首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Phenazine-1-carboxamide (PCN) is one of the major biocontrol agents produced by plant growth-promoting rhizosphere (PGPR) pseudomonads including Pseudomonas chlororaphis. In this study, a combined strategy of genetic modification and statistical experimental designs was applied to obtain mutants of P. chlororaphis strains with high-yield PCN production. To achieve this, the lon gene was knocked out in wild-type P. chlororaphis HT66 and the breeding mutant P3 strain with a non-scar deletion strategy. The resulting HT66Δlon and P3Δlon mutants produced a significantly higher PCN production in shake-flask cultures which was 5- and  9-folds greater than their native counterparts. The potential ability of strain P3Δlon for PCN production was further optimized by statistical designs. A two-level Plackett–Burman (PB) experimental design with six variables was employed to scrutinize medium components that significantly influence PCN production. Notably, glycerol, tryptone, and soy peptone were identified to be the most significant factors (p?<?0.05). Response surface methodology (RSM) based on the central composite design (CCD) was adopted to determine these factors optimal levels and their interactive effects between culture components for PCN production. The predicted maximum PCN production was 9002 mg/L, whereas an actual PCN production of 9174 mg/L was recorded in the validation experiments using the optimal medium containing glycerol 37.08 mL/L, tryptone 20.00 g/L, and soy peptone 25.03 g/L, which was nearly threefolds higher than without optimization and 20-folds higher than the wild-type strain. In conclusion, the results revealed that P. chlororaphis display a high potential for industrial-scale production for phenazine biopesticides.  相似文献   

2.
Biocalorimetry has proved to be an efficient tool for studying the energetics involved in several biochemical reactions. In this study, biocalorimetry was employed to simultaneously analyze biokinetics and bioenergetics involved during cultivation of a salt tolerant Pseudomonas aeruginosa for the production of alkaline protease. Batch experiments were performed in a bench scale biocalorimeter for alkaline protease production by P. aeruginosa using optimized process conditions. Tessier’s double substrate growth model was found to provide a good fit for the growth of P. aeruginosa in the biocalorimeter, and the biokinetic parameters were estimated. The heat flow profile resulting from metabolic activity of P. aeruginosa was shown to accurately depict both the kinetics of cell growth and protease production. Biokinetic and bioenergetic analysis on the growth of P. aeruginosa revealed that peptone is preferentially used as the substrate for its intracellular activities and glycerol acts as an energy source for its growth metabolism.  相似文献   

3.
We constructed a non-scar triple-deleted mutant Pseudomonas aeruginosa to improve phenazine-1-carboxylic acid (PCA) yield and then optimized the culture conditions for PCA production. Using a non-scar deletion strategy, the 5′-untranslated region of the phz1 gene cluster and two genes, phzM and phzS, were knocked out of the P. aeruginosa strain M18 genome. The potential ability for high-yield PCA production in this triple-deleted mutant M18MSU1 was successfully realized by using statistical experimental designs. A 25–1 fractional factorial design was used to show that the three culture components of soybean meal, corn steep liquor and ethanol had the most significant effect on PCA production. Using a central composite design, the concentration of the three components was optimized. The maximum PCA production was predicted to be 4,725.1 mg/L. With the optimal medium containing soybean meal 74.25 g/L, corn steep liquor 13.01 g/L and ethanol 21.84 ml/L, a PCA production of 4,771.2 mg/L was obtained in the validation experiments, which was nearly twofold of that before optimization and tenfold of that in the wild-type strain. This non-scar triple-deleted mutant M18MSU1 may be a suitable strain for industrial production of this biologically synthesized fungicide due to its high PCA production, presumed safety, thermal adaptability and cost-effectiveness.  相似文献   

4.
An organic solvent-tolerant bacterium producing an organic solvent-stable protease was isolated from soil and identified as Pseudomonas aeruginosa strain K. Nutritional requirements for optimized protease production by this strain were investigated. Maximum protease activity was achieved with sorbitol as the sole carbon source, followed by starch and lactose at pH 7.0 and 37 °C. Dextrose, sucrose and glycerol greatly reduced the protease production. The best organic nitrogen source was casamino acid. Tryptone, soytone and yeast extract supported protease production while corn steep liquor and beef extract inhibited the protease activity. Significant protease production was observed with sodium nitrate as a sole nitrogen source however, ammonium nitrate completely inhibit it. More than 62% drop in production occurred in the presence of amino acids. Addition of metal ions such as K+, Mg2+ and Ca2+ maximized the enzyme production.  相似文献   

5.
Sequential optimization strategy based on statistical experimental designs was employed to enhance glucan production by Leuconostoc dextranicum NRRL B-1146 in flask culture. A two-level Plackett–Burman design was employed first where 11 variables were studied for their influence on glucan production. Sucrose, peptone and yeast extract were the most significant variables improving glucan production. A three-level Box–Behnken factorial design was employed for maximizing the glucan production. A mathematical model was developed to show the effects of each medium component and their combinatorial interactions on glucan production. The optimal medium composition for maximum glucan production was sucrose 5.95%, peptone 0.52% and yeast extract 2.9%. This composition predicted 1063 mg/l glucan, the experimentally found glucan was 1015 ± 4.5 mg/l that showed a good agreement with the predicted value. The purified glucan was homogenous and its structural characteristics investigated by FT-IR, 1H NMR and 13C NMR spectroscopic techniques showed that it contained α-(1  6) and α-(1  4) linkages.  相似文献   

6.
Multifunctional redox-active pyocyanin (PYC) produced by Pseudomonas aeruginosa has diverse biotechnological applications, but no efforts have been made to improve its yield. The yield obtained in initial study using Pseudomonas spp. MCC 3145 was 24.21 mg L−1 PYC in pigment production medium D; hence, optimization of the media components using statistical tools for more production of PYC was undertaken. Of the 11 medium constituents screened for PYC production using Plackett–Burman design (PBD), glycerol, peptone, and CuSO4 were recognized as the most significant variables. The optimal concentration of the variables for maximum PYC production was evaluated using a five-level three-factor central composite design (CCD). Optimal concentration of the three variables, glycerol, peptone and CuSO4 showed 313.94 ± 10.09 mg L−1 the PYC production, with an 18-fold increase. Fine structural details of PYC were verified by chromatographic and various spectroscopic analyses. In vitro bioactivity studies demonstrated significant antifungal activity of PYC against fungal phytopathogens and substantial cytostatic activity against four major cancer cell lines. Furthermore, PYC displayed nonspecific DNA intercalation, which may be the reason for proliferation arrest in cancer cells. Thus, the study rigorously improved PYC production through medium optimization and further demonstrated its agricultural and therapeutic applications.  相似文献   

7.
The acetohydroxamic acid synthesis reaction was studied using whole cells, cell-free extract and purified amidase from the strains of Pseudomonas aeruginosa L10 and AI3 entrapped in a reverse micelles system composed of cationic surfactant tetradecyltrimethyl ammonium bromide. The specific activity of amidase, yield of synthesis and storage stability were determined for the reversed micellar system as well as for free amidase in conventional buffer medium. The results have revealed that amidase solutions in the reverse micelles system exhibited a substantial increase in specific activity, yield of synthesis and storage stability. In fact, whole cells from P. aeruginosa L10 and AI3 in reverse micellar medium revealed an increase in specific activity of 9.3- and 13.9-fold, respectively, relatively to the buffer medium. Yields of approximately 92% and 66% of acetohydroxamic acid synthesis were obtained for encapsulated cell free extract from P. aeruginosa L10 and AI3, respectively. On the other hand, the half-life values obtained for the amidase solutions encapsulated in reverse micelles were overall higher than that obtained for the free amidase solution in buffer medium. Half-life values obtained for encapsulated purified amidase from P. aeruginosa strain L10 and encapsulated cell-free extract from P. aeruginosa strain AI3 were of 17.0 and 26.0 days, respectively. As far as the different sources biocatalyst are concerned, the data presented in this work has revealed that the best results, in both storage stability and biocatalytic efficiency, were obtained when encapsulated cell-free extract from P. aeruginosa strain AI3 at w0 of 10 were used. Conformational changes occurring upon encapsulation of both strains enzymes in reverse micelles of TTAB in heptane/octanol were additionally identified by FTIR spectroscopy which clarified the biocatalysts performances.  相似文献   

8.
《Process Biochemistry》2004,39(9):1057-1062
Optimization of the fermentation medium for maximization of actinorhodin production by Streptomyces coelicolor A3(2) was carried out. Response surface methodology (RSM) was applied to optimize the medium constituents. A 24 full-factorial central composite design (CCD) was chosen to explain the combined effects of the four medium constituents, viz. sucrose, glucose, yeast extract (YE) and peptone, and to design a minimum number of experiments. The P-values of the coefficients for linear, quadratic and cross-product effect of sucrose and glucose concentration were <0.0001, suggesting that these were critical variables having the greatest effect on the production of actinorhodin in the complex medium. The optimized medium consisting of 339 g/l sucrose, 1 g/l glucose, 1.95 g/l YE and 2.72 g/l peptone predicted 195 mg/l of actinorhodin which was 32% higher than that of the unoptimized medium. The amounts of glucose, YE and peptone required were also reduced with RSM.  相似文献   

9.
The effect of the components of the nutrient medium on growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. The production of proteinase was found to be dependent on the composition of the nutrient medium and showed two peaks, at the 28th and 48th h of growth. The concentrations of the main components of the nutrient medium (peptone and inorganic phosphate) optimal for the biosyntheis of subtilisin-like serine proteinase at the 28th and 48th h of growth were determined in factorial experiments. Complex organic substances, casein at concentrations of 0.5–1%, gelatin at concentrations of 0.5–1%, and yeast extract at a concentration of 0.5%, stimulated the production of subtilisin-like serine proteinase by the recombinant strain. The study of the sporulation dynamics in this strain showed that the proteinase peaks at the 28th and 48th h of growth correspond, respectively, to the initial stage of sporulation and to the terminal stages of endospore formation (V–VII stages of sporulation).  相似文献   

10.
Bifidobacterium pseudocatenulatum G4, a wild strain isolated from infant stools that has previously exhibited probiotic characteristics, was used in this study. The aim of this research was to improve the growth potential of this strain in milk-based medium. An initial screening study using a 23 full factorial design was carried out to identify the impact on biomass production of the various components of the medium which were skim milk, yeast extract, and glucose. Statistical analysis suggested that yeast extract had a significant positive effect on viable cell count whereas glucose had a negative effect. Response surface methodology (RSM) was then applied to optimize the use of skim milk and yeast extract. A quadratic model was derived using a 32 face-centered central composite design to represent cell mass as a function of the two variables. The optimized medium composition was found to be 2.8% skim milk and 2.2% yeast extract, w/v. The optimized medium allowed a maximum biomass of 9.129 log10 cfu/mL, 3.329 log units higher than that achieved with 10% skim milk, which is the amount commonly used. The application of RSM resulted in an improvement in the biomass production of this strain in a more cost-effective milk medium, in which skim milk use was reduced by 71.8%.  相似文献   

11.
This study investigated the enhanced crude oil biodegradability of Pseudomonas aeruginosa ZJU, a strain isolated from the Shengli oil field (Shandong Province, China), after preservation in a crude oil-containing medium. This strain previously could not emulsify crude oil during preservation, but after switching to a subculture in a glycerol medium for passages, it expressed increased biodegradation of crude oil within the first six passages and this biodegradation sharply decreased after the seventh passage. It is noticed that about 70% of crude oil was degraded by Pseudomonas aeruginosa ZJU in the third passage while this biodegradability was less than 19% in the seventh passage. Similar to the trend on biodegradation of crude oil, rhamnolipid production increased during the first six passages and later sharply decreased. Thus, it seems that biodegradability was proportionally related to the rhamnolipid productivity in each passage in glycerol medium. Interestingly, both rhamnolipid production and crude oil biodegradation were maintained if this strain was continuously preserved in crude oil and could be retrieved if this strain was then re-preserved in crude oil-containing medium for seven days after the significant decline in these two characteristics previously observed in the seventh passage.  相似文献   

12.
An immune-enhancing strain, Lactobacillus plantarum Pi06, isolated from a healthy infant was used for biomass production following optimization of the medium in shake-flask culture. Preliminary studies showed that commercial MRS medium and cultivation under static conditions generated higher biomass production than four other tested media with or without a shaking condition. The selected medium composition, consisting of glucose, yeast extract, soy peptone, ammonium citrate, and corn steep liquor, was further optimized using a systematic method that integrated the Taguchi array design and the Box-Behnken method. The response effects of these factors were first investigated using Taguchi design under an L 16 (45) array. The suggested medium composition, derived from Statistica 7.1 using the Taguchi design, was applied to cultivate cells and a biomass of 7.16 g dry cell weight (DCW)/L was obtained. Response surface methodology based on the Box-Behnken method for the three response variables of glucose, yeast extract, and corn steep liquor was then used to further increase the biomass level to 8.94 g DCW/L. The resulting optimum medium consisted of 35 g/L glucose, 35 g/L yeast extract, and 40 mL/L corn steep liquor. Compared with the initial medium, the biomass yield was improved from 4.31 to 8.94 g DCW/L, an enhancement of approximately 107%.  相似文献   

13.
Rhamnolipids (RLs) are heterogeneous glycolipid molecules that are composed of one or two l-rhamnose sugars and one or two β-hydroxy fatty acids, which can vary in their length and branch size. They are biosurfactants, predominantly produced by Pseudomonas aeruginosa and are important virulence factors, playing a major role in P. aeruginosa pathogenesis. Therefore, a fast, accurate and high-throughput method of detecting such molecules is of real importance. Here, we illustrate the ability to detect RL-producing P. aeruginosa strains with high sensitivity, based on an assay involving phospholipid vesicles encapsulated with a fluorescent dye. This vesicle-lysis assay is confirmed to be solely sensitive to RLs. We illustrate a half maximum concentration for vesicle lysis (EC50) of 40 μM (23.2 μg/mL) using pure commercial RLs and highlight the ability to semi-quantify RLs directly from the culture supernatant, requiring no extra extraction or processing steps or technical expertise. We show that this method is consistent with results from thin-layer chromatography detection and dry weight analysis of RLs but find that the widely used orcinol colorimetric test significantly underestimated RL quantity. Finally, we apply this methodology to compare RL production among strains isolated from either chronic or acute infections. We confirm a positive association between RL production and acute infection isolates (p?=?0.0008), highlighting the role of RLs in certain infections.  相似文献   

14.
Fibrolytic enzyme production by Aspergillus japonicus C03 was optimized in a medium containing agro-industrial wastes, supplemented with peptone and yeast extract. A 23 full factorial composite and response surface methodology were used to design the experiments and analysis of results. Tropical forages were hydrolyzed by A. japonicus C03 enzymatic extract in different levels, and they were also tested as enzymatic substrate. Optimal production to xylanase was obtained with soybean bran added to crushed corncob (1:3), 0.01% peptone, and 0.2% yeast extract, initial pH 5.0, at 30 °C under static conditions for 5 days of incubation. Optimal endoglucanase production was obtained with wheat bran added to sugarcane bagasse (3:1), 0.01% peptone, and 0.2% yeast extract, initial pH 4.0, at 30 °C, for 6 days, under static conditions. Addition of nitrogen sources as ammonium salts either inhibited or did not influence xylanase production. This enzymatic extract had a good result on tropical forage hydrolyzes and showed better performance in the Brachiaria genera, due to their low cell wall lignin quantity. These results represent a step forward toward the use of low-cost agricultural residues for the production of valuable enzymes with potential application in animal feed, using fermentation conditions.  相似文献   

15.
In the present work, statistical experimental methodology was used to enhance the production of amidase from Rhodococcus erythropolis MTCC 1526. R. erythropolis MTCC 1526 was selected through screening of seven strains of Rhodococcus species. The Placket–Burman screening experiments suggested that sorbitol as carbon source, yeast extract and meat peptone as nitrogen sources, and acetamide as amidase inducer are the most influential media components. The concentrations of these four media components were optimised using a face-centred design of response surface methodology (RSM). The optimum medium composition for amidase production was found to contain sorbitol (5 g/L), yeast extract (4 g/L), meat peptone (2.5 g/L), and acetamide (12.25 mM). Amidase activities before and after optimisation were 157.85 units/g dry cells and 1,086.57 units/g dry cells, respectively. Thus, use of RSM increased production of amidase from R. erythropolis MTCC 1526 by 6.88-fold.  相似文献   

16.
Ethanol-sensitive mutants of Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
Saccharomyces cerevisiae mutants unable to grow at ethanol concentrations at which the wild type strain S288C does grow, have been isolated. Some of them show additional phenotypic alterations in colony size, temperature sensitivity and viability in ethanol, which cosegregate with the growth sensitivity in ethanol. 21 selected monogenic ethanol-sensitive mutants define 20 complementation groups, denominated ETA1 to ETA20, which indicates that there is a high number of genes involved in the ethanol tolerance/sensitivity mechanism.Out of 21 selected monogenic mutants, 20 are not altered in the glycolytic pathway since, when maintained in glucosesupplemented medium, they can produce as much ethanol as the wild type and at about the same velocity. Nor do any of the mutants seem to be altered in the lipid biosynthetic pathway since, whether grown in the absence or in the presence of ethanol, their concentration of fatty acids and ergosterol is similar to that of the wild type under the same conditions. Therefore growth sensitivity to ethanol does not seem necessarily to be related to carbohydrate or lipid metabolism.Non-common abbreviations YP yeast extract peptone medium - YPD yeast extract peptone dextrose agar or medium - YPG yeast extract peptone glycerol agar - YPDE yeast extract peptone dextrose ethanol agar or medium - SD yeast nitrogen base dextrose agar - SPO yeast extract potassium acetate glucose agar - PD parental ditype - NPD non-parental ditype - TT tetratype  相似文献   

17.
Successful microbial-mediated remediation requires transformationpathways that maximize metabolism and minimize the accumulation of toxic products. Pseudomonas aeruginosa strain MX, isolated from munitions-contaminated soil, degraded 100 mg TNT L-1 in culture medium within 10 h under aerobic conditions. The major TNT products were 2-amino-4,6-dinitrotoluene (2ADNT, primarily in the supernatant) and 2,2'-azoxytoluene (2,2'AZT, primarily in the cell fraction), which accumulated as major products via the intermediate2-hydroxylamino-4,6-dinitrotoluene (2HADNT). The 2HADNT and2,2'AZT were relatively less toxic to the strain than TNT and 2ADNT. Aminodinitrotoluene (ADNT) production increased when yeast extract was added to the medium. While TNT transformation rate was not affected by pH, more HADNTs accumulated at pH 5.0 than at pH 8.0 and AZTs did not accumulate at the lower pH. The appearance of 2,6-diamino-4-nitrotoluene (2,6DANT) and 2,4-diamino-6-nitrotoluene (2,4DANT); dinitrotoluene (DNT) and nitrotoluene (NT); and 3,5-dinitroaniline (3,5DNA) indicated various routes of TNT metabolism and detoxification by P. aeruginosa strain MX.  相似文献   

18.
This work investigated the optimisation of the fermented culture medium for maximisation of rhamnolipids production produced byPseudomonas aeruginosa 181 using Response Surface Modeling (RSM). A two full factorial central composite experimental design was used in the design of experiments and in the analysis of results. This procedure limited the number of actual experiments performed while allowing for possible interactions between the parameters (pH, stirring rate, casamino acid concentration and incubation period) on the production of biosurfactants. Production carried out at larger volumes of one litre using Bioreactor under RSM-optimised conditions yielded 3.61 g l?1 of products after purification by acid precipitation.  相似文献   

19.
Microbial fermentation under anaerobic and microaerobic conditions has been used for the production of 1,3-propanediol (1,3-PD), a monomer used to produce polymers such as polytrimethylene terephthalate. In this study, we screened microorganisms using the high throughput screening method and isolated the Klebsiella pneumoniae AJ4 strain, which is able to produce 1,3-PD under aerobic conditions. To obtain the maximum 1,3-PD concentration from glycerol, the response surface methodology based on a central composite design was chosen to show the statistical significance of the effects of glycerol, peptone, and (NH4)2SO4 on 1,3-PD production by K. pneumoniae AJ4. The optimal culture medium factors for achieving maximum concentrations of 1,3-PD included glycerol, 108.5 g/L; peptone, 2.72 g/L; and (NH4)2SO4, 4.38 g/L. Under this optimum condition, the maximum concentration of 1,3-PD, 54.76 g/L, was predicted. A concentration of about 52.59 g/L 1,3-PD was obtained using the optimized medium during 26-h batch fermentation, a finding that agreed well with the predicted value.  相似文献   

20.
Yeasts have been studied because of their production of a pigment known as carotenoid with potential application in food and feed supplements. A carotenoid‐producing yeast was isolated from the larvae of Pieris rapae, named HP. The strain HP was identified as Rhodotorula mucilaginosa classified by its carbohydrate fermentation pattern and physiological tests. Rhodotorula mucilaginosa HP produces several exogenous enzymes: alkaline phosphatase, esterase, leucine arylamidase, valine arylamidase, acid phosphatase and β‐glucosidase. Using response surface methodology, selected medium components (yeast extract, malt extract, peptone, glucose) were tested to find the optimum conditions for carotenoid production and the growth of R. mucilaginosa HP. Central composite design was used to control the concentrations of medium components. Peptone and glucose had the largest effects on carotenoid production and cell growth of R. mucilaginosa HP, respectively. The estimated optimal growth conditions of R. mucilaginosa HP were: yeast extract 3.23%, malt extract 2.84%, peptone 6.99% and glucose 12.86%. The estimated optimal conditions for carotenoid production were: yeast extract 2.17%, malt extract 2.11%, peptone 5.79% and glucose 12.46%. These results will assist in the formulation of an appropriate culture medium for optimal carotenoid production of R. mucilaginosa HP for commercial use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号