首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antinone SE  Smith GA 《Journal of virology》2006,80(22):11235-11240
Alphaherpesvirus infection of the mammalian nervous system is dependent upon the long-distance intracellular transport of viral particles in axons. How viral particles are effectively trafficked in axons to either sensory ganglia following initial infection or back out to peripheral sites of innervation following reactivation remains unknown. The mechanism of axonal transport has, in part, been obscured by contradictory findings regarding whether capsids are transported in axons in the absence of membrane components or as enveloped virions. By imaging actively translocated viral structural components in living peripheral neurons, we demonstrate that herpesviruses use two distinct pathways to move in axons. Following entry into cells, exposure of the capsid to the cytosol resulted in efficient retrograde transport to the neuronal cell body. In contrast, progeny virus particles moved in the anterograde direction following acquisition of virion envelope proteins and membrane lipids. Retrograde transport was effectively shut down in this membrane-bound state, allowing for efficient delivery of progeny viral particles to the distal axon. Notably, progeny viral particles that lacked a membrane were misdirected back to the cell body. These findings show that cytosolic capsids are trafficked to the neuronal cell body and that viral egress in axons occurs after capsids are enshrouded in a membrane envelope.  相似文献   

2.
Pseudorabies virus (PRV) glycoprotein E (gE) is a type I viral membrane protein that facilitates the anterograde spread of viral infection from the peripheral nervous system to the brain. In animal models, a gE-null mutant infection spreads inefficiently from presynaptic neurons to postsynaptic neurons (anterograde spread of infection). However, the retrograde spread of infection from post- to presynaptic neurons remains unaffected. Here we show that gE is required for wild-type localization of viral structural proteins in axons of infected neurons. During a gE-null PRV infection, a subset of viral glycoproteins, capsids, and tegument proteins enter and localize to the axon inefficiently. This defect is most obvious in the distal axon and growth cones. However, axonal entry and localization of other viral membrane proteins and endogenous cellular proteins remains unaffected. Neurons infected with gE-null mutants produce wild-type levels of viral structural proteins and infectious virions in the cell body. Our results indicate that reduced axonal targeting of viral structural proteins is a compelling explanation for the lack of anterograde spread in neural circuits following infection by a gE-null mutant.  相似文献   

3.
Following reactivation from latency, alphaherpesviruses replicate in sensory neurons and assemble capsids that are transported in the anterograde direction toward axon termini for spread to epithelial tissues. Two models currently describe this transport. The Separate model suggests that capsids are transported in axons independently from viral envelope glycoproteins. The Married model holds that fully assembled enveloped virions are transported in axons. The herpes simplex virus (HSV) membrane glycoprotein heterodimer gE/gI and the US9 protein are important for virus anterograde spread in the nervous systems of animal models. It was not clear whether gE/gI and US9 contribute to the axonal transport of HSV capsids, the transport of membrane proteins, or both. Here, we report that the efficient axonal transport of HSV requires both gE/gI and US9. The transport of both capsids and glycoproteins was dramatically reduced, especially in more distal regions of axons, with gE(-), gI(-), and US9-null mutants. An HSV mutant lacking just the gE cytoplasmic (CT) domain displayed an intermediate reduction in capsid and glycoprotein transport. We concluded that HSV gE/gI and US9 promote the separate transport of both capsids and glycoproteins. gE/gI was transported in association with other HSV glycoproteins, gB and gD, but not with capsids. In contrast, US9 colocalized with capsids and not with membrane glycoproteins. Our observations suggest that gE/gI and US9 function in the neuron cell body to promote the loading of capsids and glycoprotein-containing vesicles onto microtubule motors that ferry HSV structural components toward axon tips.  相似文献   

4.
Cellular homeostasis in neurons requires that the synthesis and anterograde axonal transport of protein and membrane be balanced by their degradation and retrograde transport. To address the nature and regulation of retrograde transport in cultured sympathetic neurons, I analyzed the behavior, composition, and ultrastructure of a class of large, phase-dense organelles whose movement has been shown to be influenced by axonal growth (Hollenbeck, P. J., and D. Bray. 1987. J. Cell Biol. 105:2827-2835). In actively elongating axons these organelles underwent both anterograde and retrograde movements, giving rise to inefficient net retrograde transport. This could be shifted to more efficient, higher volume retrograde transport by halting axonal outgrowth, or conversely shifted to less efficient retrograde transport with a larger anterograde component by increasing the intracellular cyclic AMP concentration. When neurons were loaded with Texas red- dextran by trituration, autophagy cleared the label from an even distribution throughout the neuronal cytosol to a punctate, presumably lysosomal, distribution in the cell body within 72 h. During this process, 100% of the phase-dense organelles were fluorescent, showing that they contained material sequestered from the cytosol and indicating that they conveyed this material to the cell body. When 29 examples of this class of organelle were identified by light microscopy and then relocated using correlative electron microscopy, they had a relatively constant ultrastructure consisting of a bilamellar or multilamellar boundary membrane and cytoplasmic contents, characteristic of autophagic vacuoles. When neurons took up Lucifer yellow, FITC-dextran, or Texas red-ovalbumin from the medium via endocytosis at the growth cone, 100% of the phase-dense organelles became fluorescent, demonstrating that they also contain products of endocytosis. Furthermore, pulse-chase experiments with fluorescent endocytic tracers confirmed that these organelles are formed in the most distal region of the axon and undergo net retrograde transport. Quantitative ratiometric imaging with endocytosed 8-hydroxypyrene-1,3,6- trisulfonic acid showed that the mean pH of their lumena was 7.05. These results indicate that the endocytic and autophagic pathways merge in the distal axon, resulting in a class of predegradative organelles that undergo regulated transport back to the cell body.  相似文献   

5.
During infection by herpes simplex virus 1 (HSV-1), the viral capsid is transported around the cytoplasm along the microtubule (MT) network. Although molecular motors have been implicated in this process, the composition of the molecular machinery required for efficient directional transport is unknown. We previously showed that dystonin (BPAG1) is recruited to HSV-1 capsids by the capsid-bound tegument protein pUL37 to promote efficient cytoplasmic transport of capsids during egress. Dystonin is a cytoskeleton cross-linker which localizes at MT plus ends and has roles in retrograde and anterograde transport in neurons. In this study, we investigated the role of dystonin during the entry stages of HSV-1 infection. Because of the way in which the MT network is organized, capsids are required to change their direction of motion along the MTs as they travel from the point of entry to the nucleus, where replication takes place. Thus, capsids first travel to the centrosome (the principal microtubule organizing center) by minus-end-directed transport and then switch polarity and travel to the nucleus by plus-end-directed transport. We observed that transport of capsids toward the centrosome was slowed, but not blocked, by dystonin depletion. However, transport of capsids away from the centrosome was significantly impaired, causing them to accumulate in the vicinity of the centrosome and reducing the numbers reaching the nucleus. We conclude that, during entry of HSV-1, dystonin has a specific role in plus-ended transport of capsids from the centrosome to the nucleus.  相似文献   

6.
Wong MY  Zhou C  Shakiryanova D  Lloyd TE  Deitcher DL  Levitan ES 《Cell》2012,148(5):1029-1038
Neurotransmission requires anterograde axonal transport of dense core vesicles (DCVs) containing neuropeptides and active zone components from the soma to nerve terminals. However, it is puzzling how one-way traffic could uniformly supply sequential release sites called en passant boutons. Here, Drosophila neuropeptide-containing DCVs are tracked in vivo for minutes with a new method called simultaneous photobleaching and imaging (SPAIM). Surprisingly, anterograde DCVs typically bypass proximal boutons to accumulate initially in the most distal bouton. Then, excess distal DCVs undergo dynactin-dependent retrograde transport back through proximal boutons into the axon. Just before re-entering the soma, DCVs again reverse for another round of anterograde axonal transport. While circulating over long distances, both anterograde and retrograde DCVs are captured sporadically in en passant boutons. Therefore, vesicle circulation, which includes long-range retrograde transport and inefficient bidirectional capture, overcomes the limitations of one-way anterograde transport to uniformly supply release sites with DCVs.  相似文献   

7.
Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE, gI, or US9 mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE/US9 double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons.  相似文献   

8.
Abstract: Retrograde axonal transport of phospholipid was studied in rat sciatic motoneuron axons by placing collection crushes on the nerve at intervals after injection of [methyl-3H]choline into the lumbosacral spinal cord, and allowing labelled material undergoing anterograde or retrograde movement to accumulate adjacent to the collection crushes. Control experiments showed that the accumulations of label were not a result of local uptake of circulating precursor. The majority of the 3H label was associated with phosphatidylcholine. Accumulation of label at the distal collection crush, representing retrograde transport, was observed subsequent to the anterograde transport of phospholipid. In comparison with previous study on retrograde transport of protein, the following points were noted: (1) onset of retrograde transport occurred at approximately the same time after precursor injection (10–20 h) for both protein and phospholipid; (2) retrograde transport of lipids was more prolonged: maximum retrograde transport occurred later for phospholipid (30 h) than for protein (15–20 h), and declined to half-maximum between 49 and 99 h, compared to a corresponding value of 24–28 h for protein; (3) the proportion of total anterograde-transported activity subsequently undergoing retrograde transport was less in the case of phospholipid, at least over the time interval studied (up to 99 h after precursor injection). The similar times of onset of retrograde transport of phospholipid and protein support the concept of retrograde transport as a recycling mechanism returning to the cell body membrane fragments that were earlier transported into the axon. Coordinated retrograde transport of labelled protein and phospholipid components of the recycled membranes would be predicted. Differences between protein and phospholipid in the subsequent time course and amount of retrograde transport may reflect differences in axonal handling of protein and lipid. Both the more prolonged outflow of labelled lipids from cell body into axon and exchange with a distal pool of unlabelled phospholipid may account for the prolonged time course of retrograde transport of labelled lipid.  相似文献   

9.
Microtubule-mediated anterograde transport of herpes simplex virus (HSV) from the neuronal cell body to the axon terminal is crucial for the spread and transmission of the virus. It is therefore of central importance to identify the cellular and viral factors responsible for this trafficking event. In previous studies, we isolated HSV-containing cytoplasmic organelles from infected cells and showed that they represent the first and only destination for HSV capsids after they emerge from the nucleus. In the present study, we tested whether these cytoplasmic compartments were capable of microtubule-dependent traffic. Organelles containing green fluorescent protein-labeled HSV capsids were isolated and found to be able to bind rhodamine-labeled microtubules polymerized in vitro. Following the addition of ATP, the HSV-associated organelles trafficked along the microtubules, as visualized by time lapse microscopy in an imaging microchamber. The velocity and processivity of trafficking resembled those seen for neurotropic herpesvirus traffic in living axons. The use of motor-specific inhibitors indicated that traffic was predominantly kinesin mediated, consistent with the reconstitution of anterograde traffic. Immunocytochemical studies revealed that the majority of HSV-containing organelles attached to the microtubules contained the trans-Golgi network marker TGN46. This simple, minimal reconstitution of microtubule-mediated anterograde traffic should facilitate and complement molecular analysis of HSV egress in vivo.  相似文献   

10.
Electron micrographic studies of neuronal axons have produced contradictory conclusions on how alphaherpesviruses are transported from neuron cell bodies to axon termini. Some reports have described unenveloped capsids transported on axonal microtubules with separate transport of viral glycoproteins within membrane vesicles. Others have observed enveloped virions in proximal and distal axons. We characterized transport of herpes simplex virus (HSV) in human and rat neurons by staining permeabilized neurons with capsid- and glycoprotein-specific antibodies. Deconvolution microscopy was used to view 200-nm sections of axons. HSV glycoproteins were very rarely associated with capsids (3 to 5%) and vice versa. Instances of glycoprotein/capsid overlap frequently involved nonconcentric puncta and regions of axons with dense viral protein concentrations. Similarly, HSV capsids expressing a VP26-green fluorescent protein fusion protein (VP26/GFP) did not stain with antiglycoprotein antibodies. Live-cell imaging experiments with VP26/GFP-labeled capsids demonstrated that capsids moved in a saltatory fashion, and very few stalled for more than 1 to 2 min. To determine if capsids could be transported down axons without glycoproteins, neurons were treated with brefeldin A (BFA). However, BFA blocked both capsid and glycoprotein transport. Glycoproteins were transported into and down axons normally when neurons were infected with an HSV mutant that produces immature capsids that are retained in the nucleus. We concluded that HSV capsids are transported in axons without an envelope containing viral glycoproteins, with glycoproteins transported separately and assembling with capsids at axon termini.  相似文献   

11.
The mechanism of anterograde transport of alphaherpesviruses in axons remains controversial. This study examined the transport, assembly, and egress of herpes simplex virus type 1 (HSV-1) in mid- and distal axons of infected explanted human fetal dorsal root ganglia using confocal microscopy and transmission electron microscopy (TEM) at 19, 24, and 48 h postinfection (p.i.). Confocal-microscopy studies showed that although capsid (VP5) and tegument (UL37) proteins were not uniformly present in axons until 24 h p.i., they colocalized with envelope (gG) proteins in axonal varicosities and in growth cones at 24 and 48 h p.i. TEM of longitudinal sections of axons in situ showed enveloped and unenveloped capsids in the axonal varicosities and growth cones, whereas in the midregion of the axons, predominantly unenveloped capsids were observed. Partially enveloped capsids, apparently budding into vesicles, were observed in axonal varicosities and growth cones, but not during viral attachment and entry into axons. Tegument proteins (VP22) were found associated with vesicles in growth cones, either alone or together with envelope (gD) proteins, by transmission immunoelectron microscopy. Extracellular virions were observed adjacent to axonal varicosities and growth cones, with some virions observed in crescent-shaped invaginations of the axonal plasma membrane, suggesting exit at these sites. These findings suggest that varicosities and growth cones are probable sites of HSV-1 envelopment of at least a proportion of virions in the mid- to distal axon. Envelopment probably occurs by budding of capsids into vesicles with associated tegument and envelope proteins. Virions appear to exit from these sites by exocytosis.  相似文献   

12.
Two models describing how alphaherpesviruses exit neurons differ with respect to whether nucleocapsids and envelope glycoproteins travel toward axon termini separately or as assembled enveloped virions. Recently, a pseudorabies virus glycoprotein D (gD)-green fluorescent protein fusion was found to colocalize with viral capsids, supporting anterograde transport of enveloped virions. Previous antibody staining experiments demonstrated that herpes simplex virus (HSV) glycoproteins and capsids are separately transported in axons. Here, we generated an HSV expressing a gD-yellow fluorescent protein (YFP) fusion and found that gD-YFP and capsids were transported separately in neuronal axons. Anti-gD antibodies colocalized with gD-YFP, indicating that gD-YFP behaves like wild-type HSV gD.  相似文献   

13.
Neurons are unique polarized cells in which the growing axon is often located up to a meter or more from the cell body. Consequently, the intracellular movement of membrane lipids and proteins between cell bodies and axons poses a special challenge. The mechanisms of lipid transport within neurons are, for the most part, unknown although lipid transport via vesicles and via cholesterol- and sphingolipid-rich 'rafts' are considered likely mechanisms. Very active anterograde and retrograde transport of lipid-containing vesicles occurs between the cell body and distal axons. However, it is becoming clear that the axon need not obtain all of its membrane constituents from the cell body. For example, the synthesis of phosphatidylcholine, the major membrane phospholipid, occurs in axons, and its synthesis at this location is required for axonal elongation. In contrast, cholesterol synthesis appears to occur only in cell bodies, and cholesterol is efficiently delivered from cell bodies to axons by anterograde transport. Cholesterol that is required for axonal growth can also be exogenously supplied from lipoproteins to axons of cultured neurons. Several studies have suggested a role for apolipoprotein E in lipid delivery for growth and regeneration of axons after a nerve injury. Alternatively, or in addition, apolipoprotein E has been proposed to be a ligand for receptors that mediate signal transduction cascades. Lipids are also transported from axons to myelin, although the importance of this process for myelination is not clear.  相似文献   

14.
Axonal transport is critical for maintaining synaptic transmission. Of interest, anterograde and retrograde axonal transport appear to be interdependent, as perturbing one directional motor often impairs movement in the opposite direction. Here live imaging of Drosophila and hippocampal neuron dense-core vesicles (DCVs) containing a neuropeptide or brain-derived neurotrophic factor shows that the F-actin depolymerizing macrolide toxin mycalolide B (MB) rapidly and selectively abolishes retrograde, but not anterograde, transport in the axon and the nerve terminal. Latrunculin A does not mimic MB, demonstrating that F-actin depolymerization is not responsible for unidirectional transport inhibition. Given that dynactin initiates retrograde transport and that amino acid sequences implicated in macrolide toxin binding are found in the dynactin component actin-related protein 1, we examined dynactin integrity. Remarkably, cell extract and purified protein experiments show that MB induces disassembly of the dynactin complex. Thus imaging selective retrograde transport inhibition led to the discovery of a small-molecule dynactin disruptor. The rapid unidirectional inhibition by MB suggests that dynactin is absolutely required for retrograde DCV transport but does not directly facilitate ongoing anterograde DCV transport in the axon or nerve terminal. More generally, MB''s effects bolster the conclusion that anterograde and retrograde axonal transport are not necessarily interdependent.  相似文献   

15.
During herpes simplex virus 1 (HSV1) egress in neurons, viral particles travel from the neuronal cell body along the axon towards the synapse. Whether HSV1 particles are transported as enveloped virions as proposed by the 'married' model or as non-enveloped capsids suggested by the 'separate' model is controversial. Specific viral proteins may form a recruitment platform for microtubule motors that catalyze such transport. However, their subviral location has remained elusive. Here we established a system to analyze herpesvirus egress by cryo electron tomography. At 16 h post infection, we observed intra-axonal transport of progeny HSV1 viral particles in dissociated hippocampal neurons by live-cell fluorescence microscopy. Cryo electron tomography of frozen-hydrated neurons revealed that most egressing capsids were transported independently of the viral envelope. Unexpectedly, we found not only DNA-containing capsids (cytosolic C-capsids), but also capsids lacking DNA (cytosolic A-/B-capsids) in mid-axon regions. Subvolume averaging revealed lower amounts of tegument on cytosolic A-/B-capsids than on C-capsids. Nevertheless, all capsid types underwent active axonal transport. Therefore, even few tegument proteins on the capsid vertices seemed to suffice for transport. Secondary envelopment of capsids was observed at axon terminals. On their luminal face, the enveloping vesicles were studded with typical glycoprotein-like spikes. Furthermore, we noted an accretion of tegument density at the concave cytosolic face of the vesicle membrane in close proximity to the capsids. Three-dimensional analysis revealed that these assembly sites lacked cytoskeletal elements, but that filamentous actin surrounded them and formed an assembly compartment. Our data support the 'separate model' for HSV1 egress, i.e. progeny herpes viruses being transported along axons as subassemblies and not as complete virions within transport vesicles.  相似文献   

16.
Pseudorabies virus Us9 directs axonal sorting of viral capsids   总被引:2,自引:1,他引:1       下载免费PDF全文
Pseudorabies virus (PRV) mutants lacking the Us9 gene cannot spread from presynaptic to postsynaptic neurons in the rat visual system, although retrograde spread remains unaffected. We sought to recapitulate these findings in vitro using the isolator chamber system developed in our lab for analysis of the transneuronal spread of infection. The wild-type PRV Becker strain spreads efficiently to postsynaptic neurons in vitro, whereas the Us9-null strain does not. As determined by indirect immunofluorescence, the axons of Us9-null infected neurons do not contain the glycoproteins gB and gE, suggesting that their axonal sorting is dependent on Us9. Importantly, we failed to detect viral capsids in the axons of Us9-null infected neurons. We confirmed this observation by using three different techniques: by direct fluorescence of green fluorescent protein-tagged capsids; by transmission electron microscopy; and by live-cell imaging in cultured, sympathetic neurons. This finding has broad impact on two competing models for how virus particles are trafficked inside axons during anterograde transport and redefines a role for Us9 in viral sorting and transport.  相似文献   

17.
We have investigated the movement of green fluorescent protein-tagged neurofilaments at the distal ends of growing axons by using time-lapse fluorescence imaging. The filaments moved in a rapid, infrequent, and asynchronous manner in either an anterograde or retrograde direction (60% anterograde, 40% retrograde). Most of the anterograde filaments entered the growth cone and most of the retrograde filaments originated in the growth cone. In a small number of cases we were able to observe neurofilaments reverse direction, and all of these reversals occurred in or close to the growth cone. We conclude that neurofilament polymers are delivered rapidly and infrequently to the tips of growing axons and that some of these polymers reverse direction in the growth cone and move back into the axon. We propose that 1) growth cones are a preferential site of neurofilament reversal in distal axons, 2) most retrograde neurofilaments in distal axons originate by reversal of anterograde filaments in the growth cone, 3) those anterograde filaments that do not reverse direction are recruited to form the neurofilament cytoskeleton of the newly forming axon, and 4) the net delivery of neurofilament polymers to growth cones may be controlled by regulating the reversal frequency.  相似文献   

18.
Biochemical, pharmacological and immunocytochemical studies have implicated the microtubule-activated ATPase, kinesin, in the movement of membrane bounded organelles in fast axonal transport. In vitro studies suggested that kinesin moves organelles preferentially in the anterograde direction, but data about the function and precise localization of kinesin in the living axon were lacking. The current study was undertaken to establish whether kinesin associates with anterograde or retrograde moving organelles in vivo. Peripheral nerves were ligated to produce accumulations of organelles moving in defined directions. Regions proximal (anterograde) and distal (retrograde) to the ligation were analyzed for kinesin localization by immunofluorescence, and by immunogold electron microscopy using ultracryomicrotomy. Substantial amounts of kinesin were associated with anterograde moving organelles on the proximal side, while significantly less kinesin was detected distally. Statistical analyses indicated that kinesin was mostly associated with membrane-bounded organelles. These observations indicate that axonal kinesin is primarily associated with anterograde moving organelles in vivo.  相似文献   

19.
Phosphofructokinase activity was measured in the sciatic nerve of streptozotocin-induced diabetic and nondiabetic rats. Average steady-state phosphofructokinase activity was obtained from three consecutive segments of the mid-femoral region in the left sciatic nerve in both diabetic (4 and 24 weeks) and nondiabetic, age-matched animals. Over time, phosphofructokinase activity significantly decreased (p less than 0.05) with diabetes, with no effect demonstrated within similar age-groups. The accumulation of phosphofructokinase activity was accomplished by ligating the mid-femoral region of the right sciatic nerve for 24 h. Anterograde and retrograde axonal transport of phosphofructokinase was measured in the 3-mm segment proximal and distal to the ligature, respectively. There was a trend (p = 0.0627) towards a decline in net proximal accumulation (mean proximal minus mean background) with age. Net distal (mean distal minus mean background) activity declined by 80% (p less than 0.05) in the control group between 4 and 24 weeks of the diabetic state. However, diabetic animals did not experience the same age-related decline in retrograde transport. The findings suggest that diabetes affects the age-associated evolution of retrograde transport, presumably a reflection of the neuropathy occurring in the distal axon branches, without altering anterograde transport to any appreciable extent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号