首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background and AimsInvasive species may undergo rapid evolution despite very limited standing genetic diversity. This so-called genetic paradox of biological invasions assumes that an invasive species has experienced (and survived) a genetic bottleneck and then underwent local adaptation in the new range. In this study, we test how often Australian acacias (genus Acacia), one of the world’s most problematic invasive tree groups, have experienced genetic bottlenecks and inbreeding.MethodsWe collated genetic data from 51 different genetic studies on Acacia species to compare genetic diversity between native and invasive populations. These studies analysed 37 different Acacia species, with genetic data from the invasive ranges of 11 species, and data from the native range for 36 species (14 of these 36 species are known to be invasive somewhere in the world, and the other 22 are not known to be invasive).Key ResultsLevels of genetic diversity are similar in native and invasive populations, and there is little evidence of invasive populations being extensively inbred. Levels of genetic diversity in native range populations also did not differ significantly between species that have and that do not have invasive populations.ConclusionWe attribute our findings to the impressive movement, introduction effort and human usage of Australian acacias around the world.  相似文献   

2.
Legumes, especially acacias, are considered amongst the most successful invaders globally. However there is still very little known about the role of soil microbial communities in their invasion success in novel ranges. We examined the role of the soil microbial community in the invasion success of four Acacia species (A. cyclops, A. longifolia, A. melanoxylon and A. saligna) and a close relative Paraserianthes lophantha, introduced into novel regions within Australia using a “black-box” approach. Seed and soil material were collected from multiple populations within each species’ native and introduced range within Australia and used in a plant-soil feedback experiment to assess the effect of the soil microbial community on plant growth and nodulation. We found no effect, either positive or negative, of soil origin on species’ performance, however there was a significant interaction between species and seed origin. Seed origin had a significant effect on the biomass of two species, A. cyclops and A. saligna. A. cyclops plants from the native range performed better across all soils than plants from the introduced range. The opposite trend was observed for A. saligna, with plants from the introduced range performing better overall than plants from the native range. Seed or soil origin did not have a significant effect on the presence and number of nodules suggesting that rhizobia do not constrain the invasion success of these legumes. Our results suggest that plant-soil feedbacks are unlikely to have played a significant role in the invasion success of these five species introduced into novel regions within Australia. This may be due to the widespread occurrence of acacias and their associated soil microbial communities throughout the Australian continent.  相似文献   

3.
Many plants exchanged in the global redistribution of species in the last 200 years, particularly between South Africa and Australia, have become threatening invasive species in their introduced range. Refining our understanding of the genetic diversity and population structure of native and alien populations, introduction pathways, propagule pressure, naturalization, and initial spread, can transform the effectiveness of management and prevention of further introductions. We used 20,221 single nucleotide polymorphisms to reconstruct the invasion of a coastal shrub, Chrysanthemoides monilifera ssp. rotundata (bitou bush) from South Africa, into eastern Australia (EAU), and Western Australia (WAU). We determined genetic diversity and population structure across the native and introduced ranges and compared hypothesized invasion scenarios using Bayesian modeling. We detected considerable genetic structure in the native range, as well as differentiation between populations in the native and introduced range. Phylogenetic analysis showed the introduced samples to be most closely related to the southern‐most native populations, although Bayesian analysis inferred introduction from a ghost population. We detected strong genetic bottlenecks during the founding of both the EAU and WAU populations. It is likely that the WAU population was introduced from EAU, possibly involving an unsampled ghost population. The number of private alleles and polymorphic SNPs successively decreased from South Africa to EAU to WAU, although heterozygosity remained high. That bitou bush remains an invasion threat in EAU, despite reduced genetic diversity, provides a cautionary biosecurity message regarding the risk of introduction of potentially invasive species via shipping routes.  相似文献   

4.
Important insights on the invasion ecology of woody plants are emerging from the study of model groups, but it is important to test how widely such results can be generalised. We examined whether drivers of introduction and invasion in the genus Casuarina are similar to those identified for other groups. We reviewed the literature, mapped current global distributions, and modelled the potential global distribution of the genus. We assessed the rationale behind introductions, impacts of invasions, and the evolution of management approaches. Casuarinas have been introduced to about 150 countries. Ten of the 14 species in the genus have been introduced outside their native ranges, but only three species are recorded as naturalized or invasive (C. equisetifolia, C. cunninghamiana and C. glauca). Species with large native ranges are more likely to be introduced, and the three invasive species have the largest native ranges and the most records of introduction. There were no clear relationships between life-history traits (e.g. seed mass, plant height, or resprouting ability) and the extent of invasion. About 8 % of the Earth’s land surface is potentially suitable for casuarinas and large-scale plantings in some climatically suitable areas have not yet resulted in large-scale invasions; there is a substantial global Casuarina invasion debt. Experiences in Florida and the Mascarene Islands highlight that casuarinas have the potential to transform ecosystems with significant control costs. The challenge is to develop management approaches that minimise the impacts of invasions while preserving economic, environmental and cultural values of species in their introduced ranges.  相似文献   

5.
Global change is driving a massive rearrangement of the world's biota. Trajectories of distributional shifts are shaped by species traits, the recipient environment and driving forces with many of the driving forces directly due to human activities. The relative importance of each in determining the distributions of introduced species is poorly understood. We consider 11 Australian Acacia species introduced to South Africa for different reasons (commercial forestry, dune stabilization and ornamentation) to determine how features of the introduction pathway have shaped their invasion history. Projections from species distribution models (SDMs) were developed to assess how the reason for introduction influences the similarity between climatic envelopes in native and alien ranges. A lattice model for an idealized invasion was developed to assess the relative contribution of intrinsic traits and introduction dynamics on the abundance and extent over the course of simulated invasions. SDMs show that alien populations of ornamental species in South Africa occupy substantially different climate space from their native ranges, whereas species introduced for forestry occupy a similar climate space in native and introduced ranges. This may partly explain the slow spread rates observed for some alien ornamental plants. Such mismatches are likely to become less pronounced with the current drive towards ‘eco gardens’ resulting in more introductions of ornamental species with a close climate match between native and newly introduced regions. The results from the lattice model showed that the conditions associated with the introduction pathway (especially introduction pressure) dominate early invasion dynamics. The placement of introduction foci in urban areas limited the extent and abundance of invasive populations. Features of introduction events appear to initially mask the influence of intrinsic species traits on invasions and help to explain the relative success of species introduced for different purposes. Introduction dynamics therefore can have long‐lasting influences on the outcomes of species redistributions, and must be explicitly considered in management plans.  相似文献   

6.
Whether or not species track native climatic conditions during invasions (i.e., climate match hypothesis) is fundamental to understand and prevent potential impacts of invasive species. Recent empirical work suggests that climatic mismatches between native and invasive ranges are pervasive. Whether these differences are due to adaptation to new climatic spaces in the invasive range or due to partial filling of the potential climatic space are still subject to debate. Here, we analyze climatic niche dynamics associated with the invasion of the two most common invasive plants in Brazilian semi-arid areas, Prosopis juliflora and Prosopis pallida. These species have been simultaneously introduced in the region, which creates a unique opportunity to compare their niche dynamics during invasion. Given that P. juliflora have a much wider native range size, we expect these species would present different dispersal potentials, which might translate into different unfilling levels. Using an ordination method with kernel smoother and null models, we contrasted climate spaces occupied by each species in both native and invasive ranges. We further used ecological niche models (ENMs) to compare reciprocal predictions of potentially suitable areas. Against our expectation based on differences in native range sizes, climatic niches of P. juliflora and P. pallida overlapped greatly, both in their native and invasive ranges. Our results support niche conservatism during the invasion process. Climatic mismatches among native and invaded ranges were exclusively attributed to unfilling of native climates in the invasive range. Both species showed similar unfilling levels. Likewise, ENMs predicted regions not yet occupied in the invasive range, revealing a potential for further expansion. We discuss colonization time lag and founder effect as potential mechanisms that may have prevented these species to fully occupy their native niches in the invasive range.  相似文献   

7.
Although ecological differences between native and introduced ranges have been considered to drive rapid expansion of invasive species, recent studies suggest that rapid evolutionary responses of invasive species to local environments may also be common. Such expansion across heterogeneous environments by adaptation to local habitats requires genetic variation. In this study, we investigated the source and role of standing variation in successful invasion of heterogeneous abiotic environments in a self-incompatible species, Lotus corniculatus. We compared phenotypic and genetic variation among cultivars, natives, and introduced genotypes, and found substantial genetic variation within both native and introduced populations. Introduced populations possessed genotypes derived from both cultivars and native populations, and had lower population differentiation, indicating multiple sources of introduction and population admixture among the sources in the introduced range. Both cultivars and introduced populations had similarly outperforming phenotypes on average, with increased biomass and earlier flowering compared with native populations, but those phenotypes were within the range of the variation in phenotypes of the native populations. In addition, clinal variation within introduced populations was detected along a climatic gradient. Multiple introductions from different sources, including cultivars, may have contributed to pre-adaptive standing variation in the current introduced populations. We conclude that both introduction of cultivar genotypes and natural selection in local environments contributed to current patterns of genetic and phenotypic variation observed in the introduced populations.  相似文献   

8.
Common garden studies comparing trait differences of exotic species between native and introduced ranges rarely incorporate an analysis of genetic variation, but simply infer that trait shifts between ranges are genetically determined. We compared four growth-related traits (total biomass, relative growth rate RGR, specific leaf area SLA, and root to shoot ratio R:S) of five invasive Fabaceae species (Acacia cyclops, A. longifolia, A. melanoxylon, A. saligna, Paraserianthes lophantha), grown in a common garden experiment using seeds from introduced and native ranges across Australia. Chloroplast microsatellite loci were used to compare genetic diversity of native and introduced populations to determine standing genetic diversity and infer introduction history. We asked whether shifts in traits associated with faster growth due to enemy release in the introduced range were associated with levels of genetic diversity associated with introduction history. We found differences in traits between ranges, although these traits varied among the species. Compared to native-range populations, introduced-range Acacia longifolia had greater biomass and larger SLA; A. cyclops had greater RGR; and A. melanoxylon displayed lower R:S. Genetic diversity in the introduced range was lower for one of those species, A. longifolia, and two others that did not show differences in traits, A. saligna and P. lophantha. Diversity was higher in the introduced range for A. melanoxylon and did not differ among ranges for A. cyclops. These patterns of genetic diversity suggest that a genetic bottleneck may have occurred following the introduction of A. longifolia, A. saligna and P. lophantha. In contrast greater or comparable genetic diversity in the introduced range for A. melanoxylon and A. cyclops suggests introductions from multiple sources. This study has shown that a reduction in genetic diversity in the introduced range is not necessarily associated with a reduced capacity for adaptive responses or invasion potential in the novel range.  相似文献   

9.
Understanding differences in the components of life‐cycle stages of species between their native and introduced ranges can provide insights into the process of species transitioning from introduction to naturalization and invasion. We examined reproductive variables of the germination (seed predation, seed viability, time to germination), seed output (crown projection, seed production, seed weight) and dispersal (seed weight, dispersal investment) stages of five woody Fabaceae species, comparing native and introduced ranges. We predicted that each species would differ in reproductive variables of at least one life‐cycle stage between their native and introduced ranges, thus allowing us to determine the life‐cycle stage most associated with invasion success in the introduced range. Acacia melanoxylon and Paraserianthes lophantha had reduced seed predation in their introduced ranges while P. lophantha also had higher seed viability indicating that the germination life‐cycle stage is most strongly associated with their invasion success in the introduced range. Only Acacia longifolia varied between ranges for the seed output stage due to larger plant size, greater seed production and smaller seed size in its introduced range. Similar to A. longifolia, Acacia cyclops had smaller seed size in its introduced range but did not have any other variable differences between ranges suggesting that the dispersal stage is best associated with its invasion success in the introduced range. Surprisingly, Acacia saligna was the only species without a clear life‐cycle stage difference between ranges despite it being one of the more invasive acacia species in Australia. Although we found clear differences in reproductive variables associated with life‐cycle stages between native and introduced ranges of these five species, these differences were largely species‐specific. This suggests that a species invasion strategy into a novel environment is complex and varies among species depending on the environmental context, phenotypic plasticity and genotypic variation in particular traits.  相似文献   

10.
Retracing introduction routes is crucial for understanding the evolutionary processes involved in an invasion, as well as for highlighting the invasion history of a species at the global scale. The Asian long‐horned beetle (ALB) Anoplophora glabripennis is a xylophagous pest native to Asia and invasive in North America and Europe. It is responsible for severe losses of urban trees, in both its native and invaded ranges. Based on historical and genetic data, several hypotheses have been formulated concerning its invasion history, including the possibility of multiple introductions from the native zone and secondary dispersal within the invaded areas, but none have been formally tested. In this study, we characterized the genetic structure of ALB in both its native and invaded ranges using microsatellites. In order to test different invasion scenarios, we used an approximate Bayesian “random forest” algorithm together with traditional population genetics approaches. The strong population differentiation observed in the native area was not geographically structured, suggesting complex migration events that were probably human‐mediated. Both native and invasive populations had low genetic diversity, but this characteristic did not prevent the success of the ALB invasions. Our results highlight the complexity of invasion pathways for insect pests. Specifically, our findings indicate that invasive species might be repeatedly introduced from their native range, and they emphasize the importance of multiple, human‐mediated introductions in successful invasions. Finally, our results demonstrate that invasive species can spread across continents following a bridgehead path, in which an invasive population may have acted as a source for another invasion.  相似文献   

11.
The Australian Weed Risk Assessment protocol (WRA) is often considered the standard approach for pre-border screening of new plant introductions. Here we assess its robustness against three key criteria: ability to discriminate success or failure of species at three stages of the invasion process (introduction, naturalisation and spread); sensitivity to taxonomic range and target region; and dependence on knowledge of invasive behaviour elsewhere. We address these issues by retrospectively testing the WRA using pine (Pinus) introductions to New Zealand and Great Britain. For both regions we calculated WRA scores for 115 species, and classified all species according to whether they had been introduced, which of these had naturalised, and the extent of their naturalised distribution (spread). Using regression models, we assessed whether WRA scores could predict success at each stage. We repeated this procedure using WRA scores calculated without information on species naturalisation behaviour elsewhere. In both regions, the WRA could discriminate among species in the same genus at the introduction and naturalisation stages, but not at the spread stage. The outcome at the naturalisation stage depended on prior knowledge of naturalisation behaviour elsewhere. Without this information the WRA may be unable to distinguish among closely related species, and should be used cautiously where data on invasive behaviour elsewhere is lacking. Human selection played a strong role in the invasion process both through introducing pine species likely to naturalise in New Zealand and Great Britain in the first instance, and subsequent use of many of these species for forestry in the target regions.  相似文献   

12.
In facultatively asexual invasive species, an understanding of the origins and diversity of clones can reveal introduction and invasion pathways and inform management efforts. In this study, we use microsatellite and chloroplast DNA markers to infer clonal diversity of the Rubus fruticosus agg. invasion in the Western United States, determine the relationship of these clones to clones found in other exotic ranges, and determine the geographic and genetic origins of the invasive clones. We found two invasive clones in the Western United States, where the invasion had previously been thought to consist of a single asexual lineage. The most common clone was genetically identical to the microspecies R. armeniacus from the native range of Germany, while the second clone was identical to the microspecies R. anglocandicans in the invaded range of Australia and closely related to samples from the native ranges of England and Serbia. A third distinct clone was identified in a collection from the exotic range of Chile. Our results demonstrate that cryptic genetic diversity may be present in asexual invasions that are thought to be homogeneous. However, the asexual relationships between R. fruticosus agg. clones in the native and multiple exotic ranges indicate that preadaptation has played an important role in invasion success in this species aggregate.  相似文献   

13.
Jacobaea vulgaris (Asteraceae) is a species of Eurasian origin that has become a serious non-indigenous weed in Australia, New Zealand, and North America. We used neutral molecular markers to (1) test for genetic bottlenecks in invasive populations and (2) to investigate the invasion pathways. It is for the first time that molecular markers were used to unravel the process of introduction in this species.The genetic variation of 15 native populations from Europe and 16 invasive populations from Australia, New Zealand and North America were compared using the amplified fragment length polymorphisms (AFLP's). An analysis of molecular variance showed that a significant part (10%) of the total genetic variations between all individuals could be explained by native or invasive origin.Significant among-population differentiation was detected only in the native range, whereas populations from the invasive areas did not significantly differ from each other; nor did the Australian, New Zealand and North American regions differ within the invasive range. The result that native populations differed significantly from each other and that the amount of genetic variation, measured as the number of polymorphic bands, did not differ between the native and invasive area, strongly suggests that introductions from multiple source populations have occurred. The lack of differentiation between invasive regions suggests that either introductions may have occurred from the same native sources in all invasive regions or subsequent introductions took place from one into another invasive region and the same mix of genotypes was subsequently introduced into all invasive regions.An assignment test showed that European populations from Ireland, the Netherlands and the United Kingdom most resembled the invasive populations.  相似文献   

14.
Herbarium accession data offer a useful historical botanical perspective and have been used to track the spread of plant invasions through time and space. Nevertheless, few studies have utilised this resource for genetic analysis to reconstruct a more complete picture of historical invasion dynamics, including the occurrence of separate introduction events. In this study, we combined nuclear and chloroplast microsatellite analyses of contemporary and historical collections of Senecio madagascariensis, a globally invasive weed first introduced to Australia c. 1918 from its native South Africa. Analysis of nuclear microsatellites, together with temporal spread data and simulations of herbarium voucher sampling, revealed distinct introductions to south-eastern Australia and mid-eastern Australia. Genetic diversity of the south-eastern invasive population was lower than in the native range, but higher than in the mid-eastern invasion. In the invasive range, despite its low resolution, our chloroplast microsatellite data revealed the occurrence of new haplotypes over time, probably as the result of subsequent introduction(s) to Australia from the native range during the latter half of the 20th century. Our work demonstrates how molecular studies of contemporary and historical field collections can be combined to reconstruct a more complete picture of the invasion history of introduced taxa. Further, our study indicates that a survey of contemporary samples only (as undertaken for the majority of invasive species studies) would be insufficient to identify potential source populations and occurrence of multiple introductions.  相似文献   

15.
Summary   Noisy Miners ( Manorina melanocephala ) are aggressive Australian honeyeaters that dominate many areas of remnant vegetation and forest edges from which they competitively exclude small birds. A similar domination can also occur in planted wildlife corridors. The aim of this study was to determine which corridor plantings encouraged the presence of small native birds in regions where Noisy Miners dominate. Six vegetation mixes were investigated in the main study: eucalypts with and without shrubby understorey; acacia with and without shrubby understorey; exotic conifer; and exotic deciduous trees. A supplementary study then examined sites with a mixture of eucalypt and acacia trees with a shrubby understorey. The findings showed that Noisy Miners dominated corridors of eucalypts, virtually excluding small birds, whereas native acacias, exotic conifer and exotic deciduous corridors had small birds and no resident Noisy Miners. The greatest abundance and richness of small birds occurred in plantings combining eucalypts with at least 15% acacias, in this case bipinnate species. Given these results, it is recommended that eucalypt plantings should be supplemented with both acacias (preferably bipinnate) and a shrubby understorey.  相似文献   

16.
The environmental conditions in the new ranges of introduced plant species are often different from the conditions in their native ranges, and invasive plant species have been assumed to adapt to different environmental conditions by rapid ecological evolution in the invasive range after the introduction. Another interpretation of the change in plant traits after their introduction, however, is ecological fitting, which is based on the inherently high phenotypic plasticity of the species rather than on evolution. The Mediterranean haplotype M1 lineage of the wetland grass Phragmites australis was introduced to the coastal wetlands along the Gulf Coast of North America, where it is exposed to a different climate compared to its original range. The climate in the native range is arid or temperate with dry and hot summers, whereas the climate in the introduced range is warmer and has a higher and more uniform precipitation than that in the native range. This warmer and more humid environment is likely to pose different selection pressures to the plants in the introduced range and thus cause rapid evolutionary change and phenotypic differentiation in the introduced range. Here, we compared phenotypic traits of the M1 lineage from the native and introduced ranges in a common garden experiment to study the processes assisting the successful spread in the introduced range. Overall, the native and introduced groups were similar, but we detected a few phenotypic traits that diverged. Ecological fitting could be the fundamental mechanism by which the P. australis M1 lineage survives and spreads in the introduced Gulf Coast region. However, further research is needed to assess how the diverging traits observed in our study in Denmark (lower photosynthetic rates, lower chlorophylls concentration and higher leaf K concentration for the introduced than for the native genotypes) are expressed in the two ranges.  相似文献   

17.
Kang M  Buckley YM  Lowe AJ 《Molecular ecology》2007,16(22):4662-4673
Knowledge of the introduction history of invasive plants informs on theories of invasiveness and assists in the invasives management. For the highly successful invasive shrub Scotch broom, Cytisus scoparius, we analysed a combination of nuclear and chloroplast microsatellites for eight native source regions and eight independent invasion events in four countries across three continents. We found that two exotic Australian populations came from different sources, one of which was derived from multiple native populations, as was an invasive sample from California. An invasive population from New Zealand appeared to be predominantly sourced from a single population, either from the native or exotic ranges. Four invasive populations from Chile were genetically differentiated from the native range samples analysed here and so their source of introduction could not be confirmed, but high levels of differentiation between the Chilean populations suggested a combination of different sources. This extensive global data set of replicated introductions also enabled tests of key theories of invasiveness in relation to genetic diversity. We conclude that invasive populations have similar levels of high genetic diversity to native ranges; levels of admixture may vary across invasive populations so admixture does not appear to have been an essential requirement for invasion; invasive and native populations exhibit similar level of genetic structure indicating similar gene flow dynamics for both types of populations. High levels of diversity and multiple source populations for invasive populations observed here discount founder effects or drift as likely explanations for previously observed seed size differences between ranges. The high levels of genetic diversity, differential and source admixture identified for most exotic populations are likely to limit the ability to source biocontrol agents from the native region of origin of invasive populations.  相似文献   

18.
Tropical botanical gardens have played an important role in the distribution, naturalisation and spread of non-native plants worldwide. Appropriate guidance relating to risk assessments of established botanical garden collections is often scarce. This paper uses the Amani Botanical Garden (ABG), Tanzania, as a case study to highlight appropriate methods to assess the risks posed by existing and future collections in tropical botanical gardens. Key considerations included field assessments of species status using accepted definitions of naturalisation, spread and invasion, distinguishing between intentionally and unintentionally introduced species, identifying taxonomic patterns in invasion status, assessing patterns in habitats colonised, and determining how knowledge of invasion elsewhere might be useful in forecasting risk. Out of the 214 alien plant species surviving from the original plantings in the early 20th century, 35 had only regenerated, 38 had locally naturalised while 16 had spread widely in the botanical garden. A further 16 species with unclear introduction records in the garden were also found to be naturalised. A greater proportion of introduced species were potentially invasive than might be expected from previous analyses of global floras. Overall, just over half of all naturalised and spreading species were also observed in forest fragments and edges. The proportion of species that had been recorded elsewhere as naturalised/invasive was significantly related to their status in ABG, with 94% of spreading species and 79% of naturalising species being recorded as naturalised or invasive elsewhere, compared to 57% of species that were only regenerating and 49% of species only surviving. Recommendations for further risk assessments of botanical garden collections are discussed.  相似文献   

19.
Myrmecochorous plants produce seeds with lipid-rich appendages (elaiosomes) which act as a reward for seed-dispersing ants. Seed dispersal is important for exotic species, which often need to establish new mutualistic interactions in order to colonize new non-native habitats. However, little is known about the importance of elaiosomes for seed removal in many of their non-native ranges. We studied ant–seed interactions of elaiosome-bearing and elaiosome-removed seeds of the Australian trees Acacia dealbata and Acacia longifolia in order to assess the relative importance of elaiosomes for seed removal between their native (Australia) and non-native (Portugal) ranges. In Portugal, we also studied the co-occurring native plant species with myrmecochorous seeds, Pterospartum tridentatum and Ulex europaeus, across three contiguous levels of acacia invasion: control (i.e. no acacia), low, and high acacia tree density. Acacia seeds were successfully removed by ants in their non-native region by a diversified assemblage of ant species, even in sites where native plants interacted with only one specialized ant species. In the invaded range, diminishing relative importance of elaiosomes was associated with changes in the ant community due to acacia invasion, and for A. dealbata, ant species richness decreased with increasing acacia tree density. Although seed removal was high for both acacia species, the importance of elaiosomes was proportionally lower for A. dealbata in the non-native region. Native plant species experienced significant reductions in seed removal in areas highly invaded by acacia, identifying another mechanism of displacement of native plants by acacias.  相似文献   

20.
European hare Lepus europaeus populations have undergone recent declines but the species has successfully naturalised in many countries outside its native range. It was introduced to Ireland during the mid-late nineteenth century for field sport and is now well established in Northern Ireland. The native Irish hare Lepus timidus hibernicus is an endemic subspecies of mountain hare L. timidus and has attracted major conservation concern following a long-term population decline during the twentieth century and is one of the highest priority species for conservation action in Ireland. Little is known about the European hare in Ireland or whether it poses a significant threat to the native mountain hare subspecies by compromising its ecological security or genetic integrity. We review the invasion ecology of the European hare and examine evidence for interspecific competition with the mountain hare for habitat space and food resources, interspecific hybridisation, disease and parasite transmission and possible impacts of climate change. We also examine the impact that introduced hares can have on native non-lagomorph species. We conclude that the European hare is an emerging and significant threat to the conservation status of the native Irish hare. Invasive mammal species have been successfully eradicated from Ireland before and immediate action is often the only opportunity for cost-effective eradication. An urgent call is issued for further research whilst the need for a European hare invasive Species Action Plan (iSAP) and Eradication strategy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号