首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Labr., is a highly destructive disease of chickpea (Cicer arietinum L.) on a global basis, and exhibits considerable natural variation for pathogenicity. Different sources of ascochyta blight resistance are available within the cultivated species, suitable for pyramiding to improve field performance. Robust and closely linked genetic markers are desirable to facilitate this approach. A total of 4,654 simple sequence repeat (SSR) and 1,430 single nucleotide polymorphism (SNP) markers were identified from a chickpea expressed sequence tag (EST) database. Subsets of 143 EST–SSRs and 768 SNPs were further used for validation and subsequent high-density genetic mapping of two intraspecific mapping populations (Lasseter × ICC3996 and S95362 × Howzat). Comparison of the linkage maps to the genome of Medicago truncatula revealed a high degree of conserved macrosynteny. Based on field evaluation of ascochyta blight incidence performed over 2 years, two genomic regions containing resistance determinants were identified in the Lasseter × ICC3996 family. In the S95362 × Howzat population, only one quantitative trait locus (QTL) region was identified for both phenotypic evaluation trials, which on the basis of bridging markers was deduced to coincide with one of the Lasseter × ICC3996 QTLs. Of the two QTL-containing regions identified in this study, one (ab_QTL1) was predicted to be in common with QTLs identified in prior studies, while the other (ab_QTL2) may be novel. Markers in close linkage to ascochyta blight resistance genes that have been identified in this study can be further validated and effectively implemented in chickpea breeding programs.  相似文献   

2.

Key message

Phenotyping of specific cellular resistance responses and improvement of previous genetic map allowed the identification of novel genomic regions controlling cellular mechanisms involved in pea resistance to ascochyta blight and provided candidate genes suitable for MAS.

Abstract

Didymella pinodes, causing ascochyta blight, is a major pathogen of the pea crop and is responsible for serious damage and yield losses. Resistance is inherited polygenically and several quantitative trait loci (QTLs) have been already identified. However, the position of these QTLs should be further refined to identify molecular markers more closely linked to the resistance genes. In previous works, resistance was scored visually estimating the final disease symptoms; in this study, we have conducted a more precise phenotyping of resistance evaluating specific cellular resistance responses at the histological level to perform a more accurate QTL analysis. In addition, P665 × Messire genetic map used to identify the QTLs was improved by adding 117 SNP markers located in genes. This combined approach has allowed the identification, for the first time, of genomic regions controlling cellular mechanisms directly involved in pea resistance to ascochyta blight. Furthermore, the inclusion of the gene-based SNP markers has allowed the identification of candidate genes co-located with QTLs and has provided robust markers for marker-assisted selection.  相似文献   

3.
The inheritance of resistance to Ascochyta blight, an economically important foliar disease of field pea (Pisum sativum L.) worldwide, was investigated. Breeding resistant pea varieties to this disease, caused by Mycosphaerella pinodes, is difficult due to the availability of only partial resistance. We mapped and characterized quantitative trait loci (QTLs) for resistance to M. pinodes in pea. A population of 135 recombinant inbred lines (RILs), derived from the cross between DP (partially resistant) and JI296 (susceptible), was genotyped with morphological, RAPD, SSR and STS markers. A genetic map was elaborated, comprising 206 markers distributed over eight linkage groups and covering 1,061 cM. The RILs were assessed under growth chamber and field conditions at the seedling and adult plant stages, respectively. Six QTLs were detected at the seedling stage, which together explained up to 74% of the variance. Ten QTLs were identified at the adult plant stage in the field, and together these explained 56.6–67.1% of the variance, depending on the resistance criteria and the organ considered. Four QTLs were detected under both growth chamber and field conditions, suggesting they were not plant-stage dependent. Three QTLs for flowering date and three QTLs for plant height were also identified in the RIL population, some of which co-located with QTLs for resistance. The relationship between QTLs for resistance to M. pinodes, plant height and flowering date is discussed.Communicated by H.C. Becker  相似文献   

4.
Aschochyta blight, caused by Mycosphaerella pinodes, is one of the most economically serious pea pathogens, particularly in winter sowings. The wild Pisum sativum subsp. syriacum accession P665 shows good levels of resistance to this pathogen. Knowledge of the genetic factors controlling resistance to M. pinodes in this wild accession would facilitate gene transfer to pea cultivars; however, previous studies mapping resistance to M. pinodes in pea have never included this wild species. The objective of this study was to identify quantitative trait loci (QTL) controlling resistance to M. pinodes in P. sativum subsp. syriacum and to compare these with QTLs previously described for the same trait in P. sativum. A population formed by 111 F6:7 recombinant inbred lines derived from a cross between accession P665 and a susceptible pea cultivar (Messire) was analysed using morphological, isozyme, RAPD, STS and EST markers. The map developed covered 1214 cM and contained 246 markers distributed in nine linkage groups, of which seven could be assigned to pea chromosomes. Six QTLs associated with resistance to M. pinodes were detected in linkage groups II, III, IV and V, which collectively explained between 31 and 75% of the phenotypic variation depending of the trait. While QTLs MpIII.1 and MpIII.2 were detected both for seedlings and field resistance, MpV.1 and MpII.1 were specific for growth chamber conditions and MpIII.3 and MpIV.1 for field resistance. Quantitative trait loci MpIII.1, MpII.1, MpIII.2 and MpIII.3 may coincide with other QTLs associated with resistance to M. pinodes previously described in P. sativum. Four QTLs associated with earliness of flowering were also identified. While dfIII.2 and dfVI.1, may correspond with other genes and QTLs controlling earliness in P. sativum, dfIII.1 and dfII.1 may be specific to P. sativum subsp. syriacum. Flowering date and growth habit were strongly associated with resistance to M. pinodes in the field evaluations. The relation observed between earliness, growth habit and resistance to M. pinodes is discussed.  相似文献   

5.
Ascochyta blight in chickpea (Cicer arietinum L.) is a devastating fungal disease caused by the necrotrophic pathogen, Ascochyta rabiei (Pass.) Lab. To elucidate the genetic mechanism of pathotype-dependent blight resistance in chickpea, F7-derived recombinant inbred lines (RILs) from the intraspecific cross of PI 359075(1) (blight susceptible) × FLIP84-92C(2) (blight resistant) were inoculated with pathotypes I and II of A. rabiei. The pattern of blight resistance in the RIL population varied depending on the pathotype of A. rabiei. Using the same RIL population, an intraspecific genetic linkage map comprising 53 sequence-tagged microsatellite site markers was constructed. A quantitative trait locus (QTL) for resistance to pathotype II of A. rabiei and two QTLs for resistance to pathotype I were identified on linkage group (LG)4A and LG2+6, respectively. A putative single gene designated as Ar19 (or Ar21d) could explain the majority of quantitative resistance to pathotype I. Ar19 (or Ar21d) appeared to be required for resistance to both pathotypes of A. rabiei, and the additional QTL on LG4A conferred resistance to pathotype II of A. rabiei. Further molecular genetic approach is needed to identify individual qualitative blight resistance genes and their interaction for pathotype-dependent blight resistance in chickpea.  相似文献   

6.
Resistance to Ascochyta blight of pea was genetically characterized by mapping quantitative trait loci (QTLs) using two crosses, 3147-A26 (A26, partially resistant) × cultivar Rovar (susceptible) and 3148-A88 (A88, partially resistant) × Rovar, with the aim of developing an increased understanding of the genetics of resistance and of identifying linked molecular markers that may be used to develop resistant germplasm. Molecular linkage maps for both crosses were aligned so that the results of QTL mapping could be compared. Ascochyta blight disease severity in response to natural epidemics was measured in field trials conducted in Western Australia and New Zealand. Eleven putative QTLs for Ascochyta blight resistance were identified from the A26 × Rovar population and 14 putative QTLs from the A88 × Rovar population. Six QTLs were associated with the same genomic regions in both populations. These QTLs reside on linkage groups II, III, IV, V, and VII (two QTLs). The severity of Ascochyta blight disease symptoms on pea increases during field epidemics as plants mature; therefore, QTLs for plant reproductive maturity were mapped. Six QTLs were detected for plant maturity in the A26 × Rovar population, while five plant maturity QTLs were mapped in the A88 × Rovar population. QTLs for plant maturity coincide with Ascochyta blight resistance QTLs in four genomic regions, on linkage groups II (two regions), III, and V. The plant maturity and Ascochyta blight resistance QTLs on III were linked in repulsion phase. Therefore, the coincidence of these QTLs may be explained by linkage of distinct loci for the two traits. The QTLs on linkage groups II and V were linked in coupling phase; therefore, linked QTLs for resistance and maturity may be present in these regions, or the Ascochyta blight resistance QTLs detected in these regions are the result of pleiotropic effects of plant-maturity genetic loci.  相似文献   

7.
8.
Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement.  相似文献   

9.

Key message

We have identified QTLs for stomatal characteristics on chromosome II of faba bean by applying SNPs derived from M. truncatula , and have identified candidate genes within these QTLs using synteny between the two species.

Abstract

Faba bean (Vicia faba L.) is a valuable food and feed crop worldwide, but drought often limits its production, and its genome is large and poorly mapped. No information is available on the effects of genomic regions and genes on drought adaptation characters such as stomatal characteristics in this species, but the synteny between the sequenced model legume, Medicago truncatula, and faba bean can be used to identify candidate genes. A mapping population of 211 F5 recombinant inbred lines (Mélodie/2 × ILB 938/2) were phenotyped to identify quantitative trait loci (QTL) affecting stomatal morphology and function, along with seed weight, under well-watered conditions in a climate-controlled glasshouse in 2013 and 2014. Canopy temperature (CT) was evaluated in 2013 under water-deficit (CTd). In total, 188 polymorphic single nucleotide polymorphisms (SNPs), developed from M. truncatula genome data, were assigned to nine linkage groups that covered ~928 cM of the faba bean genome with an average inter-marker distance of 5.8 cM. 15 putative QTLs were detected, of which eight (affecting stomatal density, length and conductance and CT) co-located on chromosome II, in the vicinity of a possible candidate gene—a receptor-like protein kinase found in the syntenic interval of M. truncatula chromosome IV. A ribose-phosphate pyrophosphokinase from M. truncatula chromosome V, postulated as a possible candidate gene for the QTL for CTd, was found some distance away in the same chromosome. These results demonstrate that genomic information from M. truncatula can successfully be translated to the faba bean genome.  相似文献   

10.
Fire blight, caused by the bacterium Erwinia amylovora (Burrill) Winslow et al., is one of the most serious diseases of pear. The development of pear cultivars with a durable resistance is extremely important for effective control of fire blight and is a key objective of most pear breeding programs throughout the world. We phenotyped seedlings from the interspecific pear population PEAR3 (PremP003, P. × bretschneideri × P. communis) × ‘Moonglow’ (P. communis) for fire blight resistance at two different geographic locations, in France and New Zealand, respectively, employing two local E. amylovora isolates. Using a genetic map constructed with single nucleotide polymorphism (SNP) and microsatellite (SSR) markers previously developed for this segregating population, we detected a major quantitative trait locus (QTL) on linkage group (LG)2 of ‘Moonglow’ (R 2 = 12.9–34.4 %), which was stable in both environments. We demonstrated that this QTL co-localizes with another major QTL for fire blight resistance previously detected in ‘Harrow Sweet’ and that the two favorable (i.e., resistant) alleles were not identical by descent. We also identified some smaller effect (R 2 = 8.1–14.8 %) QTLs derived from the susceptible parent PEAR3. We propose SNP and SSR markers linked to the large effect QTL on LG2 as candidates for marker-assisted breeding for fire blight resistance in pear.  相似文献   

11.
Plant diseases are caused by pathogen populations continuously subjected to evolutionary forces (genetic flow, selection, and recombination). Ascochyta blight, caused by Mycosphaerella pinodes, is one of the most damaging necrotrophic pathogens of field peas worldwide. In France, both winter and spring peas are cultivated. Although these crops overlap by about 4 months (March to June), primary Ascochyta blight infections are not synchronous on the two crops. This suggests that the disease could be due to two different M. pinodes populations, specialized on either winter or spring pea. To test this hypothesis, 144 pathogen isolates were collected in the field during the winter and spring growing seasons in Rennes (western France), and all the isolates were genotyped using amplified fragment length polymorphism (AFLP) markers. Furthermore, the pathogenicities of 33 isolates randomly chosen within the collection were tested on four pea genotypes (2 winter and 2 spring types) grown under three climatic regimes, simulating winter, late winter, and spring conditions. M. pinodes isolates from winter and spring peas were genetically polymorphic but not differentiated according to the type of cultivars. Isolates from winter pea were more pathogenic than isolates from spring pea on hosts raised under winter conditions, while isolates from spring pea were more pathogenic than those from winter pea on plants raised under spring conditions. These results show that disease developed on winter and spring peas was initiated by a single population of M. pinodes whose pathogenicity is a plastic trait modulated by the physiological status of the host plant.  相似文献   

12.
13.
Fire blight caused by Erwinia amylovora is one of the most disastrous diseases in apple production. Whereas most apple cultivars are susceptible to fire blight, several wild apple species accessions like Malus ×robusta 5 (Mr5) bear significant resistance. The resistance of Mr5 is mainly inherited by a major quantitative trait locus (QTL) on linkage group 3. QTL mapping was performed after inoculation of the population 04208 (Idared × Mr5) using strains differing in their virulence to Mr5. The QTL mapping approach demonstrated that the major QTL on linkage group 3 could be confirmed after inoculation with strains non-virulent to Mr5. In contrast, the major QTL disappeared after inoculation with strains virulent to Mr5. Only after inoculation with the resistance breaking strain Ea 3049 was a minor QTL with a LOD >3 found on linkage group 3. Additionally, several minor QTLs were detected on linkage groups 5, 7, 11 and 14 of Mr5 after inoculation with virulent strains able to overcome the major resistance QTL of Mr5. Their usefulness for further breeding activities will be discussed. The strain-specific results obtained in the present study provide further evidence for the existence of gene-for-gene relationships in the host–pathogen system Mr5–E. amylovora. Of the newly discovered minor QTLs, the one detected on LG7 contributes significantly to fire blight resistance in the presence of the major QTL, independently of the strain used.  相似文献   

14.
Microsatellite markers have been extensively utilised in the leguminosae for genome mapping and identifying major loci governing traits of interest for eventual marker-assisted selection (MAS). The lack of available lentil-specific microsatellite sequences and gene-based markers instigated the mining and transfer of expressed sequence tag simple sequence repeat (EST-SSR)/SSR sequences from the model genome Medicago truncatula, to enrich an existing intraspecific lentil genetic map. A total of 196 markers, including new 15 M. truncatula EST-SSR/SSR, were mapped using a population of 94 F5 recombinant inbred lines produced from a cross between cv. Northfield (ILL5588)?×?cv. Digger (ILL5722) and clustered into 11 linkage groups (LG) covering 1156.4?cM. Subsequently, the size and effects of quantitative trait loci (QTL) conditioning Ascochyta lentis resistance at seedling and pod/maturity stages were characterised and compared. Three QTL were detected for seedling resistance on LG1 and LG9 and a further three were detected for pod/maturity resistance on LG1, LG4 and LG5. Together, these accounted for 34 and 61% of the total estimated phenotypic variation, respectively, and demonstrated that resistance at the different growth stages is potentially conditioned by different genomic regions. The flanking markers identified may be useful for MAS and for the future pyramiding of potentially different resistance genes into elite backgrounds that are resistant throughout the cropping season.  相似文献   

15.
Hessian fly (HF), Mayetiola destructor, is an important pest of wheat (Triticum aestivum L.) worldwide. Because it has multiple biotypes that are virulent to different wheat HF resistance genes, pyramiding multiple resistance genes in a cultivar can improve resistance durability, and finding DNA markers tightly linked to these genes is essential to this process. This study identified quantitative trait loci (QTLs) for Hessian fly resistance (HFR) in the wheat cultivar ‘Clark’ and tightly linked DNA markers for the QTLs. A linkage map was constructed with single nucleotide polymorphism and simple sequence repeat markers using a population of recombinant inbred lines (RILs) derived from the cross ‘Ning7840’ × ‘Clark’ by single-seed descent. Two QTLs associated with resistance to fly biotype GP were identified on chromosomes 6B and 1A, with the resistance alleles contributed from ‘Clark’. The QTL on 6B flanked by loci Xsnp921 and Xsnp2745 explained about 37.2 % of the phenotypic variation, and the QTL on 1A was flanked by Xgwm33 and Xsnp5150 and accounted for 13.3 % of phenotypic variation for HFR. The QTL on 6B has not been reported before and represents a novel wheat gene with resistance to HF, thus, it is designated H34. A significant positive epistasis was detected between the two QTLs that accounted for about 9.5 % of the mean phenotypic variation and increased HFR by 0.16. Our results indicated that different QTLs may contribute different degrees of resistance in a cultivar and that epistasis may play an important role in HFR.  相似文献   

16.
17.
Fire blight, caused by the Gram-negative bacterium Erwinia amylovora, is the most important bacterial disease affecting apple (Malus × domestica) and pear (Pyrus communis) production. The use of antibiotic treatment, though effective to some degree, is forbidden or strictly regulated in many European countries, and hence an alternative means of control is essential. The planting of fire blight-resistant cultivars seems to be a highly feasible strategy. In this study, we explored a segregating population derived from a cross between the wild apple species Malus fusca and the M. × domestica cultivar Idared. F1 progenies used for mapping were artificially inoculated with Erwinia amylovora strain Ea222_JKI at a concentration of 109 cfu/ml in three different years. The averages of percentage lesion length of all replicates of each genotype were used as numerical traits for statistical analysis. A Kruskal–Wallis analysis was used to determine marker–phenotype association and revealed a linkage group with Diversity Arrays Technology (DArT) markers significantly linked with fire blight. After locating the positions of the DArT markers on the Golden Delicious genome, simple sequence repeat (SSR) markers were developed from chromosome 10 to replace the DArT markers and to determine the quantitative trait locus (QTL) region. Multiple QTL mapping (MQM) revealed a strong QTL (Mfu10) on linkage group 10 of M. fusca explaining about 65.6 % of the phenotypic variation. This is the first report on a fire blight resistance QTL of M. fusca.  相似文献   

18.
Broomrapes are holoparasitic plants which infect faba bean (Vicia faba L.), among other legumes. Here, we aimed to identify and validate quantitative trait loci (QTLs) for broomrape resistance in the cross 29H × Vf136 and to investigate the existence of common and specific genomic regions against Orobanche crenata and O. foetida. A genetic map including 171 markers was constructed for QTL analyses. Field trials for O. crenata were conducted during three consecutive seasons at Córdoba (Spain) and in a single season at Kafr El-Sheikh (Egypt). QTL analysis for O. foetida was performed using data from a single season at Beja (Tunisia). Seven QTLs for O. crenata were identified. Oc7 on chromosome VI was detected over 3 years at Córdoba, explaining between 22 and 33 % of the phenotypic variation, which make it the most promising candidate for future marker-assisted breeding for broomrape resistance in faba bean. O. crenata QTLs identified at Kafr El-Sheikh did not co-localize with those identified in Córdoba. Environmental differences together with the diversity of parasitic populations between locations may account for the discrepancy. Three QTLs for O. foetida were detected. Co-localization of Oc8 and Of3 in chromosome V confirms a common resistance against both O. crenata and O. foetida, as previously reported.  相似文献   

19.
Since its first report almost 200 years ago, fire blight, caused by the gram-negative bacterium Erwinia amylovora, has threatened apple and pear production globally. Identifying novel genes and their functional alleles is a prerequisite to developing apple cultivars with enhanced fire blight resistance. Here, we report 13 strain-specific and environment-dependent minor QTLs linked to fire blight resistance from a segregating Malus sieversii × Malus × domestica mapping population. Interval mapping at 95% confidence and Kruskal–Wallis analysis at P value =?0.005 were used to identify QTLs for three strains of E. amylovora differing in virulence and pathogenicity. The QTLs identified explain a small to moderate part of resistance variability, and a majority was not common between years or E. amylovora strains. These QTLs are distributed in eight linkage groups of apples and comparison of their map position to previously identified fire blight resistance QTLs indicates that most are novel loci. Interaction between experimental conditions in the greenhouse and field, and between years, and differences in virulence levels of strains might be responsible for strain- and year-specific QTLs. The QTLs identified on LG10 for strain Ea273 in 2011 and strain LP101 in 2011, and on LG15 for strain LP101 could be the same QTLs identified previously with strain CFBP1430 in cultivar “Florina” and “Co-op16 × Co-op17” mapping population, respectively. We discuss the potential impact of newly identified minor fire blight QTLs and major gene-based resistance on the rate of mutation in pathogen populations to overcome resistance and durability of resistance.  相似文献   

20.
Groundnut bruchid (Caryedon serratus Olivier) is a major storage insect pest that significantly lowers the quality and market acceptance of the produce. Screening for resistance against groundnut bruchid in field conditions is difficult due to the variation in environmental factors and possible occurrence of biotypes. Hence, identification of tightly linked markers or quantitative trait loci (QTLs) is needed for selection and pyramiding of resistance genes for durable resistance. A population of recombinant inbred lines derived from a cross between VG 9514 (resistant) and TAG 24 (susceptible) was screened for five component traits of bruchid resistance in 2 years. The same population was genotyped with 221 polymorphic marker loci. A genetic linkage map covering 1,796.7 cM map distance was constructed with 190 marker loci in cultivated groundnut. QTL analysis detected thirteen main QTLs for four components of bruchid resistance in nine linkage groups and 31 epistatic QTLs for total developmental period (TDP). Screening in 2 years for bruchid resistance identified two common main QTLs. The common QTL for TDP, qTDP-b08, explained 57–82 % of phenotypic variation, while the other common QTL for adult emergence, qAE2010/11-a02, explained 13–21 % of phenotypic variation. Additionally, three QTLs for TDP, adult emergence and number of holes and one QTL for pod weight loss were identified which explained 14–39 % of phenotypic variation. This is the first report on identification of multiple main and epistatic loci for bruchid resistance in groundnut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号