首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Powdery mildew (PM) is a serious disease in many legume species, including the common bean (Phaseolus vulgaris L.). This study investigated the genetic control behind resistance reaction to PM in the bean genotype, Cornell 49242. The results revealed evidence supporting a qualitative mode of inheritance for resistance and the involvement of two independent genes in the resistance reaction. The location of these resistance genes was investigated in a linkage genetic map developed for the XC RIL population. Contingency tests revealed significant associations for 28 loci out of a total of 329 mapped loci. Fifteen were isolated or formed groups with less than two loci. The thirteen remaining loci were located at three regions in linkage groups Pv04, Pv09, and Pv11. The involvement of Pv09 was discarded due to the observed segregation in the subpopulation obtained from the Xana genotype for the loci located in this region. In contrast, the two subpopulations obtained from the Xana genotype for the BM161 locus, linked to the Co-3/9 anthracnose resistance gene (Pv04), and from the Xana genotype for the SCAReoli locus, linked to the Co-2 anthracnose resistance gene (Pv11), exhibited monogenic segregations, suggesting that both regions were involved in the genetic control of resistance. A genetic dissection was carried out to verify the involvement of both regions in the reaction to PM. Two resistant recombinant lines were selected, according to their genotypes, for the block of loci included in the Co-2 and Co-3/9 regions, and they were crossed with the susceptible parent, Xana. Linkage analysis in the respective F2 populations supported the hypothesis that a dominant gene (Pm1) was located in the linkage group Pv11 and another gene (Pm2) was located in the linkage group Pv04. This is the first report showing the localization of resistance genes against powdery mildew in Phaseolus vulgaris and the results offer the opportunity to increase the efficiency of breeding programs by means of marker-assisted selection.  相似文献   

2.
White mold, caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary, is a devastating disease in common bean (Phaseolus vulgaris L.). Resistance to this pathogen can be due to physiological or avoidance mechanisms. We sought to characterize the partial physiological resistance exhibited by Xana dry bean in the greenhouse straw test using quantitative trait locus (QTL) analysis. A population of 104 F7 recombinant inbred lines (RILs) derived from an inter-gene pool cross between Xana and the susceptible black bean Cornell 49242 was evaluated against five local isolates of Sclerotinia. The effect of morphological traits (plant height, first internode length, and first internode width) on response to white mold was examined. The level of resistance exhibited by Xana to five isolates of S. sclerotiorum was similar to that of the well-known resistant lines PC50, A195, and G122. Eighteen QTL, involving the linkage groups (LG) 1, 3, 6, 7, 8, and 11, were found to be significant in at least one evaluation and in the mean of the two evaluations. The number of significant QTL identified per trait ranged from one to five. Four major regions on LG 1, 6, and 7 were associated with partial resistance to white mold, confirming the results obtained in other populations. A relative specificity in the number and the position of the identified QTL was found depending on the isolate used. QTL involved in the control of morphological traits and in the response to white mold were co-located at the same relative position on LG 1, 6, and 7. The role of these genomic regions in physiological resistance or avoidance mechanisms to white mold is discussed.  相似文献   

3.
The objective of this research was to determine the quantitative trait loci (QTLs) controlling phenological traits (days to flowering, days to end of flowering, days to harvest as green pod, and days to maturity), seed size traits (seed length, seed height, seed width, and seed weight), and seed quality traits (water absorption, and coat proportion), in common bean. A population of 104 F7 recombinant inbred lines (RILs) derived from an inter-gene pool cross between Xana, and Cornell 49242, was used to develop a genetic linkage map including 175 AFLPs, 27 microsatellites, 30 SCARs, 33 ISSRs, 12 RAPDs, 13 loci codifying for seed proteins, and the four genes Fin,fin (growth habit); Asp,asp (seed coat shininess); P,p (seed color); and I,i (resistance to bean common mosaic virus). The map has a total length of 1,042 cM distributed across 11 linkage groups aligned to those of the core linkage map of bean using common molecular markers as anchor points. The QTL analyses were carried out over three environments using the mean environment data with composite interval mapping. Thirty-one QTLs for ten traits were found to be significant in at least one environment and in the mean environment data, the number of significant QTLs identified per trait ranging from two to five. Twenty-seven of these QTLs mapped forming clusters in eight different chromosomal regions. The rationale for this clustered mapping and the possible relationship between some QTLs for phenological traits and the genes Fin and I are discussed.  相似文献   

4.
Common bacterial blight (CBB) is a major disease of common bean (Phaseolus vulgaris L.) worldwide. Genetic resistance is the most effective and environmentally safe approach for controlling CBB, and identification of resistance quantitative trait loci (QTL) can improve response to selection when breeding for CBB resistance. Interactions of CBB resistance QTL and pathogen isolates with different levels of aggressiveness were studied using an F 4:5 recombinant inbreed line (RIL) population, derived from a cross between the susceptible cultivar “Sanilac” and the resistant breeding line “OAC 09-3.” Disease phenotyping was performed under field and growth room conditions using multiple bacterial isolates with differential levels of aggressiveness. QTL analysis was performed with 237 molecular markers. The effect of pathogen isolate on the average phenotypic value in the RIL population and the interaction of RILs and the pathogen isolates were highly significant. Two QTL underlying CBB resistance were detected on Pv08 and Pv03. A major QTL (R 2 p between 15 and 56%) was identified in a 5-cM (380 kbp) interval in the distal end of the long arm of Pv08. This genomic region was significantly associated with multiple disease evaluation traits in field and growth room assays and against different isolates of the pathogen, which included the previously known CBB marker SU91. A new QTL on Pv03 (Xa3.3SO), associated with the PvSNP85p745405 allele from the susceptible parent, Sanilac, appeared to be an isolate-specific QTL against the aggressive fuscans isolate ISO118. Interaction between the SU91 and Xa3.3SO QTL resulted in a significant reduction in mean disease severity for almost all disease evaluation traits after plants were challenged with the isolate ISO118. The 7.92 and 7.79% diseased areas in RILs with both QTL, compared with 14.92 and 13.81% in RILs without either in test1 and in test2 quantified by image analysis, showed a 44 and 47% reduction of percent diseased areas, indicating that the two QTL interact to limit the expansion of CBB symptoms after infection by ISO118. The information obtained in this study indicates that while the broad-spectrum SU91 QTL is useful in breeding programs, isolate-specific QTL, such as Xa3.3SO, will aid in breeding bean varieties with enhanced resistance against aggressive regional isolates.  相似文献   

5.
Rice blast is one of the major fungal diseases that badly reduce rice production in Asia including Malaysia. There is not much information on identification of QTLs as well as linked markers and their association with blast resistance within local rice cultivars. In order to understanding of the genetic control of blast in the F3 families from indica rice cross Pongsu seribu2/Mahsuri, an analysis of quantitative trait loci against one of the highly virulent Malaysian rice blast isolate Magnaporthe oryzae, P5.0 was carried out. Result indicated that partial resistance to this pathotype observed in the present study was controlled by multiple loci or different QTLs. In QTL analysis in F3 progeny fifteen QTLs on chromosomes 1, 2, 3, 5, 6, 11 and 12 for resistance to blast nursery tests was identified. Three of detected QTLs (qRBr-6.1, qRBr-11.4, and qRBr-12.1) had significant threshold (LOD >3) and approved by both IM and CIM methods. Twelve suggestive QTLs, qRBr-1.2, qRBr-2.1, qRBr-4.1, qRBr-5.1, qRBr-6.2, qRBr-6.3, qRBr-8.1, qRBr-10.1, qRBr-10.2, qRBr-11.1, qRBr-11.2 and qRBr-11.3) with Logarithmic of Odds (LOD) <3.0 or LRS <15) were distributed on chromosomes 1, 2, 4, 5, 6, 8, 10, and 11. Most of the QTLs detected using single isolate had the resistant alleles from Pongsu seribu 2 which involved in the resistance in the greenhouse. We found that QTLs detected for deferent traits for the using isolate were frequently located in similar genomic regions. Inheritance study showed among F3 lines resistance segregated in the expected ratio of 15: 1 for resistant to susceptible. The average score for blast resistance measured in the green house was 3.15, 1.98 and 29.95 % for three traits, BLD, BLT and % DLA, respectively.  相似文献   

6.
The common bean (Phaseolus vulgaris L.) is the world’s most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more effective screening of elite germplasm to find resistance alleles for marker-assisted selection in breeding programs.  相似文献   

7.
Six strains containing site-specific endonucleases II were selected from a collection of 45 ice-nucleating bacterial strains isolated from rhizosphere of plants growing in various geographical regions. EndonucleasesPft211I,Psp8I, andPsp23I were isolated and purified from twoPseudomonas sp. strains and aPseudomonas fluorescens strain. Restriction endonucleasesPfl2lI andPsp23I were shown to recognize and cleave the DNA nucleotide sequence 5′-CTGCA↓G-3′. Endonuclease Psp81 recognized and cleaved the DNA nucleotide sequence 5′-G↓GATCC-3′. These endonucleases were found to be true isoschizomers of PstI andBamHI, respectively.  相似文献   

8.
9.
Common bean is an important staple crop in Eastern Africa and Latin America. Low soil fertility is a major limitation to agronomic productivity. Symbiotic nitrogen fixation (SNF) is an important property of legumes, leading to high protein levels and high nutritional value. Nitrogen (N) metabolism and yield traits were evaluated in the common bean population DOR 364 × BAT 477 in field experiments under moderate and low phosphorus (P) soil conditions resembling environments found on farmers’ fields. Low P availability in soil severely limits seed yield, and trait correlations with yield reveal that high biomass as well as early maturity and efficient seed filling are important for good performance in low P stress, resembling drought resistance. Investigation of SNF and soil N uptake under low P stress showed reduced seed nitrogen levels and major variation in soil-derived N. In low P conditions, no significant reduction of %N derived from the atmosphere (%Ndfa) was observed; however, %Ndfa was correlated with yield, indicating that under stress SNF becomes an important asset. Significant genetic variation was observed for yield, yield components, and SNF ability suggesting that traits can be improved by breeding. Quantitative trait loci (QTLs) for %Ndfa and seed N concentration were discovered on chromosomes Pv07 and Pv02; independent yield QTLs were identified on the same chromosomes. Two QTL hotspots that affect several traits including yield components were found on Pv02 and Pv06; the latter represents a constitutive QTL hotspot independent from the environment. QTLs may be used for marker design and molecular breeding.  相似文献   

10.
Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co–4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co–4 is localized. Three SCAR markers with known linkage to Co–4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK–4 loci found in previous studies. It is possible that the Co–4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.  相似文献   

11.
An extremely thermostable restriction endonuclease, PspGI, was purified from Pyrococcus sp. strain GI-H. PspGI is an isoschizomer of EcoRII and cleaves DNA before the first C in the sequence 5′ ^CCWGG 3′ (W is A or T). PspGI digestion can be carried out at 65 to 85°C. To express PspGI at high levels, the PspGI restriction-modification genes (pspGIR and pspGIM) were cloned in Escherichia coli. M.PspGI contains the conserved sequence motifs of α-aminomethyltransferases; therefore, it must be an N4-cytosine methylase. M.PspGI shows 53% similarity to (44% identity with) its isoschizomer, M.MvaI from Micrococcus variabilis. In a segment of 87 amino acid residues, PspGI shows significant sequence similarity to EcoRII and to regions of SsoII and StyD4I which have a closely related recognition sequence (5′ ^CCNGG 3′). PspGI was expressed in E. coli via a T7 expression system. Recombinant PspGI was purified to near homogeneity and had a half-life of 2 h at 95°C. PspGI remained active following 30 cycles of thermocycling; thus, it can be used in DNA-based diagnostic applications.  相似文献   

12.
Angular leaf spot (ALS) causes major yield losses in the common bean (Phaseolus vulgaris L.), an important protein source in the human diet. This study describes the saturation around a major quantitative trait locus (QTL) region, ALS10.1, controlling resistance to ALS located on linkage group Pv10 and explores the genomic context of this region using available data from the P. vulgaris genome sequence. DArT-derived markers (STS-DArT) selected by bulk segregant analysis and SCAR and SSR markers were used to increase the resolution of the QTL, reducing the confidence interval of ALS10.1 from 13.4 to 3.0 cM. The position of the SSR ATA220 coincided with the maximum LOD score of the QTL. Moreover, a new QTL (ALS10.2UC) was identified at the end of the same linkage group. Sequence analysis using the P. vulgaris genome located ten SSRs and seven STS-DArT on chromosome 10 (Pv10). Coincident linkage and genome positions of five markers enabled the definition of a core region for ALS10.1 spanning 5.3 Mb. These markers are linked to putative genes related to disease resistance such as glycosyl transferase, ankyrin repeat-containing, phospholipase, and squamosa-promoter binding protein. Synteny analysis between ALS10.1 markers and the genome of soybean suggested a dynamic evolution of this locus in the common bean. The present study resulted in the identification of new candidate genes and markers closely linked to a major ALS disease resistance QTL, which can be used in marker-assisted selection, fine mapping and positional QTL cloning.  相似文献   

13.
Phaseolus vulgaris cv. Korona plants were inoculated with the bacteria Pseudomonas syringae pv. phaseolicola (Psp), necrotrophic fungus Botrytis cinerea (Bc) or with both pathogens sequentially. The aim of the experiment was to determine how plants cope with multiple infection with pathogens having different attack strategy. Possible suppression of the non-specific infection with the necrotrophic fungus Bc by earlier Psp inoculation was examined. Concentration of reactive oxygen species (ROS), such as superoxide anion (O2 ?) and H2O2 and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were determined 6, 12, 24 and 48 h after inoculation. The measurements were done for ROS cytosolic fraction and enzymatic cytosolic or apoplastic fraction. Infection with Psp caused significant increase in ROS levels since the beginning of experiment. Activity of the apoplastic enzymes also increased remarkably at the beginning of experiment in contrast to the cytosolic ones. Cytosolic SOD and guaiacol peroxidase (GPOD) activities achieved the maximum values 48 h after treatment. Additional forms of the examined enzymes after specific Psp infection were identified; however, they were not present after single Bc inoculation. Subsequent Bc infection resulted only in changes of H2O2 and SOD that occurred to be especially important during plant–pathogen interaction. Cultivar Korona of common bean is considered to be resistant to Psp and mobilises its system upon infection with these bacteria. We put forward a hypothesis that the extent of defence reaction was so great that subsequent infection did not trigger significant additional response.  相似文献   

14.

Key message

QTL mapping using NGS-assisted BSA was successfully applied to an F 2 population for downy mildew resistance in cucumber. QTLs detected by NGS-assisted BSA were confirmed by conventional QTL analysis.

Abstract

Downy mildew (DM), caused by Pseudoperonospora cubensis, is one of the most destructive foliar diseases in cucumber. QTL mapping is a fundamental approach for understanding the genetic inheritance of DM resistance in cucumber. Recently, many studies have reported that a combination of bulked segregant analysis (BSA) and next-generation sequencing (NGS) can be a rapid and cost-effective way of mapping QTLs. In this study, we applied NGS-assisted BSA to QTL mapping of DM resistance in cucumber and confirmed the results by conventional QTL analysis. By sequencing two DNA pools each consisting of ten individuals showing high resistance and susceptibility to DM from a F2 population, we identified single nucleotide polymorphisms (SNPs) between the two pools. We employed a statistical method for QTL mapping based on these SNPs. Five QTLs, dm2.2, dm4.1, dm5.1, dm5.2, and dm6.1, were detected and dm2.2 showed the largest effect on DM resistance. Conventional QTL analysis using the F2 confirmed dm2.2 (R 2 = 10.8–24 %) and dm5.2 (R 2 = 14–27.2 %) as major QTLs and dm4.1 (R 2 = 8 %) as two minor QTLs, but could not detect dm5.1 and dm6.1. A new QTL on chromosome 2, dm2.1 (R 2 = 28.2 %) was detected by the conventional QTL method using an F3 population. This study demonstrated the effectiveness of NGS-assisted BSA for mapping QTLs conferring DM resistance in cucumber and revealed the unique genetic inheritance of DM resistance in this population through two distinct major QTLs on chromosome 2 that mainly harbor DM resistance.
  相似文献   

15.
The combination of major resistance genes with quantitative resistance factors is hypothesized as a promising breeding strategy to preserve the durability of resistant cultivar, as recently observed in different pathosystems. Using the pepper (Capsicum annuum)/Potato virus Y (PVY, genus Potyvirus) pathosystem, we aimed at identifying plant genetic factors directly affecting the frequency of virus adaptation to the major resistance gene pvr23 and at comparing them with genetic factors affecting quantitative resistance. The resistance breakdown frequency was a highly heritable trait (h2=0.87). Four loci including additive quantitative trait loci (QTLs) and epistatic interactions explained together 70% of the variance of pvr23 breakdown frequency. Three of the four QTLs controlling pvr23 breakdown frequency were also involved in quantitative resistance, strongly suggesting that QTLs controlling quantitative resistance have a pleiotropic effect on the durability of the major resistance gene. With the first mapping of QTLs directly affecting resistance durability, this study provides a rationale for sustainable resistance breeding. Surprisingly, a genetic trade-off was observed between the durability of PVY resistance controlled by pvr23 and the spectrum of the resistance against different potyviruses. This trade-off seemed to have been resolved by the combination of minor-effect durability QTLs under long-term farmer selection.  相似文献   

16.
《Genomics》2020,112(6):4536-4546
SNP markers linked to genes controlling Ca and Mn uptake were identified in the common bean seeds using DArT-based association mapping (AM). The Ca concentration in the seeds varied between 475 and 3,100 mg kg−1 with an average of 1,280.9 mg kg−1 and the Mn concentration ranged from 4.87 to 27.54 mg kg−1 with a mean of 11.76 mg kg−1. A total of 19,204 SNP markers were distributed across 11 chromosomes that correspond to the haploid genome number of the common bean. The highest value of ΔK was determined as K = 2, and 173 common bean genotypes were split into two main subclusters as POP1 (Mesoamerican) and POP2 (Andean). The results of the UPGMA dendrogram and PCA confirmed those of STRUCTURE analysis. MLM based on the Q + K model identified a large number of markers-trait associations. Of the 19,204 SNPs, five (on Pv2, 3, 8, 10 and 11) and four (on Pv2, 3, 8 and 11) SNPs were detected to be significantly related to the Ca content of the beans grown in Bornova and Menemen, respectively in 2015. In 2016, six SNPs (on Pv1–4, 8 and 10) were identified to be significantly associated with the Ca content of the seeds obtained from Bornova and six SNPs (on Pv1–4, 8 and 10) from Menemen. Eight (on Pv3, 5 and 11) and four (on Pv2, 5 and 11) SNPs had a significant association with Mn content in Bornova in 2015 and 2016, respectively. In Menemen, eight (on Pv3, 5, 8 and 11) and 11 (on Pv1, 2, 5, 10 and 11) SNPs had a significant correlation with Mn content in 2015 and 2016, respectively.  相似文献   

17.
High-level salivary gland expression in transgenic mice   总被引:2,自引:0,他引:2  
A 7.1 kb mini-gene construct containing cloned DNA from the murine parotid secretory protein (PSP) gene with 6.2 kb of the promoter, has previously been shown to direct specific mRNA expression to the salivary glands in transgenic mice. However, the level of transgene expression in the parotid gland was only a few percent of the endogenous level. This indicated that elements necessary for high-level expression are still to be found. In this study, we have searched for such regulatory elements in additional flanking regions by using a 25 kb clonedPsp b fragment containing the complete structural gene, 11.4 kb of 5-flanking sequence, and 2.5 kb 3-flanking sequence as a transgene. To distinguish the expression of the transgene from that of the endogenous gene, we took advantage of an allelic difference, using an oligonucleotide that recognized the mRNA fromPsp b and the transgene but not that from the other allele,Psp a . The expression of the transgene was examined in animals homozygous forPsp a . Three independent integrations all exhibited a level of parotid-gland-specific expression that corresponded to that of the endogenous gene. Thus, sequences responsible for this high-level PSP mRNA expression are situated within the genomic DNA of the transgene.  相似文献   

18.
Broomrapes are holoparasitic plants which infect faba bean (Vicia faba L.), among other legumes. Here, we aimed to identify and validate quantitative trait loci (QTLs) for broomrape resistance in the cross 29H × Vf136 and to investigate the existence of common and specific genomic regions against Orobanche crenata and O. foetida. A genetic map including 171 markers was constructed for QTL analyses. Field trials for O. crenata were conducted during three consecutive seasons at Córdoba (Spain) and in a single season at Kafr El-Sheikh (Egypt). QTL analysis for O. foetida was performed using data from a single season at Beja (Tunisia). Seven QTLs for O. crenata were identified. Oc7 on chromosome VI was detected over 3 years at Córdoba, explaining between 22 and 33 % of the phenotypic variation, which make it the most promising candidate for future marker-assisted breeding for broomrape resistance in faba bean. O. crenata QTLs identified at Kafr El-Sheikh did not co-localize with those identified in Córdoba. Environmental differences together with the diversity of parasitic populations between locations may account for the discrepancy. Three QTLs for O. foetida were detected. Co-localization of Oc8 and Of3 in chromosome V confirms a common resistance against both O. crenata and O. foetida, as previously reported.  相似文献   

19.

Background and Aims

The genetics of domestication of yardlong bean [Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis] is of particular interest because the genome of this legume has experienced divergent domestication. Initially, cowpea was domesticated from wild cowpea in Africa; in Asia a vegetable form of cowpea, yardlong bean, subsequently evolved from cowpea. Information on the genetics of domestication-related traits would be useful for yardlong bean and cowpea breeding programmes, as well as comparative genome study among members of the genus Vigna. The objectives of this study were to identify quantitative trait loci (QTLs) for domestication-related traits in yardlong bean and compare them with previously reported QTLs in closely related Vigna.

Methods

Two linkage maps were developed from BC1F1 and F2 populations from the cross between yardlong bean (V. unguiculata ssp. unguiculata cv.-gr. sesquipedalis) accession JP81610 and wild cowpea (V. unguiculata ssp. unguiculata var. spontanea) accession TVnu457. Using these linkage maps, QTLs for 24 domestication-related traits were analysed and mapped. QTLs were detected for traits related to seed, pod, stem and leaf.

Key Results

Most traits were controlled by between one and 11 QTLs. QTLs for domestication-related traits show co-location on several narrow genomic regions on almost all linkage groups (LGs), but especially on LGs 3, 7, 8 and 11. Major QTLs for sizes of seed, pod, stem and leaf were principally located on LG7. Pleiotropy or close linkage of genes for the traits is suggested in these chromosome regions.

Conclusions

This is the first report of QTLs for domestication-related traits in yardlong bean. The results provide a foundation for marker-assisted selection of domestication-related QTLs in yardlong bean and enhance understanding of domestication in the genus Vigna.  相似文献   

20.
The genetic components responsible for qualitative and quantitative resistance of rice plants to three strains (CR4, CXO8, and CR6) of Xanthomonas oryzae pv. oryzae (Xoo) were investigated using a set of 315 recombinant inbred lines (RILs) from the cross Lemont (japonica) × Teqing (indica) and a complete linkage map with 182 well distributed RFLP markers. We mapped a major gene (Xa4) and ten quantitative trait loci (QTLs) which were largely responsible for segregation of the resistance phenotype in the RILs. The Teqing allele at the Xa4 locus, Xa4 T , acted as a dominant resistance gene against CR4 and CXO8. The breakdown of Xa4 T -associated resistance mediated by the mutant allele at the avrXa4 locus in the virulent strain CR6 results from significant changes in both gene action (lose of dominance) and the magnitude of gene effect (≈50% reduction). Nevertheless, Xa4 T still acted as a recessive QTL with a significant residual effect against CR6. The mutant alleles at the avrXa4 locus in CXO8 and CR6 that lead to a reduction in effect, or “breakdown”, of Xa4 T were apparently accompanied by corresponding penalties for their fitness. The quantitative component of resistance to Xoo in the RILs was largely due to a number of resistance QTLs. Most resistance QTLs mapped to genomic locations where major resistance genes and/or QTLs for resistance to Xoo, blast and sheath blight were identified in the same cross. Most QTLs showed consistent levels of resistance against all three Xoo strains. Our results suggest that a high level of durable resistance to Xoo may be achieved by the cumulative effects of multiple QTLs, including the residual effects of “defeated” major resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号