首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fractions containing a high molecular weight form (Mr approximately equal to 2 X 10(6] of the activity that replicates in vitro both the 2-micron yeast DNA plasmid and the chromosomal autonomously replicating sequence ars 1 can be prepared from cells of the budding yeast Saccharomyces. Protein complexes from the fractions associate in vitro with the replication origins of these DNA elements, as determined by electron microscopy. In the present study, the high molecular weight replicative fraction has been characterized in further detail. The DNA synthetic activity in the high molecular weight fraction was bound to the DNA and could be isolated with it. This binding of the replicating activity to the DNA was greatly reduced in the absence of the 2-micron origins of replication. Association of the protein complexes with DNA depended on the amount of replicating activity added, was sensitive to 0.2 M KCl, and exhibited a requirement for rATP and deoxyribonucleoside triphosphates. It was not blocked, however, by the DNA polymerase inhibitor aphidicolin or by the RNA polymerase inhibitor alpha-amanitin. The lack of inhibition by aphidicolin suggests that the deoxyribonucleoside triphosphates may function as cofactors in the binding of protein complexes to DNA or as substrates for a polymerizing activity such as a primase. Binding of the protein complexes as well as actual DNA replication were heat sensitive in the high molecular weight fraction prepared from the temperature-sensitive mutant of the cell division cycle cdc 8. This suggests that the cdc 8 gene product is present in a replicative protein complex and strengthens the conclusion that the presence of the protein complexes on the DNA is associated with replication. Using independent enzyme assays, several other possible replication proteins (including DNA polymerase I, DNA ligase, DNA primase, and DNA topoisomerase II) have been identified directly in the high molecular weight replicative fraction. All of these results provide support for the idea that a protein complex (or replisome ) is involved in the replication of both the extrachromosomal 2-micron DNA and chromosomal DNA in yeast.  相似文献   

2.
The yeast Saccharomyces cerevisiae catalytic DNA polymerase I 180-kDa subunit and the tightly associated 86-kDa polypeptide have been purified using immunoaffinity chromatography, permitting further characterization of the DNA polymerase activity of the DNA primase-DNA polymerase protein complex. The subunits were purified to apparent homogeneity from separate overproducing yeast strains using monoclonal antibodies specifically recognizing each subunit. When the individual subunits were recombined in vitro a p86p180 physical complex formed spontaneously, as judged by immunoprecipitation of 180-kDa polypeptide and DNA polymerase activity with the anti-86-kDa monoclonal antibody. The 86-kDa subunit stabilized the DNA polymerase activity of the 180-kDa catalytic subunit at 30 degrees C, the physiological temperature. The apparent DNA polymerase processivity of 50-60 nucleotides on poly(dA).oligo(dT)12 or poly(dT).oligo(A)8-12 template-primer was not affected by the presence of the 86-kDa subunit but was reduced by increased Mg2+ concentration. The Km of the catalytic 180-kDa subunit for dATP or DNA primer terminus was unaffected by the presence of the 86-kDa subunit. The isolated 180-kDa polypeptide was sufficient to catalyze all the DNA synthesis that had been observed previously in the DNA primase-DNA polymerase protein complex. The 180-kDa subunit possessed a 3'----5'-exonuclease activity that catalyzed degradation of polynucleotides, but degradation of oligonucleotide substrates of chain lengths up to 50 was not detected. This exonuclease activity was unaffected by the presence of the 86-kDa subunit. Despite the striking physical similarity of the DNA primase-DNA polymerase protein complex in all eukaryotes examined, the data presented here indicate differences in the enzymatic properties detected in preparations of the DNA polymerase subunits isolated from S. cerevisiae as compared with the properties of preparations from Drosophila cells. In particular, the 3'----5'-exonuclease activity associated with the yeast catalytic DNA polymerase subunit was not masked by the 86-kDa subunit.  相似文献   

3.
S-antigen (arrestin) is a cytosolic protein which regulates phototransduction in retinal rods. A protein immunologically related to S-antigen was identified in fractions from soluble extract of bovine kidney enriched by gel filtration or by immunoaffinity chromatography using a polyclonal antibody to retinal S-antigen. On immunoblots, this protein was recognized by a panel of monoclonal antibodies (mAbs S2D2, S1A3 and S9E2) directed against different S-antigen epitopes and displayed the same apparent molecular mass (48 kDa) as retinal S-antigen. All three mAbs revealed a specific immunoreactivity by indirect immunocytochemical technique on rat kidney sections. The three mAbs recognized some but not all glomerular cells, identified as epithelial cells by immunoelectron microscopy using the mAb S9E2. Both mAbs S2D2 and S1A3 gave a diffuse cytoplasmic staining in all tubule cells. Proximal tubule cells exhibited a weak immunoreactivity, whereas distal and collecting tubule cells were strongly labeled. In contrast, the mAb S9E2 immunoreaction was restricted to a cell subpopulation from distal and collecting tubules corresponding to intercalated cells identified by immunoelectron microscopy. With the mAb S9E2, the labeling of proximal tubule cells was localized in the apical region of the cytoplasm. These results suggest that two or more 48-kDa proteins immunologically cross-reactive with retinal S-antigen are present in kidney. The observed pattern of distribution is in keeping with the hypothesis that such proteins could play a role in the regulation of G-protein-related receptors present in renal glomerulus and tubule epithelial cells.  相似文献   

4.
We have purified yeast DNA polymerase II to near homogeneity as a 145-kDa polypeptide. During the course of this purification we have detected and purified a novel form of DNA polymerase II that we designate as DNA polymerase II. The most highly purified preparations of DNA polymerase II are composed of polypeptides with molecular masses of 200, 80, 34, 30, and 29 kDa. Immunological analysis and peptide mapping of DNA polymerase II and the 200-kDa subunit of DNA polymerase II indicate that the 145-kDa DNA polymerase II polypeptide is derived from the 200-kDa polypeptide of DNA polymerase II. Activity gel analysis shows that the 145- and the 200-kDa polypeptides have catalytic function. The polypeptides present in the DNA polymerase II preparation copurify with the polymerase activity with a constant relative stoichiometry during chromatography over five columns and co-sediment with the activity during glycerol gradient centrifugation, suggesting that this complex may be a holoenzyme form of DNA polymerase II. Both forms of DNA polymerase II possess a 3'-5' exonuclease activity that remains tightly associated with the polymerase activity during purification. DNA polymerase II is similar to the proliferating cell nuclear antigen (PCNA)-independent form of mammalian DNA polymerase delta in its resistance to butylpheny-dGTP, template specificity, stimulation of polymerase and exonuclease activity by KCl, and high processivity. Although calf thymus PCNA does not stimulate the activity of DNA polymerase II on poly(dA):oligo(dT), possibly due to the limited length of the template, the high processivity of yeast DNA polymerase II on this template can be further increased by the addition of PCNA, suggesting that conditions may exist for interactions between PCNA and yeast DNA polymerase II.  相似文献   

5.
We have utilized immunoaffinity chromatography as a means of efficiently isolating a stable yeast DNA primase from the DNA primase-DNA polymerase complex, allowing identification of the polypeptides associated with this DNA primase activity and comparison of its enzymatic properties with those of the larger protein complex. A mouse monoclonal antibody specifically recognizing the DNA polymerase subunit was used to purify the complex. Stable DNA primase was subsequently separated from the complex in high yield. The highly purified protein fraction which bound to the DNA polymerase antibody column consisted of polypeptides with apparent molecular masses of 180, 86, 70, 58, 49, and 47 kDa. DNA primase activity eluted with a fraction containing only the 58-, 49-, and 47-kDa polypeptides. Partial chemical cleavage analysis of these three proteins demonstrated that the 49- and 47-kDa polypeptides are structurally related while the 58-kDa protein is unrelated to the other two. A DNA primase inhibitory monoclonal antibody was able to inhibit the activity of the purified DNA primase as well as the activity of the enzyme in the larger complex. In immunoprecipitation experiments, all three polypeptides were found in the immune complex. Thus, these three polypeptides are sufficient for DNA primase activity. In reactions using ribonucleotide substrates and natural as well as synthetic DNA templates, the purified DNA primase exhibited the same precise synthesis of unit length oligomers as did the larger protein complex and was able to extend these RNA oligomers by one additional unit length. An examination of the effects of deoxynucleotides on these DNA primase-catalyzed reactions revealed that the yeast DNA primase is an RNA-polymerizing enzyme and lacks significant DNA-polymerizing activity under the conditions tested.  相似文献   

6.
The immunoaffinity-purified subunits of the yeast DNA primase-DNA polymerase protein complex and subunit-specific monoclonal antibodies were used to explore the structural relationships of the subunits in the complex. The reconstituted four-subunit complex (180-, 86-, 58-, and 49-kDa polypeptides) behaved as a single species, exhibiting a Stokes radius of 80 A and a sedimentation coefficient of 8.9 S. The calculated molecular weight of the reconstituted complex is 312,000. We infer that the stoichiometry of the complex is one of each subunit per complex. The complex has a prolate ellipsoid shape with an axial ratio of approximately 16. When the 180-kDa and DNA primase subunits were recombined in the absence of the 86-kDa subunit, a physical complex formed, as judged by immunoprecipitation of DNA primase activity and polypeptides with an anti-180-kDa monoclonal antibody. While the 86-kDa subunit readily forms a physical complex with the 180-kDa DNA polymerase catalytic subunit, we have not detected a complex containing 86-kDa and the DNA primase subcomplex (49- and 58-kDa subunits). The 86-kDa subunit was not required for DNA primase-DNA polymerase complex formation; the 180-kDa subunit and DNA primase heterodimer directly interact. However, the presence of the 86-kDa subunit increased the rate at which the DNA primase and 180-kDa polypeptides formed a complex and increased the total fraction of DNA primase activity that was associated with DNA polymerase activity. The observations demonstrate that the DNA primase p49.p58 heterodimer and the DNA polymerase p86.p180 heterodimer interact via the 180-kDa subunit. The four-subunit reconstituted complex was sufficient to catalyze the DNA chain extension coupled to RNA primer synthesis on a single-stranded DNA template, as previously observed in the conventionally purified complex isolated from wild type cells.  相似文献   

7.
J Zhang  D W Chung  C K Tan  K M Downey  E W Davie  A G So 《Biochemistry》1991,30(51):11742-11750
The 125- and 48-kDa subunits of bovine DNA polymerase delta have been isolated by SDS-polyacrylamide gel electrophoresis and demonstrated to be unrelated by partial peptide mapping with N-chlorosuccinimide. A 116-kDa polypeptide, usually present in DNA polymerase delta preparations, was shown to be a degraded form of the 125-kDa catalytic subunit. Amino acid sequence data from Staphylococcus aureus V8 protease, cyanogen bromide, and trypsin digestion of the 125- and 116-kDa polypeptides were used to design primers for the polymerase chain reaction to determine the nucleotide sequence of a full-length cDNA encoding the catalytic subunit of bovine DNA polymerase delta. The predicted polypeptide is 1106 amino acids in length with a calculated molecular weight of 123,707. This is in agreement with the molecular weight of 125,000 estimated from SDS-polyacrylamide gel electrophoresis. Comparison of the deduced amino acid sequence of the catalytic subunit of bovine DNA polymerase delta with that of its counterpart from Saccharomyces cerevisiae showed that the proteins are 44% identical. The catalytic subunit of bovine DNA polymerase delta contains the seven conserved regions found in a number of bacterial, viral, and eukaryotic DNA polymerases. It also contains five additional regions that are highly conserved between bovine and yeast DNA polymerase delta, but these regions share little or no homology with the alpha polymerases. Four of these additional regions are also highly homologous to the herpes virus family of DNA polymerases, whereas one region is not homologous to any other DNA polymerase that has been sequenced thus far.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Eukaryotic DNA polymerase delta is thought to consist of three (budding yeast) or four subunits (fission yeast, mammals). Four human genes encoding polypeptides p125, p50, p66, and p12 have been assigned as subunits of DNA polymerase delta. However, rigorous purification of human or bovine DNA polymerase delta from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. To reconstitute an intact DNA polymerase delta, we have constructed recombinant baculoviruses encoding the p125, p50, p66, and p12 subunits. From insect cells infected with four baculoviruses, protein preparations containing the four polypeptides of expected sizes were isolated. The four-subunit DNA polymerase delta displayed a specific activity comparable with that of the human, bovine, and fission yeast proteins isolated from natural sources. Recombinant DNA polymerase delta efficiently replicated singly primed M13 DNA in the presence of replication protein A, proliferating cell nuclear antigen, and replication factor C and was active in the SV40 DNA replication system. A three-subunit subcomplex consisting of the p125, p50, and p66 subunits, but lacking the p12 subunit, was also isolated. The p125, p50, and p66 polypeptides formed a stable complex that displayed DNA polymerizing activity 15-fold lower than that of the four-subunit polymerase. p12, expressed and purified individually, stimulated the activity of the three-subunit complex 4-fold on poly(dA)-oligo(dT) template-primer but had no effect on the activity of the four-subunit enzyme. Therefore, the p12 subunit is required to reconstitute fully active recombinant human DNA polymerase delta.  相似文献   

9.
DNA damages hinder the advance of replication forks because of the inability of the replicative polymerases to synthesize across most DNA lesions. Because stalled replication forks are prone to undergo DNA breakage and recombination that can lead to chromosomal rearrangements and cell death, cells possess different mechanisms to ensure the continuity of replication on damaged templates. Specialized, translesion synthesis (TLS) polymerases can take over synthesis at DNA damage sites. TLS polymerases synthesize DNA with a high error rate and are responsible for damage-induced mutagenesis, so their activity must be strictly regulated. However, the mechanism that allows their replacement of the replicative polymerase is unknown. Here, using protein complex purification and yeast genetic tools, we identify Def1 as a key factor for damage-induced mutagenesis in yeast. In in vivo experiments we demonstrate that upon DNA damage, Def1 promotes the ubiquitylation and subsequent proteasomal degradation of Pol3, the catalytic subunit of the replicative polymerase δ, whereas Pol31 and Pol32, the other two subunits of polymerase δ, are not affected. We also show that purified Pol31 and Pol32 can form a complex with the TLS polymerase Rev1. Our results imply that TLS polymerases carry out DNA lesion bypass only after the Def1-assisted removal of Pol3 from the stalled replication fork.  相似文献   

10.
Five major polypeptides are found in immunoaffinity-purified calf thymus DNA polymerase-DNA primase complex: 185, 160, 68, 55, and 48 kDa. Individual polypeptides purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were used to produce antibodies in rabbits to aid in identifying the relationships between these polypeptides by immunoblotting and enzyme neutralization procedures. Immunoblot analyses showed that the 160-kDa peptide is derived from the 185-kDa peptide and the 48-kDa peptide is derived from the 68-kDa peptide while antibodies to the 55-kDa peptide do not cross-react with other peptides found in the complex. Direct enzyme neutralization studies demonstrated that antibodies to 185- and 160-kDa peptides inhibit DNA polymerase activity in the complex, confirming earlier suggestions that these peptides are the catalytic peptides for DNA polymerase. DNA primase activity in the complex is inhibited by antibodies to 68-, 55-, and 48-kDa peptides and to a lesser extent by antibodies to the 160-kDa peptide. Free DNA primase isolated from the complex was estimated to have a native molecular weight of about 110,000. The 55- and 48-kDa peptides are found to be associated with the free primase activity. Rabbit antibodies to both 55- and 48-kDa peptides are inhibitory to this primase activity. From these results we suggest that the native calf thymus DNA polymerase-DNA primase complex contains only three unique peptides with the 185-kDa peptide as the catalytic peptide of DNA polymerase and the 55- and 68-kDa peptides constituting the primase peptides. A model illustrating the roles of these peptides in initiation and replication of DNA is presented.  相似文献   

11.
Replication Factor C (RF-C) of Saccharomyces cerevisiae is a complex that consists of several different polypeptides ranging from 120- to 37 kDa (Yoder and Burgers, 1991; Fien and Stillman, 1992), similar to human RF-C. We have isolated a gene, RFC2, that appears to be a component of the yeast RF-C. The RFC2 gene is located on chromosome X of S. cerevisiae and is essential for cell growth. Disruption of the RFC2 gene led to a dumbbell-shaped terminal morphology, common to mutants having a defect in chromosomal DNA replication. The steady-state levels of RFC2 mRNA fluctuated less during the cell cycle than other genes involved in DNA replication. Nucleotide sequence of the gene revealed an open reading frame corresponding to a polypeptide with a calculated Mr of 39,716 and a high degree of amino acid sequence homology to the 37-kDa subunit of human RF-C. Polyclonal antibodies against bacterially expressed Rfc2 protein specifically reduced RF-C activity in the RF-C-dependent reaction catalyzed by yeast DNA polymerase III. Furthermore, the Rfc2 protein was copurified with RF-C activity throughout RF-C purification. These results strongly suggest that the RFC2 gene product is a component of yeast RF-C. The bacterially expressed Rfc2 protein preferentially bound to primed single-strand DNA and weakly to ATP.  相似文献   

12.
The molecular masses of two of the four DNA polymerase alpha-primase complex subunit peptides from various mammalian cells have been compared through the use of specific monoclonal antibodies. One monoclonal antibody (E4) binds to 77-kDa peptide from HeLa cells and cognate peptides from other mammalian cells (monkey, mouse, bovine, Indian muntjac, and hamster). Another monoclonal antibody (A5) binds the 180-kDa type peptide and its degradation product (160-kDa peptide) of the mammalian DNA polymerase alpha-primase complexes. Neither of these antibodies reacts with DNA polymerase alpha-primase complex from chicken cells. Comparative immunoblot analysis indicates that the molecular masses of the two main peptides of DNA polymerase alpha-primase complex isolated from the various mammalian sources are in excellent agreement with each other, except for the 77-kDa type peptide from bovine and Indian muntjac cells which was found to be significantly smaller (68 kDa) in these cases. The small molecular mass of bovine 77-kDa type peptide is not attributable to the action of a protease which may be present in the extract of bovine cells.  相似文献   

13.
Li JJ  Schnick J  Hayles J  MacNeill SA 《FEBS letters》2011,585(24):3850-3855
The MCM (mini-chromosome maintenance) complex is the core of the eukaryotic replicative helicase and comprises six proteins, Mcm2-Mcm7. In humans, a variant form of the complex has Mcm2 replaced by the MCM-BP protein. Recent results suggest that a similar complex exists in fission yeast with an essential role in DNA replication and cell cycle progression. Here, we describe the purification and subunit composition of the fission yeast MCM(Mcb1) complex. Using newly generated temperature-sensitive alleles, we show that loss of MCM(Mcb1) function leads to accumulation of DNA damage, checkpoint activation and cell cycle arrest, and provide evidence for a role for MCM(Mcb1) in meiosis.  相似文献   

14.
Experimental autoimmune uveoretinitis (EAU) is a predominantly CD4+ T cell-mediated autoimmune inflammatory disease of the retina and uveal tract of the eye and the pineal gland. S-antigen, a protein found in retinal photoreceptor cells and pinealocytes, is a potent agent for the induction of EAU in susceptible species and strains. In order to identify the T cell recognition sites of S-antigen responsible for its uveitogenicity and proliferative responses, cyanogen bromide (CB) fragments as well as synthetic peptides were used to test the proliferative responses of two uveitogenic T cell lines, R9 and R17, prepared against native bovine and human S-antigen, respectively. Two nonoverlapping synthetic peptides which are known to actively induce EAU, amino acid residues 286-297 and 303-314 of the bovine sequence, were unable to induce proliferative responses in either S-antigen-specific T cell line. However, both of these sites were adjacent to synthetic peptides, residues 273-292 and 317-328, respectively, which were unable to actively induce EAU, but elicited strong proliferative responses from T cell lines raised to bovine and human S-antigen. Repeated in vitro selection of the R9 T cell line with a synthetic peptide containing one of these proliferative sites, residues 317-328, gave rise to a transiently uveitogenic T cell line. Several species-specific T cell epitopes were identified, but none of these were found to be involved in a uveitogenic response. Our results indicate that spatially separated and distinct T cell epitopes are present in S-antigen which are responsible for the active induction of EAU, lymphocyte proliferation, and the ability to adoptively transfer EAU.  相似文献   

15.
The replicative DNA helicases can unwind DNA in the absence of polymerase activity in vitro. In contrast, replicative unwinding is coupled with DNA synthesis in vivo. The temperature-sensitive yeast polymerase alpha/primase mutants cdc17-1, pri2-1 and pri1-m4, which fail to execute the early step of DNA replication, have been used to investigate the interaction between replicative unwinding and DNA synthesis in vivo. We report that some of the plasmid molecules in these mutant strains became extensively negatively supercoiled when DNA synthesis is prevented. In contrast, additional negative supercoiling was not detected during formation of DNA initiation complex or hydroxyurea replication fork arrest. Together, these results indicate that the extensive negative supercoiling of DNA is a result of replicative unwinding, which is not followed by DNA synthesis. The limited number of unwound plasmid molecules and synthetic lethality of polymerase alpha or primase with checkpoint mutants suggest a checkpoint regulation of the replicative unwinding. In concordance with this suggestion, we found that the Tof1/Csm3/Mrc1 checkpoint complex interacts directly with the MCM helicase during both replication fork progression and when the replication fork is stalled.  相似文献   

16.
17.
A Boulet  M Simon  G Faye  G A Bauer    P M Burgers 《The EMBO journal》1989,8(6):1849-1854
Saccharomyces cerevisiae cdc2 mutants arrest in the S-phase of the cell cycle when grown at the non-permissive temperature, implicating this gene product as essential for DNA synthesis. The CDC2 gene has been cloned from a yeast genomic library in vector YEp13 by complementation of a cdc2 mutation. An open reading frame coding for a 1093 amino acid long protein with a calculated mol. wt of 124,518 was determined from the sequence. This putative protein shows significant homology with a class of eukaryotic DNA polymerases exemplified by human DNA polymerase alpha and herpes simplex virus DNA polymerase. Fractionation of extracts from cdc2 strains showed that these mutants lacked both the polymerase and proofreading 3'-5' exonuclease activity of DNA polymerase III, the yeast analog of mammalian DNA polymerase delta. These studies indicate that DNA polymerase III is an essential component of the DNA replication machinery.  相似文献   

18.
The effect of lipopolysaccharide on RNA polymerase I activity in primary cultures of murine B lymphocytes has been examined. In cells treated with mitogen for 48 h, the activity of RNA polymerase I was approximately 15 times greater than in control cells. In situ localization of RNA polymerase I using indirect immunofluorescence indicated that there was at least a 10-fold increase in the amount of this enzyme associated with nucleoli of 48 h mitogen-treated cells relative to control cells. Immunoblotting experiments demonstrated a similar increase in the concentration of the 190-kDa subunit bound to DNA; the concentrations of the other polymerase I-associated polypeptides did not correlate with rRNA synthesis. Assuming 1 mol of the 190-kDa polypeptide/mol of polymerase I, it was estimated that 2,300 and 30,000 molecules of enzyme were associated with rDNA in the unstimulated and stimulated B cell, respectively. Thus, an increased cellular concentration of the 190-kDa subunit of RNA polymerase I and its association with ribosomal DNA may be a crucial step in rRNA synthesis.  相似文献   

19.
20.
Despite the likely requirement for a DNA topoisomerase II activity during synthesis of mitochondrial DNA in mammals, this activity has been very difficult to identify convincingly. The only DNA topoisomerase II activity conclusively demonstrated to be mitochondrial in origin is that of a type II activity found associated with the mitochondrial, kinetoplast DNA network in trypanosomatid protozoa [Melendy, T., Sheline, C., and Ray, D.S. (1988) Cell 55, 1083-1088; Shapiro, T.A., Klein, V.A., and Englund, P.A. (1989) J. Biol. Chem.264, 4173-4178]. In the present study, we report the discovery of a type DNA topoisomerase II activity in bovine mitochondria. Identified among mtDNA replicative proteins recovered from complexes of mtDNA and protein, the DNA topoisomerase relaxes a negatively, supercoiled DNA template in vitro, in a reaction that requires Mg2+ and ATP. The relaxation activity is inhibited by etoposide and other inhibitors of eucaryotic type II enzymes. The DNA topoisomerase II copurifies with mitochondria and directly associates with mtDNA, as indicated by sensitivity of some mtDNA circles in the isolated complex of mtDNA and protein to cleavage by etoposide. The purified activity can be assigned to a approximately 150-kDa protein, which is recognized by a polyclonal antibody made against the trypanosomal mitochondrial topo II enzyme. Mass spectrometry performed on peptides prepared from the approximately 150-kDa protein demonstrate that this bovine mitochondrial activity is a truncated version of DNA topoisomerase IIbeta, one of two DNA topoisomerase II activities known to exist in mammalian nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号