首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Viral factors as well as host ones play major roles in the disease progression of human immunodeficiency virus type 1 (HIV-1) infection. We have examined cytotoxic T-lymphocyte activity and HIV-1 DNA PCR results of 312 high-risk seronegative drug users in northern Thailand and identified four seronegative cases positive for both assays. Furthermore, we have identified a synonymous mutation in nucleotide position 75 of the gag p17 gene (A426G) of HIV-1 that belongs to the CRF01_AE virus circulating in Thailand. The replication-competent HIV-1 clone containing the A426G mutation demonstrated a dramatic reduction of virion production and perturbation of viral morphogenesis without affecting viral protein synthesis in cells.  相似文献   

3.
J Luban  C Lee    S P Goff 《Journal of virology》1993,67(6):3630-3634
We have expressed the human immunodeficiency virus type 1 (HIV-1) protease (PR) in bacteria as a Gag-PR polyprotein (J. Luban and S.P. Goff, J. Virol. 65:3203-3212, 1991). The protein displays enzymatic activity, cleaving the Gag polyprotein precursor Pr55gag to the expected products. The PR enzyme is only active as a dimer, and we hypothesized that PR activation might be used as an indicator of polyprotein multimerization. We constructed 25 linker insertion mutations throughout gag and assessed the PR activity of mutant Gag-PR polyproteins by the appearance of Gag cleavage products in bacterial lysates. All mutant constructs produced stable protein in bacteria. PR activity of the majority of the Gag-PR mutants was indistinguishable from that of the wild type. Six mutants, one with an insertion in the matrix (MA), four with insertions in the capsid (CA), and one with insertions in the nucleocapsid (NC), globally disrupted polyprotein processing. When PR was provided in trans on a separate plasmid, the Gag proteins were cleaved with wild-type efficiency. These results suggest that the gag mutations identified as disruptive of polyprotein processing did not conceal the scissile bonds of the polyprotein. Rather, the mutations prevented PR activation in the context of a Gag-PR polyprotein, perhaps by preventing polyprotein dimerization.  相似文献   

4.
The retroviral Gag precursor plays an important role in the assembly of virion particles. The capsid (CA) protein of the Gag molecule makes a major contribution to this process. In the crystal structure of the free CA protein of the human immunodeficiency virus type 1 (HIV-1), 11 residues of the C terminus were found to be unstructured, and to date no information exists on the structure of these residues in the context of the Gag precursor molecule. We performed phylogenetic analysis and demonstrated a high degree of conservation of these 11 amino acids. Deletion of this cluster or introduction of various point mutations into these residues resulted in significant impairment of particle infectivity. In this cluster, two putative structural regions were identified, residues that form a hinge region (353-VGGP-356) and those that contribute to an alpha-helix (357-GHKARVL-363). Overall, mutations in these regions resulted in inhibition of virion production, but mutations in the hinge region demonstrated the most significant reduction. Although all the Gag mutants appeared to have normal Gag-Gag and Gag-RNA interactions, the hinge mutants were characterized by abnormal formation of cytoplasmic Gag complexes. Gag proteins with mutations in the hinge region demonstrated normal membrane association but aberrant rod-like membrane structures. More detailed analysis of these structures in one of the mutants demonstrated abnormal trapped Gag assemblies. These data suggest that the conserved CA C terminus is important for HIV-1 virion assembly and release and define a putative target for drug design geared to inhibit the HIV-1 assembly process.  相似文献   

5.
C Aberham  S Weber    W Phares 《Journal of virology》1996,70(6):3536-3544
Human immunodeficiency virus type 1 mutants that are resistant to inhibition by cyclosporins arise spontaneously in vitro during propagation in a HeLa-CD4+ cell line in the presence of a nonimmunosuppressive analog of cyclosporin A. Interestingly, the phenotype of all of the mutants examined is drug resistant and drug dependent, with both cyclosporin A and its analog. Four independently isolated mutants have been analyzed genetically by construction of recombinant proviruses in the NL4-3 parental strain background and subsequent testing of the chimeric viruses in HeLa cells. The cyclosporin-resistant, cyclosporin-dependent phenotype consistently transfers with a 1.3-kb fragment of gag, within which the four mutants share one of two possible single amino acid exchanges in a proline-rich stretch in the capsid domain of Pr55gag. These mutants provide the first evidence that mutations in human immunodeficiency virus type 1 gag confer resistance to cyclosporins; however, replication is conditional on the presence of the drug. In the T-cell line CEM, replication of the recombinant mutant viruses is also cyclosporin dependent. The drug-dependent replication in HeLa cells is stringent, and in the absence of cyclosporin only revertant viruses with the parental phenotype grow out of cultures infected with cyclosporin-dependent virus. In at least one isolate examined, the revertant phenotype appears to be due to suppressor mutations near the proline-rich region.  相似文献   

6.
Feng YX  Li T  Campbell S  Rein A 《Journal of virology》2002,76(22):11757-11762
Recombinant human immunodeficiency virus type 1 (HIV-1) Gag protein can assemble into virus-like particles (VLPs) in suitable buffer conditions with nucleic acid. We have explored the role of nucleic acid in this assembly process. HIV-1 nucleocapsid protein, a domain of Gag, can bind to oligodeoxynucleotides with the sequence d(TG)(n) with more salt resistance than to d(A)(n) oligonucleotides. We found that assembly of VLPs on d(TG)(n) oligonucleotides was more salt resistant than assembly on d(A)(n); thus, the oligonucleotides do not simply neutralize basic residues in Gag but provide a binding surface upon which Gag molecules assemble into VLPs. We also found that Gag molecules could be "trapped" on internal d(TG)(n) sequences within 40-base oligonucleotides, rendering them unable to take part in assembly. Thus, assembly on oligonucleotides requires that Gag proteins bind near the ends of the nucleic acid, and binding of Gag to internal d(TG)(n) sequences is apparently cooperative. Finally, we showed that nucleic acids in VLPs can exchange with nucleic acids in solution; there is a hierarchy of preferences in these exchange reactions. The results are consistent with an equilibrium model of in vitro assembly and may help to explain how Gag molecules in vivo select genomic RNA despite the presence in the cell of a vast excess of cellular mRNA molecules.  相似文献   

7.
8.
Incorporation of the intercellular adhesion molecule ICAM-1 into human immunodeficiency virus type 1 (HIV-1) particles increased virus infectivity on peripheral blood mononuclear cells (PBMCs) by two- to sevenfold. The degree of ICAM-1-mediated enhancement was greater for viruses bearing envelope glycoproteins derived from primary HIV-1 isolates than for those bearing envelope glycoproteins from laboratory-adapted strains. Treatment of target PBMCs with an antibody against LFA-1, a principal ICAM-1 receptor, was able to nullify the ICAM-1-mediated enhancement. The incorporation of ICAM-1 rendered HIV-1 virions less susceptible to neutralization by a monoclonal antibody directed against the viral envelope glycoproteins. Surprisingly, an antibody against ICAM-1 completely neutralized infection by ICAM-1-containing viruses, reducing the efficiency of virus entry by almost 100-fold. Thus, HIV-1 neutralization by an ICAM-1-directed antibody involves more than an inhibition of the contribution of ICAM-1 to virus entry.  相似文献   

9.
Twenty-four of over 24,000 patients genotyped over the past 3 years were found to have human immunodeficiency virus (HIV) isolates that possess an insert in the protease gene. In this report, we evaluated the spectrum of protease gene insertion mutations in patient isolates and analyzed the effect of these various insertion mutations on viral phenotypes. The inserts were composed of 1, 2, 5, or 6 amino acids that mapped at or between codons 35 and 38, 17 and 18, 21 and 25, or 95 and 96. Reduced susceptibility to protease inhibitors was found in isolates which possess previously reported drug resistance mutations. Fitness assays, including replication and competition experiments, showed that most of the isolates with inserts grew somewhat better than their counterparts with a deletion of the insert. These experiments demonstrate that, rarely, insertion mutations can develop in the HIV type 1 protease gene, are no more resistant than any other sequences which have similar associated resistance mutations, and can provide a borderline advantage in replication.  相似文献   

10.
F K Yoshimura  K Diem  G H Learn  Jr  S Riddell    L Corey 《Journal of virology》1996,70(12):8879-8887
Because certain regions of the gag gene, such as p24, are highly conserved among human immunodeficiency virus (HIV) isolates, many therapeutic strategies have been directed at gag gene targets. Although intrapatient variation of segments of gag have been determined, little is known about the variability of the full-length gag gene for HIV isolated from a single individual. To evaluate intrapatient full-length gag variability, we derived the nucleotide sequences of at least 10 cDNA gag clones of virion RNA isolated from plasma for each of four asymptomatic HIV type 1-infected patients with relatively high CD4+ T-cell counts (300 to 450 cells per mm3). Mean values of intrapatient gag nucleotide variation obtained by pairwise comparisons ranged from 0.55 to 2.86%. For three subjects, this value was equivalent to that reported for intrapatient full-length env variation. The greatest range of intrapatient mean nucleotide variation for individual protein-coding regions was observed for p7. We did not detect any G-to-A hypermutation, as A-to-G and G-to-A transitions occurred at similar frequencies, accounting for 29 and 25%, respectively, of the changes. Mean variation values and phylogenetic analysis suggested that the extent of nucleotide variation correlated with the length of viral infection. Furthermore, no distinct subpopulations of quasispecies were detectable within an individual. The predicted amino acid sequences indicated that there were no regions within a gag protein that were comprised of clustered changes.  相似文献   

11.
The narrow host range of human immunodeficiency virus type 1 (HIV-1) is due in part to dominant acting restriction factors in humans (Ref1) and monkeys (Lv1). Here we show that gag encodes determinants of species-specific lentiviral infection, related in part to such restriction factors. Interaction between capsid and host cyclophilin A (CypA) protects HIV-1 from restriction in human cells but is essential for maximal restriction in simian cells. We show that sequence variation between HIV-1 isolates leads to variation in sensitivity to restriction factors in human and simian cells. We present further evidence for the importance of target cell CypA over CypA packaged in virions, specifically in the context of gp160 pseudotyped HIV-1 vectors. We also show that sensitivity to restriction is controlled by an H87Q mutation in the capsid, implicated in the immune control of HIV-1, possibly linking immune and innate control of HIV-1 infection.  相似文献   

12.
Retroviral Gag polyproteins drive virion assembly by polymerizing to form a spherical shell that lines the inner membrane of nascent virions. Deletion of the nucleocapsid (NC) domain of the Gag polyprotein disrupts assembly, presumably because NC is required for polymerization. Human immunodeficiency virus type 1 NC possesses two zinc finger motifs that are required for specific recognition and packaging of viral genomic RNA. Though essential, zinc fingers and genomic RNA are not required for virion assembly. NC promiscuously associates with cellular RNAs, many of which are incorporated into virions. It has been hypothesized that Gag polymerization and virion assembly are promoted by nonspecific interaction of NC with RNA. Consistent with this model, we found an inverse relationship between the number of NC basic residues replaced with alanine and NC's nonspecific RNA-binding activity, Gag's ability to polymerize in vitro and in vivo, and Gag's capacity to assemble virions. In contrast, mutation of NC's zinc fingers had only minor effects on these properties.  相似文献   

13.
Disruption of the vif gene of human immunodeficiency virus (HIV) type 1 affects virus infectivity to various degrees, depending on the T-cell line used. We have concentrated our studies on true phenotypic Vif- mutant particles produced from CEMx174 or H9 cells. In a single round of infection, Vif- virus is approximately 25 (from CEMx174 cells) to 100 (from H9 cells) times less infectious than wild-type virus produced from these cells or than the Vif- mutant produced from HeLa cells. Vif- virions recovered from restrictive cells, but not from permissive cells, are abnormal both in terms of morphology and viral protein content. Notably, they contain much reduced quantities of envelope proteins and altered quantities of Gag and Pol proteins. Although wild-type and Vif- virions from restrictive cells contain similar quantities of viral RNA, no viral DNA synthesis was detectable after acute infection of target cells with phenotypically Vif- virions. To examine the possible role of Vif in viral entry, attempts were made to rescue the Vif- defect in H9 cells by pseudotyping Vif+ and Vif- HIV particles with amphotropic murine leukemia virus envelope. Vif- particles produced in the presence of HIV envelope could not be propagated when pseudotyped. In contrast, when only the murine leukemia virus envelope was present, significant propagation of Vif- HIV particles could be detected. These results demonstrate that Vif is required for proper assembly of the viral particle and for efficient HIV Env-mediated infection of target cells.  相似文献   

14.
15.
Targeting of the human immunodeficiency virus type 1 (HIV-1) Gag precursor Pr55(gag) to the plasma membrane, the site of virus assembly, is primarily mediated by the N-terminal matrix (MA) domain. N-myristylation of MA is essential for the stable association of Pr55(gag) with membranes and for virus assembly. We now show that single amino acid substitutions near the N terminus of MA can dramatically impair assembly without compromising myristylation. Subcellular fractionation demonstrated that Gag membrane binding was compromised to a similar extent as in the absence of the myristyl acceptor site, indicating that the myristyl group was not available for membrane insertion. Remarkably, the effects of the N-terminal modifications could be completely suppressed by second-site mutations in the globular core of MA. The compensatory mutations enhanced Gag membrane binding and increased viral particle yields above wild-type levels, consistent with an increase in the exposure of the myristyl group. Our results support a model in which the compact globular core of MA sequesters the myristyl group to prevent aberrant binding to intracellular membranes, while the N terminus is critical to allow the controlled exposure of the myristyl group for insertion into the plasma membrane.  相似文献   

16.
17.
Several retroviruses have recently been shown to promote translation of their gag gene products by internal ribosome entry. In this report, we show that mRNAs containing the human immunodeficiency virus type 1 (HIV-1) gag open reading frame (ORF) exhibit internal ribosome entry site (IRES) activity that can promote translational initiation of Pr55(gag). Remarkably, this IRES activity is driven by sequences within the gag ORF itself and is not dependent on the native gag 5'-untranslated region (UTR). This cap-independent mechanism for Pr55(gag) translation may help explain the high levels of translation of this protein in the face of major RNA structural barriers to scanning ribosomes found in the gag 5' UTR. The gag IRES activity described here also drives translation of a novel 40-kDa Gag isoform through translational initiation at an internal AUG codon found near the amino terminus of the Pr55(gag) capsid domain. Our findings suggest that this low-abundance Gag isoform may be important for wild-type replication of HIV-1 in cultured cells. The activities of the HIV-1 gag IRES may be an important feature of the HIV-1 life cycle and could serve as a novel target for antiretroviral therapeutic strategies.  相似文献   

18.
The replication competence of human immunodeficiency virus type 1 genomes containing mutations in the nef open reading frame was evaluated in continuous cell lines. Mutants that contained a deletion in the nef open reading frame, premature termination codons, or missense mutations in the N-terminal myristoylation signal were constructed. The replication of these mutants was tested in three ways. First, plasmid genomes were used to transfect T-lymphoblastoid cells. Second, low-passage posttransfection supernatants were used to infect cells with a relatively low virus input. Third, high-titer virus stocks were used to infect cells with a relatively high virus input. These experiments demonstrated a 100- to 10,000-fold decrement in p24 production by the nef mutants compared with that by the wild-type virus. The greatest difference was obtained after infection with the lowest virus input. The myristoylation signal was critical for this positive effect of nef. To investigate the mechanism of the positive influence of nef, nef-positive and nef-minus viruses were compared during a single cycle of replication. These single-cycle experiments were initiated both by infection with high-titer virus stocks and by transfection with viral DNA. Single-cycle infection yielded a three- to fivefold decrement in p24 production by nef-minus virus. Single-cycle transfection yielded equal amounts of p24 production. These results implied that nef does not affect replication after the provirus is established. In support of these results, viral production from cells chronically infected with nef-positive or nef-minus viruses was similar over time. To determine whether the effect of nef was due to infectivity, end point titrations of nef-positive and nef-minus viruses were performed. nef-positive virus had a greater infectivity per picogram of HIV p24 antigen than nef-minus virus. These data indicated that the positive influence of nef on viral growth rate is due to an infectivity advantage of virus produced with an intact nef gene.  相似文献   

19.
HIV (human immunodeficiency virus)-1 Env is displayed on the surface of infected cells and subsequently incorporated into virions, which is necessary for the initiation of a viral infection by recognition of the CD4 and the chemokine receptors (such as CCR5 or CXCR4) on the surface of new target cells. As a type 1 integral membrane glycoprotein, Env is cotranslationally translocated into the endoplasmic reticulum. In this report, we characterized the synthesis of Env, which did not occur at a constant rate but by translational/translocational pausing that has not previously been shown with a viral encoded glycoprotein. Overall translation was not impeded by the presence of the reducing agent dithiothreitol in vivo, although this did influence the cleavage of the precursor gp160 into its mature form, gp120. Env interacts transiently with resident components of the endoplasmic reticulum such as calnexin, which had maximal association at a 10-min post-translation. Addition of the glucosidase inhibitor, castanospermine, failed to significantly influence the association of Env with calnexin, consistent with the notion that calnexin recognizes components other than alpha-terminal glucose. Moreover, castanospermine treatment failed to affect the infectivity of virions. Taken together, this report demonstrates the existence of translational/translocational pausing for a viral glycoprotein and suggests that trimming of glucose from HIV-1 Env is not essential for the initiation of virus infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号