首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Adriamycin, which is widely used in the treatment of various neoplastic conditions, exerts toxic effects in many organs. The present study was designed to investigate the effect of lipoic acid upon adriamycin induced peroxidative damages in rat kidney. The increase in peroxidated lipids on adriamycin administration was accompanied by alterations in the antioxidant defense systems. The extent of nephrotoxicity induced by adriamycin was evident from the decreased activities of the enzymes -glutamyl transferase and -glucuronidase in the rat renal tissues. The study was carried out with adult male albino rats of Wistar strain, which comprised of one control and three experimental groups. Group I rats served as controls. GroupII rats received adriamycin (1 mg kg–1 body wt day–1) intravenously through the tail vein. Group III rats were given lipoic acid (35 mg kg–1 body wt day–1) intraperitoneally. Group IV rats were given lipoic acid 24 h before the administration of adriamycin. Rats subjected to adriamycin administration showed a decline in the thiol capacity of the cell accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione metabolizing enzymes (glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione-S-transferase). Lipoic acid pretreatment also restored the activities of -glutamyl transferase and -glucuronidase nearly to control levels thereby suggesting nephroprotection. The study has highlighted the beneficial effects of lipoic acid pretreatment in reversing the damages caused by adriamycin and thereby bringing about an improvement in the oxidative stress parameters.  相似文献   

2.
The effect of DL -lipoic acid on the nephrotoxic potential of gentamicin was examined. Intraperitoneal injection of gentamicin (100 mg/kg/day) to rats resulted in decreased activity of the glycolytic enzymes-hexokinase, phosphoglucoisomerase, aldolase and lactate dehydrogenase. The two gluconeogenic enzymes—glucose-6-phosphatase and fructose-1, 6-diphosphatase, the transmembrane enzymes namely the Na+, K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and the brushborder enzyme alkaline phosphatase, also showed decreased activities. This decrease in the activities of ATPases and alkaline phosphatase suggests basolateral and brush border membrane damage. Decreased activity of the TCA cycle enzymes isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH), suggests a loss in mitochondrial integrity. These biochemical disturbances were effectively counteracted by lipoic acid administration. Lipoic acid administration by gastric intubation at two different concentrations (10 mg and 25 mg/kg/day) brought about an increase in the activity of the glycolytic enzymes, ATPases and the TCA cycle enzymes. The gluconeogenic enzymes however showed a further decrease in their activities at both the concentrations of lipoic acid administered. These observations shed light on the nephroprotective action of lipoic acid against experimental aminoglycoside toxicity and the protection afforded at 25 mg/kg/day of lipoic acid was noted to be higher than that at 10 mg level.  相似文献   

3.
Glutamate, a major excitatory amino acid neurotransmitter is also an endogenous excitotoxin. The present study examined the prolonged and delayed effects of glutamate excitotoxicity on mitochondrial lipid peroxidation and antioxidant parameters in different brain regions, namely, cerebral hemisphere, cerebellum, brain stem and diencephalon. Wistar rats (male) were exposed to monosodium glutamate (MSG) (4 mg × g body wt–1, i.p.) for 6 consecutive days and sacrificed on 30th and 45th day after last MSG dose. MSG treatment markedly decreased the mitochondrial manganese superoxide-dismutase (Mn-SOD), catalase and reduced glutathione (GSH) content, and increased the lipid peroxidation (LPx), uric acid and glutathione peroxidase (GPx) activity. These results indicate that oxidative stress produced by glutamate in vulnerable brain regions may persist for longer periods and mitochondrial function impairment is an important mechanism of excitatory amino acid mediated neurotoxicity in chronic neurodegeneration.  相似文献   

4.
This study aimed to evaluate the protective effects of alpha lipoic acid (ALA) against doxorubicin (DOX)‐induced nephrotoxicity in rats. A single dose of DOX (7.5 mg/kg i.v.) induced nephrotoxicity evidenced by significant elevations in kidney weight, kidney/body weight ratio, serum urea, creatinine, tumor necrosis factor alpha, and renal contents of malondialdehyde, nitric oxide, cyclooxygenase‐2, and caspase‐3. Also, it causes significant reduction in final body weight, serum albumin, renal contents of reduced glutathione and superoxide dismutase activity. Histopathological changes in the kidney tissue confirmed the nephrotoxic effect. In contrast, pretreatment with ALA (50 mg/kg, orally) for 14 days before DOX and for 7 days after DOX administration mitigated renal toxicity evidenced by greater improvement in the examined oxidative stress, inflammation, and apoptosis parameters. In conclusion, ALA had promising protective effects against DOX‐induced nephrotoxicity that might be attributed to its antioxidant, anti‐inflammatory, and antiapoptoic activities.  相似文献   

5.
Because of the important role that oxidative stress is thought to play in the aging process, antioxidants could be candidates for preventing its related pathologies. We investigated the ameliorative effects of two antioxidant supplements, ginger and alpha lipoic acid (ALA), on hepatic ultrastructural alterations in old rats. Livers of young (4 months) and old (24 months) Wistar rats were studied using transmission electron microscopy. Livers of old rats showed sinusoidal collapse and congestion, endothelial thickening and defenestration, and inconsistent perisinusoidal extracellular matrix deposition. Aged hepatocytes were characterized by hypertrophy, cytoplasmic vacuolization and a significant increase in the volume densities of the nuclei, mitochondria and dense bodies. Lipofuscin accumulation and decreased microvilli in bile canaliculi and space of Disse also were observed. The adverse alterations were ameliorated significantly by both ginger and ALA supplementation; ALA was more effective than ginger. Ginger and ALA appear to be promising anti-aging agents based on their amelioration of ultrastructural alterations in livers of old rats.  相似文献   

6.
We have studied the effects of the diuretics mersalyl, furosemide and ethacrynic acid on renal gluconeogenesis in isolated rat-kidney tubules and on the activities of the most important gluconeogenic and glycolytic enzymes in both fed and fasted rats. Mersalyl (15 mg.kg–1 animal weight) significantly decreased the rate of gluconeogenesis in well-fed rats (68%) as well as in 24 and 48-h fasted ones (33 and 37% respectively). This inhibition occurred when lactate, pyruvate, glycerol or fructose were used as substrates. Ethacrynic acid at a dose of 50 mg.kg–1 animal weight provoked a transient inhibition of renal glucose production by almost 20% but only in fed rats with lactate as substrate, whereas the same dose of furosemide did not affect this metabolic pathway.Parallel to these changes, mersalyl caused a significant inhibition in the maximum activity of the most important gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase and glucose 6-phosphatase, in both fed and fasted rats. Neither ethacrynic acid nor furosemide produced any variations in the activities of these enzymes. The activity of the glycolytic enzymes phosphofructokinase and pyruvate kinase was not modified by these diuretics. Nevertheless, the activity of the thiol-enzyme glyceraldehyde 3-phosphate dehydrogenase was severely inhibited by mersalyl and to a lesser extent by the other diuretics. This inhibition was higher in fasted than fed rats. Hence, we conclude that the inhibitory effect of mersalyl on renal gluconeogenesis is due, at least partly, to a decrease in the flux through the gluconeogenic enzymes. Blood glucose was not modified after diuretic treatment in fed animals whereas mersalyl decreased the levels of blood glucose in 24-h fasted rats. Thein vivo effects of diuretics on gluconeogenesis correlate well with the previously observedin vitro effects, although ethacrynic acid was less potent as an inhibitorin vivo, probably because of its rapid clearance.Abbreviations EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycolbis (-aminoethylether) N,N,N,N-tetraacetic acid - DTT dithiothreitol - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - TRIS 2-amino-2-hydroxymethyl-1,3-propanediol Publication No. 166 from Drogas, Tóxicos Ambientales y Metabolismo Celular Research Group, Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain  相似文献   

7.
Traumatic brain injury (TBI) was induced by a weight-drop device using 300 g–1 m weight-height impact. The study groups were: control, alpha-lipoic acid (LA) (100 mg/kg, po), TBI, and TBI + LA (100 mg/kg, po). Forty-eight hours after the injury, neurological scores were measured and brain samples were taken for histological examination or determination of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels, myeloperoxidase (MPO) and Na+-K+ ATPase activities, whereas cytokines (TNF-α, IL-1β) were determined in blood. Brain oedema was evaluated by wet–dry weight method and blood–brain barrier (BBB) permeability was evaluated by Evans Blue (EB) extravasation. As a result, neurological scores mildly increased in trauma groups. Moreover, TBI caused a significant decrease in brain GSH and Na+-K+ ATPase activity, which was accompanied with significant increases in TBARS level, MPO activity and plasma proinflammatory cytokines. LA treatment reversed all these biochemical indices as well as histopathological alterations. TBI also caused a significant increase in brain water content and EB extravasation which were partially reversed by LA treatment. These findings suggest that LA exerts neuroprotection by preserving BBB permeability and by reducing brain oedema probably by its anti-inflammatory and antioxidant properties in the TBI model.  相似文献   

8.
The protective roles of lipoic acid (LA)/vitamin C (VC) and mesna on preventing cyclophosphamide (CYP)‐induced haemorrhagic cystitis (HC) were investigated. Swiss mice were divided into five groups randomly. HC was induced by a single dose of CYP injection (150‐mg kg?1 bodyweight). Group I was injected with saline (four times in total) throughout as control group. Group II received CYP and three equal doses of saline. Group III received CYP and three doses of mesna, whereas Group IV (or Group V) received CYP, mesna + two doses of VC (or LA). All injections were performed intraperitoneally. After 24 h of cystitis induction, the bladders were collected for all the experiments. Histological characterization showed that CYP injection resulted in severe HC. Reactive oxygen species (ROS) and thiobarbituric acid reactive substances' levels were increased in CYP group. The activities of antioxidant enzymes, e.g. superoxide dismutase, catalase, glutathione S‐transferase and glutathione peroxidase, were inhibited significantly in CYP groups, respectively. In addition, activation of c‐jun N‐terminal kinases (JNK) and p38 mitogen‐activated protein kinase (MAPK) may be involved in the mechanism of CYP‐induced HC but not extracellular signal regulated kinases (ERK). Significant suppression of p38 phosphorylation on Group V suggests that LA and mesna may have synergistic beneficial effect. In Groups III–V, all the parameters of HC and oxidative stress were inhibited significantly. Taking together, we found that these results illustrated that ROS play an important role on CYP‐induced HC and the administration of LA/VC with mesna may have therapeutic potential against CYP‐induced bladder HC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The effects of lipoic acid on intensity of free radical reactions, citrate content, and aconitate hydratase during myocardial ischemia have been investigated. Treatment with lipoic acid normalized biochemiluminescence parameters and citrate level, which were increased in the myocardial pathology. Treatment with lipoic acid also increased specific activity of aconitate hydratase, which was decreased in myocardium and blood of animals with myocardial ischemia. Administration of lipoic acid decreased DNA fragmentation observed during myocardial ischemia. The data suggest that lipoic acid can be effectively used as a cardioprotector preventing the development of free radical oxidation during myocardial ischemia.  相似文献   

10.
Summary The influence of starvation on renal carbohydrate metabolism was studied in the proximal and distal fragments of the nephron. Starvation induced a double and opposite adaptation mechanism in both fractions of the renal tubule. In renal proximal tubules, the gluconeogenic flux was stimulated progressively during a period of 48 hours of starvation (2.15 fold), due, in part, to a significant increase in the fructose 1,6-bisphosphatase and phosphoenolpyruvate carboxykinase activities although with different characteristics. Fructose 1,6-bisphosphatase activity from this tubular fragment increased only at subsaturating subtrate concentration (68%) which involved a significant decrease in the Km (35%) for fructose 1,6-bisphosphate while there was no change in Vmax. This behaviour clearly indicates that it is related to modifications in the activity of the preexistent enzyme in the cell. Proximal phosphoenolpyruvate carboxykinase activity increased proportionally at both substrate concentrations (86 and 89% respectively) which brought about changes in Vmax without changes in Kin, all of which are in accordance with variations in the cellular levels of the enzyme. In the renal distal tubules, the glycolytic capacity drastically decreased throughout the starvation time. At 48 hours 65% of inhibition was shown. We have found a short term regulation of phosphofructokinase activity by starvation which involves an increase in Km (2.2 fold) without changes in Vmax, as a result of these kinetic changes, an inactivation of phosphofructokinase was detected at subsaturating concentration of fructose 6-phosphate. On the contrary, this nutritional state did not modify the kinetic behaviour of renal pyruvate kinase. Finally, neither proximal glycolytic nor distal gluconeogenic capacities and related enzymes activities were changed during starvation.  相似文献   

11.
Renal injury is a hallmark adverse reaction to sodium valproate (SVP), and caffeic acid (CAFF) is a phenolic compound that has anti‐inflammatory and antioxsidant properties. So, this investigation was assessed to evaluate the nephrotoxic potential of SVP and the defensive impact of CAFF against SVP nephrotoxicity. SVP was given at a dose of 500 mg/kg (i.p.) once daily for 2 weeks, while CAFF was given at a dose of 50 mg/kg (orally), simultaneously with SVP. Concurrent treatment with CAFF reduced urea and creatinine, lipid peroxidation (malondialdehyde), tumor necrosis factor alpha (TNF‐α), interferon gamma (IFN‐γ), nuclear factor kappa B (NF‐κB/p65), and transforming growth factor β (TGF‐β) levels. However, with increased glutathione content, CAFF also halted the activated Notch signaling cascade. Furthermore, CAFF suppressed caspase‐3 and inducible nitric oxide synthase expressions. To conclude, on the basis of the results obtained, CAFF proved to protect against SVP‐induced nephrotoxicity via its antioxidant, anti‐inflammatory, and antiapoptotic properties.  相似文献   

12.
目的:研究黄芪注射液对阿霉素(ADR)所致心肌病大鼠心肌细胞凋亡、内质网应激与缝隙连接蛋白表达的影响。方法:36只Wistar雄性大鼠随机分为3组(n=12):对照组、ADR组及黄芪注射液组。对照组腹腔注射0.9% Nacl (10 ml/kg体重);ADR组腹腔注射ADR 2 mg/kg体重;黄芪注射液组在每次腹腔注射ADR 2 mg/kg体重的同时,注射黄芪注射液10 g/kg体重,每周注射1次,共注射3次。实验第7周末,3组大鼠行心脏彩超检测左室舒张末期内径、左室收缩末期内径及左室射血分数;处死大鼠后取左心室组织行HE、Masson、醋酸铀及柠檬酸铅染色,于光镜及透射电镜下观察心肌病理及超微结构改变;采用TUNEL法检测大鼠心肌细胞凋亡,用免疫组化技术检测大鼠心肌细胞缝隙连接蛋白Cx43及p-Cx43表达,采用real time PCR检测大鼠心肌细胞内质网应激伴侣蛋白Grp78,ATF-4及CHOP表达。结果:与对照组比较,ADR组大鼠LVEDD、LVESD增大,LVEF减少;心肌纤维排列紊乱,心肌纤维间质水肿,大量淋巴细胞浸润;线粒体肿胀、破坏,呈空泡样;心肌细胞凋亡数明显增多(P<0.01);内质网应激相关蛋白Grp78、ATF-4及CHOP表达明显增高(P<0.01);缝隙连接蛋白Cx43表达减少,而p-Cx43表达增多。与ADR组比较,黄芪注射液组大鼠LVEDD、LVESD减少,LVEF增加;心肌病理及超微结构明显改善,同时心肌细胞凋亡数明显减少(P<0.01);内质网应激伴侣蛋白Grp78、ATF-4及CHOP表达明显减少(P<0.01);缝隙连接蛋白Cx43表达增多,而p-Cx43减少。结论:黄芪注射液可有效改善阿霉素导致的心肌损伤,其机制可能与黄芪注射液抑制ADR诱导的内质网应激及缝隙连接蛋白磷酸化有关。  相似文献   

13.
The observations reported in this article demonstrate that lipoic acid strongly influences the activity of a purified preparation of choline acetyl transferase. The reduced form, dihydrolipoic acid, is a powerful activator of the enzyme while lipoic acid itself has an inhibitory effect and counteracts the stimulatory effect of dihydrolipoic acid. It is proposed that dihydrolipoic acid serves an essential function in the action of this enzyme and that the ratio of reduced to oxidized lipoic acid in the cell may play an important role in the regulation of the activity of the enzyme. The implications of these findings for cell function and acetyl choline formation are discussed.Affiliation  相似文献   

14.
Intraperitoneal administration of lipoic acid (10 mg/100 g) does not effect changes in serum insulin levels in normal and alloxan diabetic rats, while normalising increased serum pyruvate, and impaired liver pyruvic dehydrogenase characteristic of the diabetic state. Dihydrolipoic acid has been shown to participate in activation of fatty acids with equal facility as coenzyme A. Fatty acyl dihydrolipoic acid however is sparsely thiolyzed to yield acetyl dihydrolipoic acid. Also acetyl dihydrolipoic acid does not activate pyruvate carboxylase unlike acetyl coenzyme A. The reduced thiolysis of Β-keto fatty acyl dihydrolipoic acid esters and the lack of activation of pyruvic carboxylase by acetyl dihydrolipoic acid could account for the antiketotic and antigluconeogenic effects of lipoic acid  相似文献   

15.
Dihydrolipoamide dehydrogenase (LADH) is a flavo-enzyme that serves as a subunit of α-ketoglutarate dehydrogenase complex (α-KGDHC). Reactive oxygen species (ROS) generation by α-KGDHC has been assigned to LADH (E3 subunit) and explained by the diaphorase activity of E3. Dysfunctions of α-KGDHC and concurrent ROS production have been implicated in neurodegeneration, ischemia-reperfusion, and other pathological conditions. In this work we investigated the in-depth details of ROS generation by isolated LADH and α-KGDHC. We found a parallel generation of superoxide and hydrogen peroxide by the E3 subunit of α-KGDHC which could be blocked by lipoic acid (LA) acting on a site upstream of the E3 subunit. The pathologically relevant ROS generation (at high NADH/NAD+ ratio and low pH) in the reverse mode of α-KGDHC could also be inhibited by LA. Our results contradict the previously proposed mechanism for pH-dependent ROS generation by LADH, showing no disassembling of the E3 functional homodimer at acidic pH using a physiologically relevant method for the examination. It is also suggested that LA could be beneficial in reducing the cell damage related to excessive ROS generation under pathological conditions.  相似文献   

16.
The aim of this study was to test the effect of lipoic acid treatment on the retina after a short diabetic insult. Diabetes was induced by alloxan and mice were divided into sub-groups; control, diabetic, diabetic+insulin and all groups received±lipoic acid (100 mg/kg body weight) for 3 weeks. GSH content, MDA concentration, GPx activity were measured and electroretinograms (ERG) were recorded. Early administration of lipoic acid to diabetic mice prevented the statistically significant decreases of GSH content and GPx activity and normalized MDA concentration. Moreover, lipoic acid restored electroretinogram b-wave amplitude of diabetic animals to control values. Lipoic acid has a protective effect on the diabetic retina.  相似文献   

17.
Gentamicin is an aminoglycosidic antibiotic widely used in the treatment of many gram-negative bacterial infections. The present study was designed to investigate the extent of nephrotoxicity and the degree of protection afforded by lipoic acid under E. coli infected conditions and to note its effect on the antimicrobial activity of gentamicin. The study was carried out with adult male albino rats of Wistar strain. Group I animals served as controls. Group II animals were injected intraperitoneally for 2 successive days with 0.2 ml inoculum containing 1010 colony forming units of E. coli. Group III animals were injected E. coli as those in group II, in addition gentamicin 100 mg kg–1 was administered intraperitoneally for 10 successive days. Group IV animals received intraperitoneal injections of E. coli as above plus gentamicin and also received lipoic acid (25 mg kg–1) for 10 days by oral gavage. Rats subjected to E. coli administration showed a decline in the thiol content of the cell accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase and glutathione peroxidase with an added effect observed when gentamicin was administered along with it. The extent of nephrotoxicity induced by gentamicin was clearly evident with the decline in the activities of lactate dehydrogenase, alkaline phosphatase and N-acetyl--D-glucosaminidase in the rat renal tissues. A significant decrease was also observed in the activities of the transmembrane enzymes upon gentamicin administration. Treatment with lipoic acid decreased lipid peroxidation thereby maintaining the antioxidant status of the cell. The activities of the renal and transmembrane enzymes were also restored on lipoic acid treatment. The study has highlighted the beneficial effects of lipoic acid against experimental aminoglycoside toxicity in rats rendered bacteremic.  相似文献   

18.
The present investigation reports the effect of rosmarinic acid (RA), an antioxidant on gentamicin sulphate (GS)-induced renal oxidative damage in rats. Rosmarinic acid (RA) has been demonstrated to have antioxidant, free radical scavenger and anti-inflamatory effects. Twenty-eight Sprague-Dawley rats were divided in to four equal groups as follows: group 1 (control), group 2 (GS 100 mg/kg/d ip), group 3 (GS 100 mg/kg/d ip + RA 50 mg/kg/d) and group 4 (GS 100 mg/kg/d ip + RA 100 mg/kg/d). Treatments were administrated once daily for 12 days. After 12 days 24 h urine was collected, blood was sampled and kidneys were removed. Serum and kidney tissue MDA assessed by thiobarbituric acid. Kidney paraffin sections (5 μm thickness) from the left kidney stained with periodic acid Schiff. Tubular necrosis was studied semiquantitatively and glomerular volume and volume density of proximal convoluted tubule (PCT) estimated stereologically. Kidney homogenize were prepared from right kidney. Serum creatinine, urea and kidney antioxidant enzymes activity were assessed by special kits. Data were compared by SPSS 13 software and Mann–Whitney test at p < 0.05. Co treatment of GS and RA (High dose) significantly decreased serum creatinine, MDA, urea, tubular necrosis (p < 0.05) and increase renal GSH, GPX, CAT, SOD, volume density of PCT and creatinine clearance significantly in comparison with GS group (p < 0.05). Treatment with RA (high dose) maintained serum creatinine, volume density of PCT, renal GSH, GPX, SOD and MDA as the same level as control group significantly (p < 0.05). In conclusion, RA alleviates GS nephrotoxicity via antioxidant activity, increase of renal GSH content and increase of renal antioxidant enzymes activity.  相似文献   

19.
Menopause occurs as consequence of ovarian senescence that leads to a drop of oestrogen hormone. The decreased oestrogen levels combined with the impairment of the redox system may contribute to the increased risk of postmenopausal cardiovascular disease. Supplementation with antioxidants may be an alternative to reduce cardiovascular risk. The study evaluated the effect of dietary supplementation with docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and α-lipoic acid (LA) for a period of 16 weeks on oxidative stress biomarkers in the hearts of ovariectomized 3-month-old rats. Ovariectomy did not increase the level of the damage markers malondialdehyde and carbonyl, and both were decreased by LA supplementation. Ovariectomy increased the levels of the endogenous antioxidants glutathione, vitamin C and H2O2 consumption, after restoration by DHA, EPA, and LA supplementation. Vitamin E, glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase are not altered by ovariectomy. Lipid and protein damage are not increased after ovariectomy and a portion of the endogenous antioxidants concomitantly increased, suggesting that hearts may be protected by these antioxidants. DHA, EPA, and LA restored these endogenous antioxidants, showing that all evaluated supplements are effective in modulating the antioxidant redox system in the heart. LA showed additional effect on redox markers, decreasing lipid and protein damage markers.  相似文献   

20.
Folic acid (FA), is a group B vitamin, has high reactive oxygen radicals quenching ability, resulting in protection against oxidative damage in aerobic cell. Acetaminophen (N-acetyl-p-aminophenol, APAP) is a nonsteroidal anti-inflammatory drug, and can promote oxidative damage in liver and kidney tissues. The aim of this study was to investigate whether folic acid has protective effects on oxidative liver and kidney injury caused by experimental APAP toxication. Forty female Sprague dawley rats were divided into 5 groups; control, APAP, FA, APAP+FA, and APAP+N-acetylcysteine (NAC) groups. APAP toxication was induced by oral gavage (3 g/kg bodyweight). FA (20 mg/kg bodyweight) and NAC (150 mg/kg bodyweight) were given by oral gavage to the specified groups. Oxidant and antioxidant parameter were determined in liver and kidney tissues. In addition, the liver and kidney tissues were histological evaluated. When compared with APAP group, superoxide dismutase (SOD) and catalase activities and glutathione levels were statistically higher, malondialdehyde (MDA) level and myeloperoxidase activity (except liver tissue) were statistically lower in both APAP+FA and APAP+NAC. Liver and kidney MDA level and kidney SOD activity were significantly lower in APAP+NAC group compared with APAP+FA group. Co-administration of NAC with APAP was found to provide protection, but hepatic cords were defective in some places and some glomerular tubules also had dilatation. Necrotic areas was reduced in the liver and the glomerular structure was in good condition in the APAP+FA group. As a result, FA might have a protective effect against APAP-induced hepato-nephrotoxicity and oxidative stress in rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号