首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Receptor-mediated endocytosis of mannose-terminated glycoproteins in rat liver endothelial cells has been followed by means of subcellular fractionation and by immunocytochemical labelling of ultrathin cryosections after intravenous injection of ovalbumin. For subcellular-fractionation studies the ligand was labelled with 125-tyramine-cellobiose adduct, which leads to labelled degradation products being trapped intracellularly in the organelle where the degradation takes place. 2. Isopycnic centrifugation in sucrose gradients of a whole liver homogenate showed that the ligand is sequentially associated with three organelles with increasing buoyant densities. The ligand was, 1 min after injection, recovered in a light, slowly sedimenting vesicle and subsequently (6 min) in larger endosomes. After 24 min the ligand was recovered in dense organelles, where also acid-soluble degradation products accumulated. 3. Immunocytochemical labelling of ultrathin cryosections showed that the ligand appeared rapidly after internalization in coated vesicles and subsequently in two larger types of endosomes. In the 'early' endosomes (1 min after injection) the labelling was seen closely associated with the membrane of the vesicle; after 6 min the ligand was evenly distributed in the lumen. At 24 min after injection the ligand was found in the lysosomes. 4. A bimodal distribution of endothelial cell lysosomes with different buoyant densities was revealed by centrifugation in iso-osmotic Nycodenz gradients, suggesting that two types of lysosomes are involved in the degradation of mannose-terminated glycoproteins in liver endothelial cells. Two populations of lysosomes were also revealed by sucrose-density-gradient centrifugation after injection of large amounts of yeast invertase. 5. In conclusion, ovalbumin is transferred rapidly through three endosomal compartments before delivering to the lysosomes. The degradation seems to take place in two populations of lysosomes.  相似文献   

2.
The four most important non-specific carboxylesterases from rat liver were assayed for their ability to hydrolyse retinyl esters. Only the esterases with pI 6.2 and 6.4 (= esterase ES-4) are able to hydrolyse retinyl palmitate. Their specific activities strongly depend on the emulsifier used (maximum rate: 440 nmol of retinol liberated/h per mg of esterase). Beside retinyl palmitate, these esterases cleave palmitoyl-CoA and monoacylglycerols with much higher rates, as well as certain drugs (e.g. aspirin and propanidid). However, no transacylation between palmitoyl-CoA and retinol occurs. Retinyl acetate also is a substrate for the above esterases and for another one with pI 5.6 (= esterase ES-3). Again the emulsifier influences the hydrolysis by these esterases (maximum rates: 475 nmol/h per mg for ES-4 and 200 nmol/h per mg for ES-3). Differential centrifugation of rat liver homogenate reveals that retinyl palmitate hydrolase activity is highly enriched in the plasma membranes, but only moderately so in the endoplasmic reticulum, where the investigated esterases are located. Since the latter activity can be largely inhibited with the selective esterase inhibitor bis-(4-nitrophenyl) phosphate, it is concluded that the esterases with pI 6.2 and 6.4 (ES-4) represent the main retinyl palmitate hydrolase of rat liver endoplasmic reticulum. In view of this cellular localization, the enzyme could possibly be involved in the mobilization of retinol from the vitamin A esters stored in the liver. However, preliminary experiments in vivo have failed to demonstrate such a biological function.  相似文献   

3.
4.
The intracellular transport and degradation of in vivo endocytosed chylomicron remnants labelled with 125I in the protein moiety was studied in rat liver cells by means of subcellular fractionation in Nycodenz and sucrose density gradients. Initially, the radioactivity was located in low-density endosomes and was sequentially transferred to light and dense lysosomes. Data from gel filtration of the light and dense lysosomal fractions showed radioactive material with a molecular weight of about 1000-2000, representing short peptide fragments or amino acids which remain attached to iodinated tyramine cellobiose. In addition, undegraded apoproteins accumulated in both types of lysosome. Our data suggest that endocytosed chylomicron remnant apoproteins are first located in low-density endosomes and are sequentially transferred to light and dense lysosomes. Furthermore, the degradation process starts in the light lysosomes.  相似文献   

5.
6.
Rat alpha 1-macroglobulin was isolated from plasma. Gel electrophoresis of the denatured and reduced protein showed two bands, with Mr values of 163 000 and 37 000. The large subunit contained an autolytic site. This subunit was also split after reaction of the macroglobulin with trypsin. Electron microscopy showed that the macroglobulin changed towards a more compact conformation after reaction with this proteinase. Subtilisin, or alpha 1-macroglobulin, was labelled with a sucrose-containing radio-iodinated group that stays in lysosomes after endocytosis and breakdown of the tagged protein. After intravenous injection into rats, alpha 1-macroglobulin was cleared from plasma with first-order kinetics, showing a half-life of about 9 h, whereas complexes of alpha 1-macroglobulin and subtilisin were cleared with half-lives of only 3 min. Liver contained about 60% of the label at 30 min after injection of complexes. About 90% of the liver radioactivity was found in parenchymal cells isolated after perfusion of the liver with a collagenase solution. Subcellular fractionation indicated a lysosomal localization of the complexes. We conclude that endocytosis by parenchymal liver cells is the major cause of the rapid clearance of alpha 1-macroglobulin-proteinase complexes from plasma.  相似文献   

7.
The fine structural localization of albumin in rat liver parenchymal cells was determined by an improved immunocytochemical method and serial sectioning. Albumin in the secretory apparatus of the parenchymal cells was present in segments of the rough endoplasmic reticulum, interrupted with negative segments, in transport vesicles, Golgi saccules, finely anastomosed tubules and vesicles on the trans side of the Golgi complex, and in secretion granules. Horizontally sectioned Golgi saccules contained lipoprotein particles on one side and albumin on the other side. After transport, the vesicles that contained albumin fused with the so-called rigid lamellae on the trans-side of the Golgi complex. Ultrathin serial sections revealed no true structural continuity between the endoplasmic reticulum and the cis-aspect of the Golgi complex. We concluded that secretory proteins are transported from the endoplasmic reticulum to the Golgi complex by transport vesicles that bud from the endoplasmic reticulum and fuse with the Golgi saccules. These vesicles fuse regularly with the Golgi saccules on the cis-side and occasionally with tubular elements on the trans-aspect that may belong to the so-called GERL.  相似文献   

8.
The choline-deficient rat liver has been chosen as a physiologically relevant model system in which to study the regulation of phosphatidylcholine biosynthesis. When 50-g rats were placed on a choline-deficient diet for 3 days, the activity of CTP:phosphocholine cytidylyltransferase (CT) was increased 2-fold in the microsomes and decreased proportionately in the cytosol. A low titer antibody to CT was obtained from chickens and used to identify the amount of CT protein in cytosol from rat liver. The amount of CT recovered from the choline-deficient cytosol was significantly less than in cytosol from choline-supplemented rats. When hepatocytes were prepared from choline-deficient livers, supplementation of the medium of the cells with choline caused CT to move from the membranes to cytosol within 1-2 h. The activity of another translocatable enzyme of glycerolipid metabolism, phosphatidate phosphohydrolase, was unchanged in cytosol from choline-deficient rat livers, and the microsomal activity of this enzyme was only minimally increased. When the livers were fractionated into endoplasmic reticulum and Golgi, there was a 2-fold increase in the activity on the endoplasmic reticulum from choline-deficient livers but no change in activity associated with Golgi. Thus, the increased association of CT with endoplasmic reticulum in choline-deficient livers appears to be specific to that subcellular fraction, and the subcellular location of other enzymes may not be affected.  相似文献   

9.
The cytosolic coat-protein complex COP-I interacts with cytoplasmic 'retrieval' signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct marker molecules. Microinjection of anti-COP-I antibodies inhibits retrieval of the lectin-like molecule ERGIC-53 and of the KDEL receptor from the Golgi to the ER. Transport to the ER of protein toxins, which contain a sequence that is recognized by the KDEL receptor, is also inhibited. In contrast, microinjection of anti-COP-I antibodies or expression of a GTP-restricted Arf-1 mutant does not interfere with Golgi-to-ER transport of Shiga toxin/Shiga-like toxin-1 or with the apparent recycling to the ER of Golgi-resident glycosylation enzymes. Overexpression of a GDP-restricted mutant of Rab6 blocks transport to the ER of Shiga toxin/Shiga-like toxin-1 and glycosylation enzymes, but not of ERGIC-53, the KDEL receptor or KDEL-containing toxins. These data indicate the existence of at least two distinct pathways for Golgi-to-ER transport, one COP-I dependent and the other COP-I independent. The COP-I-independent pathway is specifically regulated by Rab6 and is used by Golgi glycosylation enzymes and Shiga toxin/Shiga-like toxin-1.  相似文献   

10.
Treatment of liver plasma membranes with trypsin at low concentrations (1 to 2 microgram/mg of protein) caused at 3- to 4-fold increase in alpha-specific [3H]epinephrine binding. The change was due to an increase in the number of high affinity binding sites, with no change in the dissociation constant. With increasing trypsin concentrations, the dissociation constant was decreased and there was a progressive loss of binding. Elastase, papain, and thermolysin caused similar effects, whereas the thrombin, leucine aminopeptidase, phospholipase A2, phospholipase C, phospholipase D, and detergents did not cause an increase in [EH]epinephrine binding. The increase in epinephrine high affinity binding sites was correlated with a loss of high affinity [3H]-dihydroergocryptine binding sites which also bind [3H]epinephrine with low affinity (El-Refai, M. F., Blackmore, P. F., and Exton, J. H. (1979) J. Biol. Chem. 254, 4375-4386). Incubation of membranes with the alpha blockers dihydroergocryptine (50 nM) and phenoxybenzamine (20 nM) prior to protease treatment diminished the increase in [3H]epinephrine binding induced by trypsin (1.5 microgram/mg). The concentration dependence and time course of trypsin actions on 70 nM [3H]epinephrine binding and 10 nM [3H]dihydroergocryptine binding are consistent with a trypsin-mediated conversion of low affinity epinephrine binding sites to high affinity epinephrine binding sites.  相似文献   

11.
After a 3-h incubation of Krebs II ascitic cells in the presence of phospholipase C from Clostridium welchii under nonlytic conditions, the incorporation of [3H] choline into phosphatidylcholine was increased 1.7-fold as compared to untreated cells. The total amounts of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were unchanged up to 3 h of incubation. The limiting step in phosphatidylcholine biosynthesis was the formation of CDP-choline catalyzed by CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) as monitored by the decrease in phosphocholine labeling following phospholipase C treatment of cells prelabeled with [3H]choline. The specific activity of homogenate cytidylyltransferase was increased about 1.6-fold in phospholipase C-treated cells. Specific activity of the membrane fraction was increased 2-fold, whereas cytosolic specific activity decreased in phospholipase C-treated cells. The activation of cytidylyltransferase was concomitant with translocation of the enzyme from the cytosol to the membrane fraction. The latter was further fractionated using a Percoll gradient that allowed an efficient separation between endoplasmic reticulum and other subcellular membranes. In control cells, particulate cytidylyltransferase activity co-migrated with the endoplasmic reticulum and ribosome markers and not with the plasma membrane. Also, in treated cells, the stimulation of cytidylyltransferase activity occurred at the endoplasmic reticulum level and did not involve either the external cell membrane or other cellular organelles including the Golgi apparatus, lysosomes, or mitochondria. Thus, our results demonstrate that a stimulus acting on the plasma membrane promotes the translocation of the soluble form of cytidylyltransferase specifically to the endoplasmic reticulum.  相似文献   

12.
13.
1. Incubation of isolated liver cells in a medium containing bicarbonate raises malate concentrations almost sixfold compared with values obtained in a bicarbonate-free phosphate medium. The malate concentration of about 0.3mm in bicarbonate medium is of the same order as the K(m) for malate dehydrogenase. 2. The utilization of ethanol, glyercol and sorbitol was increased by 20-35% in bicarbonate medium. 3. Fluoromalate, a specific inhibitor of malate dehydrogenase and the malate carrier, inhibited or ethanol oxidation by 23%, glycerol uptake by 20% and sorbitol uptake by 42% in bicarbonate medium, but had a much smaller inhibitory action in phosphate medium. In consequence fluoromalate almost abolished the stimulatory effects of bicarbonate on substrate utilization. 4. Difluoro-oxaloacetate, a specific inhibitor of aspartate aminotransferase, had about one-half the inhibitory activity of fluoromalate. The two inhibitors in combination were less effective than fluoromalate by itself. 5. It is concluded that bicarbonate stimulates the utilization of reduced substrates, which are oxidized in the cytoplasmic compartment of the liver cell, by increasing the activity of rate-limiting malate dehydrogenase-dependent intercompartmental hydrogen shuttles. Both malate-oxaloacetate and malate-aspartate systems are involved in these hydrogen-translocation processes.  相似文献   

14.
The presence of anionic channels in stripped rough endoplasmic reticulum membranes isolated from rat hepatocytes was investigated by fusing microsomes from these membranes to a planar lipid bilayer. Several types of anion-selective channels were observed including a voltage-gated Cl- channel, the activity of which appeared in bursts characterized by transitions among three distinct conductance levels of 0 pS (0 level), 160 pS (O1 level), and 320 pS (O2 level), respectively, in 450 mM (cis) 50 mM (trans) KCl conditions. A chi 2 analysis on current records where interburst silent periods were omitted showed that the relative probability of current levels 0 (baseline), O1, and O2 followed a binomial statistic. However, measurements of the conditional probabilities W(level 0 at tau/level O2 at 0) and W(level O2 at tau/level 0 at 0) provided clear evidence of direct transitions between the current levels 0 and O2 without any detectable transitions to the intermediate level O1. It was concluded on the basis of these results that the observed channel was controlled by at least two distinct gating processes, namely 1) a voltage-dependent activation mechanism in which the entire system behaves as two independent monomeric channels of 160 pS with each channel characterized by a simple Open-Closed kinetic, and 2) a slow voltage-dependent process that accounts for both the appearance of silent periods between bursts of channel activity and the transitions between the current levels 0 and O2. Finally, an analysis of the relative probability for the system to be in levels 0, O1, and O2 showed that our results are more compatible with a model in which all the states resulting from the superposition of the two independent monomeric channels have access at different rates to a common inactivated state than with a model where a simple Open-Closed main gate either occludes or exposes simultaneously two independent 160-pS monomers.  相似文献   

15.
It is shown that the consumption of glucocorticoids from the complexes with serum proteins by hepatocytes decreases with ageing. Transcortin-complexed decrease adenosine monophosphate binding by the liver cells but the degree of this inhibition decreases with an increase of animals' age, which is probably connected with the change in physicochemical properties of steroid-transport blood glycoprotein.  相似文献   

16.
Acetylated low-density lipoprotein (acetyl-LDL), biologically labelled in the cholesterol moiety of cholesteryl oleate, was injected into control and oestrogen-treated rats. The serum clearance, the distribution among the various lipoproteins, the hepatic localization and the biliary secretion of the [3H]cholesterol moiety were determined at various times after injection. In order to monitor the intrahepatic metabolism of the cholesterol esters of acetyl-LDL in vivo, the liver was subdivided into parenchymal, endothelial and Kupffer cells by a low-temperature cell-isolation procedure. In both control and oestrogen-treated rats, acetyl-LDL is rapidly cleared from the circulation, mainly by the liver endothelial cells. Subsequently, the cholesterol esters are hydrolysed, and within 1 h after injection, about 60% of the cell- associated cholesterol is released. The [3H]cholesterol is mainly recovered in the high-density lipoprotein (HDL) range of the serum of control rats, while low levels of radioactivity are detected in serum of oestrogen-treated rats. In control rats cholesterol is transported from endothelial cells to parenchymal cells (reverse cholesterol transport), where it is converted into bile acids and secreted into bile. The data thus provide evidence that HDL can serve as acceptors for cholesterol from endothelial cells in vivo, whereby efficient delivery to the parenchymal cells and bile is assured. In oestrogen-treated rats the radioactivity from the endothelial cells is released with similar kinetics as in control rats. However, only a small percentage of radioactivity is found in the HDL fraction and an increased uptake of radioactivity in Kupffer cells is observed. The secretion of radioactivity into bile is greatly delayed in oestrogen-treated rats. It is concluded that, in the absence of extracellular lipoproteins, endothelial cells can still release cholesterol, although for efficient transport to liver parenchymal cells and bile, HDL is indispensable.  相似文献   

17.
18.
Tritium-labeled leupeptin was used to study how this tripeptide proteinase inhibitor interacts with the liver, including the mechanism of its transport into the cell, its subcellular distribution after uptake, and its metabolism once in the tissue. Experiments were done in situ and in a perfused liver. At low concentrations (1 to 10 μm) the uptake of radioactive inhibitor was competed by chemically reduced leupeptin. At high concentrations at least up to 400 μm the uptake was directly proportional to the external concentration of tripeptide. Entry into the tissue essentially stopped at low temperature (<21 °C). [3H]Leupeptin initially was located in the soluble fraction of the liver homogenate and by 15 to 30 min became concentrated in the lysosome-rich fraction. During 2 h of perfusion almost 50% of [3H]leupeptin that had entered the liver was secreted intact into the bile. In addition, a portion of the leupeptin that remained in the liver was degraded during this time period.  相似文献   

19.
The effects of four bile acids on cell Ca2+ were examined in suspensions of isolated rat hepatocytes. Taurolithocholate and lithocholate which inhibit bile secretion increased the cytosolic Ca2+ concentration (ED50, 25 microM), as measured by the fluorescent indicator quin2, and promoted a net loss of Ca2+ from the cells. This effect resulted from rapid mobilization of Ca2+ from an intracellular Ca2+ store. This store corresponds to the one that is permeabilized by the inositol (1,4,5)trisphosphate-dependent hormone vasopressin. However, taurolithocholate and lithocholate, unlike the hormone, did not induce a significant accumulation of inositol trisphosphate fraction in isolated hepatocytes. In addition, these agents did not alter the cell and the mitochondria membrane permeability to ions. When applied to saponin-permeabilized cells, taurolithocholate and lithocholate released Ca2+ (ED50, 20 microM) from an ATP-dependent, nonmitochondrial pool which is sensitive to inositol (1,4,5)trisphosphate. In contrast, the bile acids taurocholate and cholate, which increase bile secretion, had no effect on cell Ca2+ in intact hepatocytes or in saponin-permeabilized hepatocytes. It is suggested that taurolithocholate and lithocholate permeabilize the endoplasmic reticulum to Ca2+ and that the resulting permeabilization of this compartment may be involved in the inhibition of bile secretion in mammalian liver.  相似文献   

20.
Smooth microsomal membranes, prepared from rat liver by sucrose-density-gradient centrifugation, were subfractionated by counter-current distribution in an aqueous two-phase system consisting of poly(ethylene glycol) and Dextran T500. A comparison of the distribution curves of marker enzymes, together with theoretically calculated curves, indicated the presence of at least five membrane subfractions, differing in the ratios of the marker enzymes. Glucose-6-phosphatase and arylesterase distributed in one manner, and NADPH-cytochrome c reductase and NADH-ferricyanide reductase in another. Evidence for further heterogeneities in the distribution of marker enzymes in smooth microsomes was obtained by analysing the membrane domain structure using a recently described method [Albertsson (1988) Q. Rev. Biophys. 21, 61-98]. Phenobarbital treatment did not influence the behaviour of the marker enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号