首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined body fluid regulation by weanling (21-25 days) and adult (>60 days) male rats that were offspring of dams fed chow containing either 0.1, 1, or 3% NaCl throughout gestation and lactation. Weanling rats were maintained on the test diets until postnatal day 30 and on standard 1% NaCl chow thereafter. Ad libitum water intake by weanlings was highest in those fed 3% NaCl and lowest in those fed 0.1% NaCl. Adult rats maintained on standard NaCl chow consumed similar amounts of water after overnight water deprivation or intravenous hypertonic NaCl (HS) infusion regardless of early NaCl condition. Moreover, baseline and HS-stimulated plasma Na(+) concentrations also were similar for the three groups. Nonetheless, adult rats in the early 3% NaCl group consumed more of 0.5 M NaCl after 10 days of dietary Na(+) deprivation than did rats in either the 1% or 0.1% NaCl group. Interestingly, whether NaCl was consumed in a concentrated solution in short-term, two-bottle tests after dietary Na(+) deprivation or in chow during ad libitum feeding, adult rats in the 3% NaCl group drank less water for each unit of NaCl consumed, whereas rats in the 0.1% NaCl group drank more water for each unit of NaCl consumed. Thus gestational and early postnatal dietary NaCl levels do not affect stimulated water intake or long-term body fluid regulation. Together with our previous studies, these results suggest that persistent changes in NaCl intake and in water intake associated with NaCl ingestion reflect short-term behavioral effects that may be attributable to differences in NaCl taste processing.  相似文献   

2.
Rats drank rapidly when 0.3 M NaCl was the only drinking fluid available after overnight water deprivation, consuming approximately 200 ml/24 h. Although such large intakes of this hypertonic solution initially elevated plasma osmolality, excretion of comparable volumes of urine more concentrated than 300 meq Na(+)/l ultimately appears to restore plasma osmolality to normal levels. Rats drank approximately 100 ml of 0.5 M NaCl after overnight water deprivation, but urine Na(+) concentration (U(Na)) did not increase sufficiently to achieve osmoregulation. When an injected salt load exacerbated the initial dehydration caused by water deprivation, rats increased U(Na) to void the injected load and did not significantly alter 24-h intake of 0.3 or 0.5 M NaCl. Rats with lesions of area postrema had much higher saline intakes and lower U(Na) than did intact control rats; nonetheless, they appeared to osmoregulate well while drinking 0.3 M NaCl but not while drinking 0.5 M NaCl. Detailed analyses of drinking behavior by intact rats suggest that individual bouts were terminated by some rapid postabsorptive consequence of the ingested NaCl load that inhibited further NaCl intake, not by a fixed intake volume or number of licks that temporarily satiated thirst.  相似文献   

3.
The effect of interference in the neonatal critical period on water and salt solution (3% NaCl) intake by adult rats given a free choice of these fluids was studied. Consumption was expressed per animal, per 100 g body weight and as the NaCl concentration in the total daily fluid intake volume [NaCl]I. Newborn female rats were ovarectomized or sham-ovarectomized. Ovarectomy markedly reduces consumption and [NaCl]I in adulthood and brought these values close to the values in normal males. Newborn male rats were injected with 1 mg oestradiol propionate dissolved in oil or just with oil. Oestradiol propionate severely inhibited growth, but produced no changes in fluid intake per animal. The [NaCl]I values were likewise unaltered, but owing to the lower body weight comsumption values per 100 g b.w. were higher in rats given oestradiol propionate than in those given oil. The relationship of the given growth changes to the regulation of salt intake and to hypothalamic function and its sexual correlates is discussed.  相似文献   

4.
Marine birds can drink seawater because their cephalic 'salt' glands secrete a sodium chloride (NaCl) solution more concentrated than seawater. Salt gland secretion generates osmotically free water that sustains their other physiological processes. Acclimation to saline induces interstitial water and Na move into cells. When the bird drinks seawater, Na enters the plasma from the gut and plasma osmolality (Osm(pl)) increases. This induces water to move out cells expanding the extracellular fluid volume (ECFV). Both increases in Osm(pl) and ECFV stimulate salt gland secretion. The augmented intracellular fluid content should allow more rapid expansion of ECFV in response to elevated Osm(pl) and facilitate activation of salt gland secretion. To fully utilize the potential of the salt glands, intestinally absorbed NaCl must be reabsorbed by the kidneys. Thus, Na uptake at gut and renal levels may constrain extrarenal NaCl secretion. High NaCl intake elevates plasma aldosterone concentration of Pekin ducks and aldosterone stimulates intestinal and renal water and sodium uptake. High NaCl intake induces lengthening of the small intestine of adult Mallards, especially males. High NaCl intake has little effect on glomerular filtration rate or tubular sodium Na uptake of birds with competent salt glands. Relative to body mass, kidney mass and glomerular filtration rate (GFR) are greater in birds with salt glands than in birds that do not have them. Birds with salt glands do not change GFR, when they drink saline. Thus, their renal filtrate contains excess Na that is, in some species, almost completely renally reabsorbed and excreted in a more concentrated salt gland secretion. Na reabsorption by kidneys of other species, like mallards is less complete and their salt glands make less concentrated secretion. Such species may reflux urine into the hindgut, where additional Na may also be reabsorbed for extrarenal secretion. During exposure to saline, marine birds maintain elevated aldosterone levels despite high Na intake. Marine birds are excellent examples of physiological plasticity.  相似文献   

5.
Acute sodium deficiency sensitizes adult rats to psychomotor effects of amphetamine. This study determined whether prenatal and early life manipulation of dietary sodium sensitized adult offspring to psychomotor effects of amphetamine (1 or 3 mg/kg ip) in two strains of rats. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) dams were fed chow containing low NaCl (0.12%; LN), normal NaCl (1%; NN), or high NaCl (4%; HN) throughout breeding, gestation, and lactation. Male offspring were maintained on the test diet for an additional 3 wk postweaning and then fed standard chow thereafter until testing began. Overall, blood pressure (BP), total fluid intake, salt preference, and adrenal gland weight were greater in SHR than in WKY. WKY LN offspring had greater water intake and adrenal gland weight than did WKY NN and HN offspring, whereas WKY HN offspring had increased BP, salt intake, and salt preference compared with other WKY offspring. SHR HN offspring also had increased BP compared with other SHR offspring; all other measures were similar for SHR offspring. The low-dose amphetamine increased locomotor and stereotypical behavior compared with baseline and saline injection in both WKY and SHR offspring. Dietary sodium history affected the rats' psychomotor response to the higher dose of amphetamine. Injections of 3 mg/kg amphetamine in both strains produced significantly more behavioral activity in the LN offspring than in NN and HN offspring. These results show that early life experience with low-sodium diets produce long-term changes in adult rats' behavioral responses to amphetamine.  相似文献   

6.
The present study was designed to test the hypothesis that renal nerves chronically modulate arterial pressure (AP) under basal conditions and during changes in dietary salt intake. To test this hypothesis, continuous telemetric recording of AP in intact (sham) and renal denervated (RDNX) Sprague-Dawley rats was performed and the effect of increasing and decreasing dietary salt intake on AP was determined. In protocol 1, 24-h AP, sodium, and water balances were measured in RDNX (n = 11) and sham (n = 9) rats during 5 days of normal (0.4% NaCl) and 10 days of high (4.0% NaCl) salt intake, followed by a 3-day recovery period (0.4% NaCl). Protocol 2 was similar with the exception that salt intake was decreased to 0.04% NaCl for 10 days after the 5-day period of normal salt (0.04% NaCl) intake (RDNX; n = 6, sham; n = 5). In protocol 1, AP was lower in RDNX (91 +/- 1 mmHg) compared with sham (101 +/- 2 mmHg) rats during the 5-day 0.4% NaCl control period. During the 10 days of high salt intake, AP increased <5 mmHg in both groups so that the difference between sham and RDNX rats remained constant. In protocol 2, AP was also lower in RDNX (93 +/- 2 mmHg) compared with sham (105 +/- 4 mmHg) rats during the 5-day 0.4% NaCl control period, and AP did not change in response to 10 days of a low-salt diet in either group. Overall, there were no between-group differences in sodium or water balance in either protocol. We conclude that renal nerves support basal levels of AP, irrespective of dietary sodium intake in normal rats.  相似文献   

7.
Both male and female spontaneously hypertensive (SH) rats have an appetite for NaCl solution. The appetite is present when a choice is offered between distilled water and either isotonic or hypertonic (0.25 M) NaCl solution to drink. Total fluid intake (water plus NaCl solution) was greater for SH rats than for controls while food intakes (g/100 g body wt/day) of SH rats were not different from controls. Mean body weight of SH rats was always less than that of controls. The appetite for NaCl solution was accompanied by a significant reduction in preference (detection) threshold. SH rats could detect the difference between distilled water and NaCl solution when the concentration of the latter was 12 mEq/liter compared to a control threshold of 30 mEq/liter. The NaCl appetite and reduced NaCl preference threshold induced by spontaneous hypertension is in marked contrast to the NaCl aversion induced by other types of experimentally induced hypertension in rats. The mechanism or mechanisms responsible for these differences remain for further study.  相似文献   

8.
We investigated the role of circulating ANG II in sodium appetite after adrenalectomy. Adrenalectomized rats deprived of their main access to sodium (0.3 M NaCl) for 9 h drank 14.1 +/- 1.5 ml of the concentrated saline solution in 2 h of access. Intravenous infusion of captopril (2.5 mg/h) during the last 5 h of sodium restriction reduced sodium intake by 77 +/- 12% (n = 5) without affecting the degree of sodium depletion and hypovolemia incurred during deprivation. Functional evidence indicates that this dose of captopril blocked production of ANG II in the peripheral circulation, but not in the brain; that is, injection of ANG I into the lateral brain ventricle stimulated intake of both water and 0.3 M NaCl. Intravenous infusion of ANG II (starting 10-15 min before 0.3 M NaCl became available) in adrenalectomized, captopril-treated rats restored both sodium intake and blood pressure to values seen in rats not treated with captopril. Longer (20 h) infusions of captopril in 22-h sodium-restricted rats also blocked sodium appetite, but reduced or prevented sodium depletion. Intravenous infusion of ANG II after these long captopril infusions stimulated sodium intake, but intake was less than in controls not treated with captopril. These results indicate that most or all of the sodium appetite of adrenalectomized rats is mediated by circulating ANG II.  相似文献   

9.
Marked increases in the consumption of concentrated NaCl solution were elicited in rats by daily injection of the synthetic mineralocorticoid, deoxycorticosterone acetate (DOCA). DOCA-treated rats drank different volumes of NaCl solution depending on its concentration (between 0.15 M and 0.50 M), with less consumed (in milliliters) the more concentrated the fluid was. In consequence, total Na(+) intake (in milliequivalents) was roughly similar in all groups. Gastric emptying of Na(+) also diminished as the concentration of the ingested NaCl solution increased, and the delivery of Na(+) to the small intestine was remarkably similar in all groups. Cumulative volume of ingested fluid in the stomach and small intestine was very closely related to intake (in milliliters) of the concentrated NaCl solutions. Systemic plasma Na(+) levels did not increase until after rats stopped consuming concentrated NaCl solution, although they were elevated at the onset of water ingestion. The situation appeared to be different when 0.15 M NaCl was consumed. This isotonic solution emptied and was absorbed relatively rapidly, and DOCA-treated rats drank larger amounts of it throughout a 1-h test period than when they drank concentrated NaCl solutions. Collectively, these findings suggest that saline consumption by DOCA-treated rats may be inhibited by two presystemic factors, one related to the volume of ingested fluid (i.e., distension of the stomach and small intestine) and one related to its concentration (i.e., elevated osmolality of fluid in the small intestine and/or in adjacent visceral tissue).  相似文献   

10.
Hypertension was induced in Dahl-salt-sensitive (Dahl-S) rats by administering salt in drinking water. Control rats receiving tap water did not show a significant change in blood pressure or abnormalities in the kidney. Rats receiving 0.5% NaCl solution developed moderate hypertension and renal lesions. Rats receiving 1.0% NaCl solution showed prominent and increasing hypertension and severe renal damage. This method of salt administration should be simpler than administration in the diet as a means of promoting renal hypertension. The lower concentration salt water caused chronic mild hypertension in Dahl-S rats, and may serve as a useful model for progressive hypertension.  相似文献   

11.
The subfornical organ (SFO), one of the brain circumventricular organs, is known to mediate some of the central effects of angiotensin II related to sodium and water homeostasis. Because angiotensin II levels are altered with changes in chronic dietary salt intake, we reasoned that the actions of angiotensin II at the SFO might be involved in the regulation of arterial pressure during long-term alterations in dietary salt. The present study was designed to test the hypothesis that long-term control of arterial pressure during chronic changes in dietary salt intake requires an intact SFO. Male Sprague-Dawley rats were randomly selected for electrolytic lesion (SFOx, n = 8) or sham (n = 9) operation of the SFO. After a 1-wk recovery period, rats were instrumented with radio-telemetric blood pressure transducers for continuous 24-h measurement of mean arterial pressure (MAP) and heart rate (HR) and then were placed individually in metabolic cages. After another 1 wk of recovery, the rats were subjected to a 49-day protocol as follows: 1) a 7-day control period (1.0% NaCl diet), 2) 14 days of high-salt (4.0% NaCl) diet, 3) 7 days of normal-salt (1.0% NaCl) diet, 4) 14 days of low-salt (0.1% NaCl) diet, and 5) 7 days of recovery (1.0% NaCl diet). There were no significant differences in MAP or HR between SFOx and sham-operated rats throughout the protocol. These results do not support the hypothesis that the SFO is necessary for regulation of arterial pressure during chronic changes in dietary salt. However, SFOx rats demonstrated significantly less cumulative sodium balance than sham-operated rats on days 2-6 of the high-salt diet period. These data suggest that the SFO is important in the regulation of sodium homeostasis during chronic changes in salt intake.  相似文献   

12.
Prenatal growth is sensitive to the direct and indirect effects of maternal dietary intake; manipulation can lead to behavioural and physiological changes of the offspring later in life. Here, we report on three aspects of how a high-salt diet during pregnancy (conception to parturition) may affect the offspring's response to high oral salt loads: (i) dietary preferences for salt; (ii) response to salt and water balance and aldosterone and arginine vasopressin (AVP) concentrations after an oral salt challenge; (iii) concentrations of insulin and leptin after an oral salt challenge. We used two groups of lambs born to ewes fed either a high-salt (13% NaCl) diet during pregnancy (S lambs; n = 12) or control animals born to ewes fed a conventional (0.5% NaCl) diet during pregnancy (C lambs; n = 12). Lambs were subjected to short- (5 min) and long-term (24 h) preference tests for a high-salt (13% NaCl) or control diet, and the response to an oral challenge with either water or 25% NaCl solution were also carried out. Weaned lambs born to ewes fed high salt during pregnancy did not differ in their preference for dietary salt, but they did differ in their physiological responses to an oral salt challenge. Results indicate that these differences reflect an alteration in the regulation of water and salt balance as the metabolic hormones, insulin and leptin, were not affected. During the first 2 h after a single salt dose, S lambs had a 25% lower water intake compared to the C lambs. S lambs had, on average, a 13% lower AVP concentration than the C lambs (P = 0.014). The plasma concentration of aldosterone was higher in the S lambs than in the C lambs (P = 0.013). Results suggest that lambs born to ewes that ingest high amounts of salt during pregnancy are programmed to have an altered thirst threshold, and blunted response in aldosterone to oral salt loads.  相似文献   

13.
Increased dietary salt intake was used as a nonpharmacological tool to blunt hypotension-induced increases in plasma renin activity (PRA) in order to evaluate the contribution of the renin-angiotensin system (RAS) to hypotension-induced thirst. Rats were maintained on 8% NaCl (high) or 1% NaCl (standard) diet for at least 2 wk, and then arterial hypotension was produced by administration of the arteriolar vasodilator diazoxide. Despite marked reductions in PRA, rats maintained on the high-salt diet drank similar amounts of water, displayed similar latencies to drink, and had similar degrees of hypotension compared with rats maintained on the standard diet. Furthermore, blockade of ANG II production by an intravenous infusion of the angiotensin-converting enzyme inhibitor captopril attenuated the hypotension-induced water intake similarly in rats fed standard and high-salt diet. Additional experiments showed that increases in dietary salt did not alter thirst stimulated by the acetylcholine agonist carbachol administered into the lateral ventricle; however, increases in dietary salt did enhance thirst evoked by central ANG II. Collectively, the present findings suggest that hypotension-evoked thirst in rats fed a high-salt diet is dependent on the peripheral RAS despite marked reductions in PRA.  相似文献   

14.
Female rats of 2 Sprague-Dawley sub-strains and of the Wistar and Fischer 344 strains were sensitized to the hypertensogenic effect of excess salt by removal of 1 kidney and by being given 1% NaCl solution as their sole drinking fluid. One of the Sprague-Dawley sub-strains (SPD) and the Wistar (CFEP) rats developed progressive saline polydipsia of equivalent degree, blood pressure rose, and about half of the members became hypertensive during treatment. Rats of the other Sprague-Dawley strain (CFNP) also showed a progressive saline intake; but although they drank substantially less saline, the incidence of hypertension among them was increased by 50%. Animals of the Fischer 344 strain displayed neither saline polydipsia--the intake remaining relatively constant at a very low level throughout the experiment--nor hypertension. Salt hypertension appears to be affected by genetic factors in at least 2 ways, one of which regulates the quantity of salt ingested (salt appetite), while the other controls the susceptibility to salt excess or perhaps to hypertension per se. Fischer 344 rats have the ability to restrict the volume consumption of saline; their resistance to enforced high salt intake has yet to be established.  相似文献   

15.
Effects of high salt intake on the early onset of hypertension were examined in two-kidney, one-clip rats. They were divided into high salt and control groups which were supplied with 1.0% NaCl and tap water, respectively, as a drinking solution for 12 days after clipping the left renal artery. The high salt group showed a lower plasma renin concentration and a higher plasma atrial natriuretic peptide (ANP) along with an attenuation of the magnitude of early hypertension, as compared with the control group. A significant positive correlation between blood pressure and plasma renin concentration and an inverse correlation between plasma renin concentration and ANP were shown. Cortical renal renin content was comparable between the two groups. In another two groups of sham-clipped rats, the high salt group did not differ from the tap water-drinking group in any of the parameters examined, except that ANP was significantly higher. These results demonstrate that high salt intake attenuates the developmental phase of hypertension in two-kidney, one-clip rats by increasing the ANP and suppressing the release of renin.  相似文献   

16.
The 5-HT1A agonist 8-OH-DPAT was shown to diminish the water and 1.8% NaCl solution consumption, whereas its antagonist pMPPI--to enhance the water intake in rats. Another agonist: CGS-12066A enhanced water intake or exerted no effect on drinking behaviour and diminished salt intake. Other substances under study exerted various effects. The data obtained suggest that the 5-HT receptors are involved in regulation of water and salt intake, even though the mechanisms of the effects are different. Apparently 5-HT1B and 5-HT2A receptors play an activating role in regulation of water intake, whereas 5-HT1A, 5-HT2C and 5-HT3 receptors act as inhibitory ones. Only three of the receptors under study seem to regulate salt intake by inhibiting the salt appetite.  相似文献   

17.
Intraventricular injections of vasopressin (VP) and antagonists with varying degrees of specificity for the VP receptors were used to identify the action of endogenous brain VP on 0.3 M NaCl intake by sodium-deficient rats. Lateral ventricular injections of 100 ng and 1 microg VP caused barrel rotations and a dramatic decrease in NaCl intake by sodium-deficient rats and suppressed sucrose intake. Intraventricular injection of the V(1)/V(2) receptor antagonist [d(CH(2))(5)(1),O-Et-Tyr(2),Val(4), Arg(8)]VP and the V(1) receptor antagonist [d(CH(2))(5)(1),O-Me-Tyr(2),Arg(8)]VP (MeT-AVP) significantly suppressed NaCl intake by sodium-deficient rats without causing motor disturbances. MeT-AVP had no effect on sucrose intake (0.1 M). In contrast, the selective V(2) receptor antagonist had no significant effect on NaCl intake. Last, injections of 100 ng MeT-AVP decreased mean arterial blood pressure (MAP), whereas 100 ng VP elevated MAP and pretreatment with MeT-AVP blocked the pressor effect of VP. These results indicate that the effects produced by 100 ng MeT-AVP represent receptor antagonistic activity. These findings suggest that the effect of exogenous VP on salt intake is secondary to motor disruptions and that endogenous brain VP neurotransmission acting at V(1) receptors plays a role in the arousal of salt appetite.  相似文献   

18.
In the first experiment, weanling rats were fed a grain ration or one of three semipurified diets high in fat, sucrose, or cornstarch. Rats in each dietary group were divided into two subgroups, one of which drank distilled deionized water whereas the other group drank 2% NaCl solution. Blood pressure and sodium intake were individually measured for each rat at weekly intervals for a 10-week period. Rats receiving the salt solution had higher mean blood pressures (127-178 mmHg) than rats offered distilled water (108-127 mmHg). When drinking solutions were the same, more severe rises in blood pressure occurred in rats fed the semipurified diets than in those rats fed grain. In a second experiment, rats were fed one of the four diets used in the first experiment; however, they received a 1% NaCl drinking solution for 9 weeks followed by a 1.5% NaCl solution for an additional 9 weeks. At Week 18, pressures among these groups of rats ranged from 136-140 mmHg, regardless of diet.  相似文献   

19.
The present studies investigated the influence of presystemic signals on the control of thirst, salt appetite, and vasopressin (VP) secretion in rats during nonhypotensive hypovolemia. Rats were injected with 30% polyethylene glycol (PEG) solution, deprived of food and water overnight, and then allowed to drink water, 0.15 M NaCl, or 0.30 M NaCl. The PEG treatment, which produced 30-40% plasma volume deficits, elicited rapid intakes in an initial bout of drinking, but rats consumed much more 0.15 M NaCl than water or 0.30 M NaCl. In considering why drinking stopped sooner when water or concentrated saline was ingested, it seemed relevant that little or no change in systemic plasma Na(+) concentration was observed during the initial bouts and that the partial repair of hypovolemia was comparable, regardless of which fluid was consumed. In rats that drank 0.15 M NaCl, gastric emptying was fastest and the combined volume of ingested fluid in the stomach and small intestine was largest. These and other observations are consistent with the hypothesis that fluid ingestion by hypovolemic rats is inhibited by distension of the stomach and proximal small intestine and that movement of dilute or concentrated fluid into the small intestine provides another presystemic signal that inhibits thirst or salt appetite, respectively. On the other hand, an early effect of water or saline consumption on VP secretion in PEG-treated rats was not observed, in contrast to recent findings in dehydrated rats. Thus the controls of fluid ingestion and VP secretion are similar but not identical during hypovolemia.  相似文献   

20.
Influence of age on saline hypertension in subtotal nephrectomized rats   总被引:1,自引:0,他引:1  
In uninephrectomised immature and adult male rats 34% renal tissue was removed from the remaining kidney and after 60-days exposure to saline treatment (0.17 mol/l NaCl solution as only drinking fluid) the mean arterial blood pressure, plasma urea concentration, plasma and extracellular fluid volumes were estimated. In comparison with water drinking uninephrectomised age-matched controls it has been found that: in both age groups, the loss of tissue from the remaining kidney was fully replaced by compensatory growth of the renal stump, plasma urea concentration remained unchanged in animals operated on when adult, but increased in animals operated on when immature, the interstitial fluid volume increased in both age groups--the plasma volume as well as blood pressure remained unchanged in animals treated when adult, but increased in animals treated when immature. It is concluded that under conditions of elevated salt intake the loss of renal mass in immature rats was compensated by growth of tissue with a lower excretory ability than in adult ones, this being responsible for the development of hypertension in the younger group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号