration for the purification of a model PEGylated protein. Sieving data were obtained using PEGylated alpha-lactalbumin, the native protein, and the poly(ethylene glycol) over a range of pH, ionic strength, and filtrate flux using both neutral and charge-modified composite regenerated cellulose membranes. Purification of the PEGylated protein was achieved using a two-stage diafiltration process. The first stage used a neutral membrane to remove the unreacted protein and any small reaction byproducts while retaining the large PEGylated product. The second stage used a negatively charged membrane to remove the neutral poly(ethylene glycol) while retaining the PEGylated alpha-lactalbumin as a result of strong electrostatic interactions. These results clearly demonstrate the potential of using membrane-based separations for the purification of second-generation therapeutic proteins.  相似文献   

18.
Silk fibroin (SF)/poly(vinyl alcohol) (PVA) blend filaments were prepared by a wet spinning process. Regenerated SF and PVA were dissolved in formic acid and the dope solution exhibited good fiber formation in a methanol coagulation bath. Due to the miscibility of SF/PVA in formic acid, the filament had a smooth surface and dense structure with a circular cross-section. The crystalline structure and thermal properties were varied with different SF/PVA ratios. The mechanical properties of the filament were also controlled by blending PVA with SF. Especially, the knot strength of the SF filament, which is a very important suture property, could be significantly improved by blending with PVA.  相似文献   

19.
Several procedures were used to disassemble rat liver rough microsomes (RM) into ribosomal subunits, mRNA, and ribosome-stripped membrane vesicles in order to examine the nature of the association between the mRNA of bound polysomes and the microsomal membranes. The fate of the mRNA molecules after ribosome release was determined by measuring the amount of pulse-labeled microsomal RNA in each fraction which was retained by oligo-dT cellulose or by measuring the poly A content by hybridization to radioactive poly U. It was found that ribosomal subunits and mRNA were simultaneously released from the microsomal membranes when the ribosomes were detached by: (a) treatment with puromycin in a high salt medium containing Mg++, (b) resuspension in a high salt medium lacking Mg++, and (c) chelation of Mg++ by EDTA or pyrophosphate. Poly A-containing mRNA fragments were extensively released from RM subjected to a mild treatment with pancreatic RNase in a medium of low ionic strength. This indicates that the 3' end of the mRNA is exposed on the outer microsomal surface and is not directly bound to the membranes. Poly A segments of bound mRNA were also accessible to [(3)H] poly U for in situ hybridization in glutaraldehyde-fixed RM. Rats were treated with drugs which inhibit translation after formation of the first peptide bonds or interfere with the initiation of protein synthesis. After these treatments inactive monomeric ribosomes, as well as ribosomes bearing mRNA, remained associated with their binding sites in microsomes prepared in media of low ionic strength. However, because there were no linkages provided by nascent chains, ribosomes, and mRNA, molecules were released from the microsomal membranes without the need of puromycin, by treatment with a high salt buffer containing Mg++. Thus, both in vivo and in vitro observations are consistent with a model in which mRNA does not contribute significantly to the maintenance of the interaction between bound polysomes and endoplasmic reticulum membranes in rat liver hepatocytes.  相似文献   

20.
Ternary compatible blends of chitosan, poly(vinyl alcohol), and poly(lactic acid) were prepared by an oil-in-water (O/W) emulsion process. Solutions of chitosan in aqueous acetic acid, poly(vinyl alcohol) (PVA) in water, and poly(lactic acid) (PLA) in chloroform were blended with a high-shear mixer. PVA was used as an emulsifier to stabilize the emulsion and to reduce the interfacial tension between the solid polymers in the blends produced. It proved to work very well because the emulsions were stable for periods of days or weeks and compatible blends were obtained when PVA was added. This effect was attributed to a synergistic effect of PVA and chitosan because the binary blends PVA/PLA and chitosan/PLA were completely incompatible. The blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA), stress-strain tests, and Fourier transform infrared spectroscopy (FTIR). The results indicated that despite the fact that the system contained distinct phases some degree of molecular miscibility occurred when the three components were present in the blend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号