首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat worldwide. It is essential to identify new genes for effective resistance against the disease. Durum wheat PI 480148, originally from Ethiopia, was resistant in all seedling tests with several predominant Pst races in the US under controlled greenhouse conditions and at multiple locations subject to natural infection for several years. To map the resistance gene(s) and to transfer it to common wheat, a cross was made between PI 480148 and susceptible common wheat genotype Avocet S (AvS). Resistant F3 plants with 42 chromosomes were selected cytologically and by testing with Pst race PST-100. A total of 157 F4 plants from a single F3 plant with 2n = 42 tested with PST-100 segregated in a 3 resistant: 1 susceptible ratio, indicating that a single dominant gene from PI 480148 conferred resistance. Using the F3:4 population and the resistance gene-analog polymorphism (RGAP) and simple sequence repeat (SSR) markers, the gene was mapped to the long arm of chromosome 2B. SSR marker Xwmc441 and RGAP marker XLRRrev/NLRRrev 350 flanked the resistance gene by 5.6 and 2.7 cM, respectively. The effective resistance of the gene to an Australian Pst isolate virulent to Yr5, which is also located on 2BL and confers resistance to all US Pst races, together with an allelism test of the two genes, indicated that the gene from PI 480148 is different from Yr5 and should be a new and useful gene for resistance to stripe rust. Resistant common wheat lines with plant types similar to AvS were selected for use in breeding programs.  相似文献   

2.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases worldwide and is also an important disease in China. The wheat translocation line H9014-121-5-5-9 was originally developed from interspecific hybridization between wheat (Triticum aestivum L.) line 7182 and Psathyrostachys huashanica Keng. This translocation line showed resistance to predominant stripe rust races in China when it was tested with nine races of Pst. To determine the inheritance and map the resistance gene, segregating populations were developed from the cross between H9014-121-5-5-9 and the susceptible cultivar Mingxian 169. The seedlings of the F1, F2, and F2:3 generations were tested with race CYR31. The results showed that the resistance in H9014-121-5-5-9 was conferred by a single dominant gene. Bulked segregant analysis and simple sequence repeat (SSR) markers were used to identify polymorphic markers associated with the resistance gene locus. Seven polymorphic SSR markers were linked to the resistance gene. A linkage map was constructed according to the genotypes of the seven SSR markers and the resistance gene. Based on the SSR marker positions on the wheat chromosome, the resistance gene was assigned on chromosome 1AL, temporarily designated YrHA. Based on chromosomal location, reaction patterns and pedigree analysis, YrHA should be a novel resistance gene to stripe rust. The molecular markers of the new resistance gene in H9014-121-5-5-9 could be useful for marker-assisted selection in breeding programs against stripe rust.  相似文献   

3.
Wheat stripe (yellow) rust, caused by Puccinia striiformis West. f. sp. tritici (Pst), is one of the most destructive diseases in many wheat-growing countries, especially in China, the largest stripe rust epidemic area in the world. Growing the resistant cultivars is an effective, economic and environmentally friendly way to control this disease. Wheat cultivar Zhengmai 7698 has shown a high-level resistance to wheat stripe rust. To elucidate its genetic characteristics and location of the resistance gene, Zhengmai 7698 was crossed with susceptible variety Taichung 29 to produce \(\hbox {F}_{{1}}\), \(\hbox {F}_{{2}}\) and \(\hbox {BC}_{{1}}\) progeny generations. The genetic analysis showed that the stripe rust resistance in Zhengmai 7698 to Pst predominant race CYR32 was controlled by a single-dominant gene, namedYrZM. Bulked segregant analysis and simple sequence repeat (SSR) markers were used to map the gene. Four SSR markers, Xbarc198, Xwmc179, Xwmc786 and Xwmc398 on chromosome 6BL were polymorphic between the parents and resistance, and susceptible bulks. A linkage genetic map was constructed using 212 \(\hbox {F}_{{2}}\) plants in the sequential order of Xwmc398, Xwmc179, YrZM, Xbarc198, Xwmc786. As this gene is effective against predominant race CYR32, it is useful in combination with other resistance genes for developing new wheat cultivars with resistance to stripe rust.  相似文献   

4.
Stripe rust, caused by Puccinia striiformis f.sp. tritici (Pst), is one of the most widespread and destructive diseases of wheat worldwide. Resistance breeding is constantly pursued for decades to tackle the variations of prevalent Pst races. Zhongliang 12 has strong resistance to abiotic stresses, wide adaptability, higher resistance to stripe rust and excellent biological characteristics. To identify the resistance gene(s) against stripe rust, Zhongliang 12 was crossed with stripe rust susceptible genotype Mingxian 169, and F1, F2, F2 : 3 and BC1 progenies were tested with Chinese Pst race CYR30 and CYR31 in seedling stage in greenhouse. Zhongliang 12 possessed different dominant genes for resistance to each race. Linkage maps were constructed with four simple sequence repeats (SSRs) markers, Xwmc695, Xcfd20, Xbarc121 and Xbarc49, for the gene on wheat chromosome 7AL conferring resistance to CYR30 (temporarily designated as Yrzhong12‐1) with genetic distance ranging from 3.1 to 10.8 cM and four SSR markers, Xpsp3003, Xcfd2129, Xwmc673 and Xwmc51, for the gene on wheat chromosome 1AL conferring resistance to CYR31 (temporarily designated as Yrzhong12‐2) with genetic distance ranging from 3.9 cM to 9.3 cM. The molecular markers closely linked to each gene should be useful in marker‐assisted selection in breeding programmes for against stripe rust.  相似文献   

5.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred means of control of the disease. The winter wheat cultivar Xiaoyan 54 has high-temperature resistance to stripe rust. To identify genes for stripe rust resistance, Xiaoyan 54 was crossed with Mingxian 169, a winter wheat genotype susceptible to all Chinese races of the pathogen. Seedlings and adult plants of the parents and F1, F2, F3 and F4 progeny were tested with Chinese race CYR32 under controlled greenhouse conditions and in the field. Xiaoyan 54 has two recessive resistance genes, designated as Yrxy1 and Yrxy2, conferring high-temperature resistance. Simple sequence repeat (SSR) primers were used to identify molecular markers flanking Yrxy2 using 181 plants from one segregating F3 line. A total of nine markers, two of which flanked the locus at genetic distances of 4.0 and 6.4 cM on the long arm of chromosome 2A were identified. Resistance gene analog polymorphism (RGAP) and SSR techniques were used to identify molecular markers linked to Yrxy1. A linkage group of nine RGAP and two SSR markers was constructed for Yrxy1 using 177 plants of another segregating F3 line. Two RGAP markers were closely linked to the locus with genetic distances of 2.3 and 3.5 cM. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers M8 and M9 and the two SSR markers located Yrxy1 on the short arm of chromosome 7A. The SSR markers Xbarc49 and Xwmc422 were 15.8 and 26.1 cM, respectively, from the gene. The closely linked molecular markers should be useful for incorporating the resistance genes into commercial cultivars and combining them with other genes for stripe rust resistance.  相似文献   

6.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. The best strategy to control stripe rust is to grow resistant cultivars. One such cultivar resistant to most races in North America is ‘IDO377s’. To study the genetics of its resistance this spring wheat cultivar was crossed with ‘Avocet Susceptible’ (AvS). Seedlings of the parents, F2 plants, and F3 lines were tested under controlled greenhouse conditions with races PST-43 and PST-45 of P. striiformis f. sp. tritici. IDO377s carries a single dominant gene for resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the resistance gene. A total of ten markers were identified, two of which flanked the locus at 4.4 and 5.5 cM. These flanking RGAP markers were located on chromosome 2B with nulli-tetrasomic lines of ‘Chinese Spring’. Their presence in the ditelosomic 2BL line localized them to the long arm. The chromosomal location of the resistance gene was further confirmed with two 2BL-specific SSR markers and a sequence tagged site (STS) marker previously mapped to 2BL. Based on the chromosomal location, reactions to various races of the pathogen and tests of allelism, the IDO377s gene is different from all previously designated genes for stripe rust resistance, and is therefore designated Yr43. A total of 108 wheat breeding lines and cultivars with IDO377s or related cultivars in their parentage were assayed to assess the status of the closest flanking markers and to select lines carrying Yr43. The results showed that the flanking markers were reliable for assisting selection of breeding lines carrying the resistance gene. A linked stripe rust resistance gene, previously identified as YrZak, in cultivar Zak was designated Yr44.  相似文献   

7.
Stripe rust, a major disease in areas where cool temperatures prevail, can strongly influence grain yield. To control this disease, breeders have incorporated seedling resistance genes from a variety of sources outside the primary wheat gene pool. The wheat line C51, introduced from the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria, confers resistance to all races of Puccinia striiformis f. sp. tritici (PST) in China. To map the resistant gene(s) against stripe rust in wheat line C51, 212 F 8 recombinant inbred lines (RILs) derived from the cross X440 × C51 were inoculated with Chinese PST race CYR33 (Chinese yellow rust, CYR) in the greenhouse. The result showed that C51 carried a single dominant gene for resistance (designated YrC51) to CYR33. Simple sequence repeat (SSR) and resistance gene-analogue polymorphism (RGAP) markers that were polymorphic between the parents were used for genotyping the 212 F 8 RILs. YrC51was closely linked to two SSR loci on chromosome 2BS with genetic distances of 5.1 cM (Xgwm429) and 7.2 cM (Xwmc770), and to three RGAP markers C51R1 (XLRR For / NLRR For), C51R2 (CLRR Rev / Cre3LR-F) and C51R3 (Pto kin4/ NLRR-INV2) with genetic distances of 5.6, 1.6 and 9.2 cM, respectively. These RGAP-linked markers were then converted into STS markers. Among them, one STS marker, C51STS-4, was located at a genetic distance of 1.4 cM to YrC51 and was closely associated with resistance when validated in several populations derived from crosses between C51 and Sichuan cultivars. The results indicated that C51STS-4 can be used for marker assisted selection (MAS) and would facilitate the pyramiding of YrC51 with other genes for stripe rust resistance.  相似文献   

8.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease of wheat worldwide. Host resistance is the best way to control the disease. Genetic analysis of F2 and F2:3 populations from an Avocet S/Jimai 22 cross indicated that stripe rust resistance in Jimai 22 was conferred by a single dominant gene, tentatively designated YrJ22. A total of 377 F2 plants and 127 F2:3 lines were tested with Chinese Pst race CYR32 and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. A linkage map was constructed with five SSR and two SNP markers. Xwmc658 and IWA1348 flanked YrJ22 at genetic distances of 1.0 and 7.3 cM, proximally and distally, respectively. The chromosomal location was confirmed using Chinese Spring nulli-tetrasomic, ditelosomics and deletion lines. Seedling reactions to 21 Pst races demonstrated differences in specificity between YrJ22 and other resistance genes on chromosome 2AL, indicating that YrJ22 is likely to be a new wheat stripe rust resistance gene.  相似文献   

9.

Wild emmer wheat, Triticum dicoccoides, the progenitor of modern tetraploid and hexaploid wheats, is an important resource for new variability for disease resistance genes. T. dicoccoides accession pau4656 showed resistance against prevailing leaf rust and stripe rust races in India and was used for developing stable introgression lines (IL) in T. durum cv Bijaga yellow and named as IL pau16068. F5 Recombinant inbred lines (F5 RILs) were developed by crossing IL pau16068 with T. durum cultivar PBW114 and RIL population was screened against highly virulent Pt and Pst pathotypes at the seedling and adult plant stages. Inheritance analyses revealed that population segregated for two genes for all stage resistance (ASR) against leaf rust, one ASR gene against stripe rust and three adult plant resistance (APR) genes for stripe rust resistance. For mapping these genes a set of 483 SSR marker was used for bulked segregant analysis. The markers showing diagnostic polymorphism in the resistant and susceptible bulks were amplified on all RILs. Single marker analysis placed all stage leaf rust resistance genes on chromosome 6A and 2A linked to the SSR markers Xwmc256 and Wpaus268, respectively. Likewise one all stage stripe rust resistance gene were mapped on long arm of chromosome 6A linked to markers 6AL-5833645 and 6AL-5824654 and two APR genes mapped on chromosomes 2A and 2B close to the SSR marker Wpaus268 and Xbarc70, respectively. The current study identified valuable leaf rust and stripe rust resistance genes effective against multiple rust races for deployment in the wheat breeding programme.

  相似文献   

10.

Key message

We report a new stripe rust resistance gene on chromosome 7AS in wheat and molecular markers useful for transferring it to other wheat genotypes.

Abstract

Several new races of the stripe rust pathogen have established throughout the wheat growing regions of China in recent years. These new races are virulent to most of the designated seedling resistance genes limiting the resistance sources. It is necessary to identify new genes for diversification and for pyramiding different resistance genes in order to achieve more durable resistance. We report here the identification of a new resistance gene, designated as Yr61, in Chinese wheat cultivar Pindong 34. A mapping population of 208 F2 plants and 128 derived F2:3 lines in a cross between Mingxian 169 and Pindong 34 was evaluated for seedling stripe rust response. A genetic map consisting of eight resistance gene analog polymorphism (RGAP), two sequence-tagged site (STS) and four simple sequence repeat (SSR) markers was constructed. Yr61 was located on the short arm of chromosome 7A and flanked by RGAP markers Xwgp5467 and Xwgp5765 about 1.9 and 3.9 cM in distance, which were successfully converted into STS markers STS5467 and STS5765b, respectively. The flanking STS markers could be used for marker-assisted selection of Yr61 in breeding programs.  相似文献   

11.
Ren Y  Li SR  Li J  Zhou Q  DU XY  Li TJ  Yang WY  Zheng YL 《遗传》2011,33(11):1263-1270
小麦条锈病是影响杂交小麦普及推广的重要因素。文章利用基因推导法和SSR分子标记技术,研究了温光型两系杂交小麦恢复系MR168的抗条锈性遗传规律及其控制基因染色体位置。结果表明,MR168对CY29、CY31、CY32、CY33等条锈菌生理小种表现高抗至免疫;对SY95-71/MR168杂交组合的正反交F1、BC1、F2和F3群体分单株接种鉴定显示,MR168对CY32号小种的抗性受1对显性核基因控制,该抗病基因来源于春小麦品种辽春10号。利用集群分离分析法(Bulked segregant analysis,BSA)和简单重复序列(Simple sequence repeat,SSR)分子标记分析抗病亲本MR168、感病亲本SY95-71及183个F2代单株,发现了与MR168抗条锈病基因连锁的5个微卫星标记Xgwm273、Xgwm18、Xbarc187、Xwmc269、Xwmc406,并将该基因初步定位在1BS着丝粒附近,暂命名为YrMR168;构建了包含YrMR168的SSR标记遗传图谱,距离YrMR168最近的两个微卫星位点是Xgwm18和Xbarc187,遗传距离分别为1.9 cM和2.4 cM,这两个微卫星标记可用于杂交小麦抗条锈病分子标记辅助育种。  相似文献   

12.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Resistance is the best approach to control the disease. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be race non-specific and durable. However, genes conferring high-levels of HTAP resistance are limited in number and new genes are urgently needed for breeding programs to develop cultivars with durable high-level resistance to stripe rust. Spring wheat germplasm PI 183527 showed a high-level of HTAP resistance against stripe rust in our germplasm evaluations over several years. To elucidate the genetic basis of resistance, we crossed PI 183527 and susceptible wheat line Avocet S. Adult plants of parents, F(1), F(2) and F(2:3) progeny were tested with selected races under the controlled greenhouse conditions and in fields under natural infection. PI 183527 has a single dominant gene conferring HTAP resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) markers in combination with bulked segregant analysis (BSA) were used to identify markers linked to the resistance gene. A linkage map consisting of 4 RGAP and 7 SSR markers was constructed for the resistance gene using data from 175 F(2) plants and their derived F(2:3) lines. Amplification of nulli-tetrasomic, ditelosomic and deletion lines of Chinese Spring with three RGAP markers mapped the gene to the distal region (0.86-1.0) of chromosome 7BL. The molecular map spanned a genetic distance of 27.3?cM, and the resistance gene was narrowed to a 2.3-cM interval flanked by markers Xbarc182 and Xwgp5258. The polymorphism rates of the flanking markers in 74 wheat lines were 74 and 30?%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 82?% of tested genotypes. To determine the genetic relationship between this resistance gene and Yr39, a gene also on 7BL conferring HTAP resistance in Alpowa, a cross was made between PI 183527 and Alpowa. F(2) segregation indicated that the genes were 36.5?±?6.75?cM apart. The gene in PI 183527 was therefore designed as Yr52. This new gene and flanking markers should be useful in developing wheat cultivars with high-level and possible durable resistance to stripe rust.  相似文献   

13.
刘方慧  牛永春  邓晖  檀根甲 《遗传学报》2007,34(12):1123-1130
小麦农家品种赤壳(苏1900)对当前我国小麦条锈菌(Puccinia striiformis Westend.f.sp.tritici)多个流行小种均有较好抗性。遗传分析表明,该品种对条中32号小种的抗性是由一对显性基因控制。本文采用分离群体分析法(bulked segregant analysis,BSA)和微卫星多态性分析方法,对该基因进行了分子标记和定位研究。用Taichung29×赤壳的F2代分离群体建立抗、感DNA池,共筛选了400多对SSR引物,发现5个标记Xwmc44、Xgwm259、Xwmc367、Xcfa2292、Xbarc80在抗、感DNA池间与在抗、感亲本间同样具有多态性,它们均位于1BL染色体臂上。经用具有140株抗病株、60株感病株共200株植株的F2代分离群体进行的遗传连锁性检测,上述5个标记均与目的基因相连锁,遗传距离分别为8.3cM、9.1cM、17.2cM、20.6cM和31.6cM。用全套21个中国春缺-四体材料进行的检测进一步证实了这5个SSR标记均位于小麦1B染色体上。综合上述结果,将赤壳中的主效抗条锈病基因YrChk定位在1BL染色体臂上。与以前已定位于1B染色体上的抗条锈病基因的比较研究表明,YrChk基因可能是一个新的抗条锈病基因。小麦农家品种中抗病基因资源的发掘和利用将有助于提高我国小麦生产品种中的抗病基因丰富度,有助于改善长期以来小麦生产品种中抗病基因单一化的局面。  相似文献   

14.
Z X Shi  X M Chen  R F Line  H Leung  C R Wellings 《Génome》2001,44(4):509-516
The Yr9 gene, which confers resistance to stripe rust caused by Puccinia striiformis f.sp. tritici (P. s. tritici) and originated from rye, is present in many wheat cultivars. To develop molecular markers for Yr9, a Yr9 near-isogenic line, near-isogenic lines with nine other Yr genes, and the recurrent wheat parent 'Avocet Susceptible' were evaluated for resistance in the seedling stage to North American P s. tritici races under controlled temperature in the greenhouse. The resistance gene analog polymorphism (RGAP) technique was used to identify molecular markers for Yr9. The BC7:F, and BC7:F3 progeny, which were developed by backcrossing the Yr9 donor wheat cultivar Clement with 'Avocet Susceptible', were evaluated for resistance to stripe rust races. Genomic DNA was extracted from 203 BC7:F2 plants and used for cosegregation analysis. Of 16 RGAP markers confirmed by cosegregation analysis, 4 were coincident with Yr9 and 12 were closely linked to Yr9 with a genetic distance ranging from 1 to 18 cM. Analyses of nullitetrasomic 'Chinese Spring' lines with the codominant RGAP marker Xwgp13 confirmed that the markers and Yr9 were located on chromosome 1B. Six wheat cultivars reported to have 1B/1R wheat-rye translocations and, presumably, Yr9, and two rye cultivars were inoculated with four races of P. s. tritici and tested with 9 of the 16 RGAP markers. Results of these tests indicate that 'Clement', 'Aurora', 'Lovrin 10', 'Lovrin 13', and 'Riebesel 47/51' have Yr9 and that 'Weique' does not have Yr9. The genetic information and molecular markers obtained from this study should be useful in cloning Yr9, in identifying germplasm that may have Yr9, and in using marker-assisted selection for combining Yr9 with other stripe rust resistance genes.  相似文献   

15.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Growing resistant cultivars is the most effective approach to control the disease, but only a few genes confer effective all-stage resistance against the current populations of the pathogen worldwide. It is urgent to identify new genes for diversifying sources of resistance genes and for pyramiding genes for different types of resistance in order to achieve high levels of durable resistance for sustainable control of stripe rust. The common spring wheat genotype ‘PI 181434’, originally from Afghanistan, was resistant in all greenhouse and field tests in our previous studies. To identify the resistance gene(s) PI 181434 was crossed with susceptible genotype ‘Avocet Susceptible’. Adult plants of 103 F2 progeny were tested in the field under the natural infection of P. striiformis f. sp. tritici. Seedlings of the parents, F2 and F3 were tested with races PST-100 and PST-127 of the pathogen under controlled greenhouse conditions. The genetic study showed that PI 181434 has a single dominant gene conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the gene. A linkage map of 8 RGAP and 2 SSR markers was constructed for the gene using data from the 103 F2 plants and their derived F3 lines tested in the greenhouse. Amplification of the complete set of nulli-tetrasomic lines and selected ditelosomic lines of Chinese Spring with an RGAP marker and the two SSR markers mapped the gene on the long arm of chromosome 3D. Because it is the first gene for stripe rust resistance mapped on chromosome 3DL and different from all previously named Yr genes, the gene in PI 181434 was designated Yr45. Polymorphism rates of the two closest flanking markers, Xwgp115 and Xwgp118, in 45 wheat genotypes were 73.3 and 82.2%, respectively. Single nucleotide polymorphisms (SNPs) were identified in the eight wheat genotypes sharing both flanking markers. The RGAP markers and potential SNP markers should be useful in incorporating the gene into wheat cultivars and in pyramiding it with other genes for durable resistance.  相似文献   

16.
The gene Yr26 confers resistance to all races of Puccinia striiformis f. sp. tritici (PST), the casual pathogen of wheat stripe rust in China. Here, we report development of a molecular marker closely linked to Yr26 using a resistance gene-analog polymorphism (RGAP) technique. A total of 787 F2 plants and 165 F3 lines derived from the cross Chuanmai 42/Taichung 29 were used for linkage analysis. Eighteen near-isogenic lines (NILs) and 18 Chinese wheat cultivars and advanced lines with different genes for stripe rust resistance were employed for the validation of STS markers. A total of 1,711 RGAP primer combinations were used to test the parents and resistant and susceptible bulks. Five polymorphic RGAP markers were used for genotyping all F2 plants. Linkage analysis showed that the five RGAP markers were closely linked to Yr26 with genetic distances ranging from 0.5 to 2.9 cM. These markers were then converted into STS markers, one, CYS-5, of which was located 0.5 cM to Yr26 and was closely associated with the resistance gene when validated over 18 NILs and 18 Chinese wheat cultivars and lines. The results indicated that CYS-5 can be used in marker-assisted selection targeted at pyramiding Yr26 and other genes for stripe rust resistance.  相似文献   

17.
Leaf rust, caused by Puccinia triticina (Pt), and stripe rust, caused by P. striiformis f. sp. tritici (Pst), are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum) landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ) and one race of Pst (PSTv-37) frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum.  相似文献   

18.
The biotrophic parasitic fungus Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, a devastating disease of wheat, endangering global food security. Because the Pst population is highly dynamic, it is difficult to develop wheat cultivars with durable and highly effective resistance. Simple sequence repeats (SSRs) are widely used as molecular markers in genetic studies to determine population structure in many organisms. However, only a small number of SSR markers have been developed for Pst. In this study, a total of 4,792 SSR loci were identified using the whole genome sequences of six isolates from different regions of the world, with a marker density of one SSR per 22.95 kb. The majority of the SSRs were di- and tri-nucleotide repeats. A database containing 1,113 SSR markers were established. Through in silico comparison, the previously reported SSR markers were found mainly in exons, whereas the SSR markers in the database were mostly in intergenic regions. Furthermore, 105 polymorphic SSR markers were confirmed in silico by their identical positions and nucleotide variations with INDELs identified among the six isolates. When 104 in silico polymorphic SSR markers were used to genotype 21 Pst isolates, 84 produced the target bands, and 82 of them were polymorphic and revealed the genetic relationships among the isolates. The results show that whole genome re-sequencing of multiple isolates provides an ideal resource for developing SSR markers, and the newly developed SSR markers are useful for genetic and population studies of the wheat stripe rust fungus.  相似文献   

19.
Stripe rust-resistant wheat introgression line CH223 was developed by crossing the resistant partial amphiploid TAI7047 derived from Thinopyrum intermedium with susceptible cultivars. The resistance is effective against all the existing Chinese stripe rust races, including the most widely virulent and predominant pathotypes CYR32 and CYR33. Cytological analyses using GISH detected no chromosomal segments from Th. intermedium. It was presumed that the segment was too small to be detected. Normal bivalent pairing at meiosis in CH223 and its hybrids confirmed its stability. Genetic analysis of the F1, F2, F3 and BC1 populations from crosses of CH223 with susceptible lines indicated that resistance was controlled by a single dominant gene. The resistance gene was mapped using an F2:3 population from Taichung 29/CH223. The gene was linked to five co-dominant genomic SSR markers, Xgwm540, Xbarc1096, Xwmc47, Xwmc310 and Xgpw7272, and flanked by Xbarc1096 and Xwmc47 at 8.0 and 7.2 cM, respectively. Using the Chinese Spring nulli-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome arm 4BL. As no permanently named stripe rust resistance genes had been assigned to chromosome 4BL, this new resistance gene is designated Yr50. The gene, together with the identified closely linked markers, could be used in marker-assisted selection to combine two or more resistance genes in a single genotype.  相似文献   

20.
Population genetic diversity in Tianshui city was analyzed with SSR markers in 605 single-pustule isolates of the stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), obtained from 19 varieties of wheat. Significant differences in genetic diversity among populations were defected. Genetic diversity was highest in population on Tian 863-13, a highly resistant variety, whereas genetic diversity was lowest in population on Huixianhong, a highly susceptible variety. Seven populations from seven varieties that carried the common Yr18 resistance gene were clustered as one sub-group at 0.88 similarity coefficient, which showed that resistance gene selection had close relation with pathogen??s component. The results of present study can provide a theoretical basis for integrated management of wheat stripe rust and effective deployment of resistance genes in Pst over-summering zones in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号