首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been confirmed that Saccharomyces sp. W0 can produce high concentration of ethanol. In this study, the INU1 gene cloned from the marine-derived Pichia guilliermondii was transformed into uracil mutant of Saccharomyces sp. W0. The positive transformant Inu-66 obtained could produce 34.2 U ml−1 of extracellular inulinase within 72 h of cultivation. It was found that 15.2 U of inulinase activity per one gram of inulin was suitable for inulin hydrolysis and ethanol production by the transformant Inu-66. During the small-scale fermentation, 13.7 ml of ethanol in 100 ml of medium was produced and 99.1% of the added inulin was utilized by the transformant. During the 2 l fermentation, 14.9% (v/v) of ethanol was produced from inulin and 99.5% of the added inulin was converted into ethanol, CO2 and cell mass.  相似文献   

2.
In the present study, after the exo-inulinase gene INU1 from Meyerozyma guilliermondii was optimized according to the codon usage bias of Saccharomyces cerevisiae, both the optimized gene INU1Y and the native gene INU1 were ligated into the homologous integration expression vector pMIRSC11 and expressed in Saccharomyces sp. W0. It was determined that the inulinase activity of the recombinant yeast Y13 with the optimized gene INU1Y was 43.84 U/mL, which was obviously higher than that (31.39 U/mL) produced by the recombinant yeast EX3 with the native gene INU1. Moreover, it was indicated that the recombinant yeast Y13 could produce 126.30 mg/mL ethanol from 300.0 g/L inulin while the recombinant yeast EX3 and Saccharomyces sp. W0 produced 122.75 mg/mL and 114.15 mg/mL ethanol, respectively, under the same conditions. In addition, the ethanol productivity of the recombinant yeast Y13 was 2.25 mg/mL/h within 48 h of the fermentation, which was obviously higher than that of the recombinant yeast EX3 (1.97 mg/mL/h) and Saccharomyces sp. W0 (1.77 mg/mL/h) within the same period. The results demonstrated that the recombinant yeast Y13 had higher ethanol production and productivity than the recombinant yeast EX3 and Saccharomyces sp. W0. Therefore, it was concluded that the codon optimization of the exo-inulinase gene from M. guilliermondii effectively enhanced inulinase activity and improved ethanol production from inulin by Saccharomyces sp. W0 carrying the optimized inulinase gene.  相似文献   

3.
Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker’s yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301TPS1 overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301TPS1 were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301TPS1 was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker’s yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker’s yeast.  相似文献   

4.
This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.  相似文献   

5.
6.
Adaptation of Yeast Cell Membranes to Ethanol   总被引:3,自引:3,他引:0       下载免费PDF全文
A highly ethanol-tolerant Saccharomyces wine strain is able, after growth in the presence of ethanol, to efficiently improve the ethanol tolerance of its membrane. A less-tolerant Saccharomyces laboratory strain, however, is unable to adapt its membrane to ethanol. Furthermore, after growth in the presence of ethanol, the membrane of the latter strain becomes increasingly sensitive, although this is a reversible process. Reversion to a higher tolerance occurs only after the addition of an energy source and does not take place in the presence of cycloheximide.  相似文献   

7.
Trehalose is the primary organic solute in Rubrobacter xylanophilus under all conditions tested, including those for optimal growth. We detected genes of four different pathways for trehalose synthesis in the genome of this organism, namely, the trehalose-6-phosphate synthase (Tps)/trehalose-6-phosphate phosphatase (Tpp), TreS, TreY/TreZ, and TreT pathways. Moreover, R. xylanophilus is the only known member of the phylum Actinobacteria to harbor TreT. The Tps sequence is typically bacterial, but the Tpp sequence is closely related to eukaryotic counterparts. Both the Tps/Tpp and the TreT pathways were active in vivo, while the TreS and the TreY/TreZ pathways were not active under the growth conditions tested and appear not to contribute to the levels of trehalose observed. The genes from the active pathways were functionally expressed in Escherichia coli, and Tps was found to be highly specific for GDP-glucose, a rare feature among these enzymes. The trehalose-6-phosphate formed was specifically dephosphorylated to trehalose by Tpp. The recombinant TreT synthesized trehalose from different nucleoside diphosphate-glucose donors and glucose, but the activity in R. xylanophilus cell extracts was specific for ADP-glucose. The TreT could also catalyze trehalose hydrolysis in the presence of ADP, but with a very high Km. Here, we functionally characterize two systems for the synthesis of trehalose in R. xylanophilus, a representative of an ancient lineage of the actinobacteria, and discuss a possible scenario for the exceptional occurrence of treT in this extremophilic bacterium.  相似文献   

8.
In this work, Zymomonas mobilis was genetically improved for pentose utilization to increase the final ethanol concentration. It showed good fermentation ability on both soluble sugar mixture and lignocellulose. Nearly all the glucose and xylose in sugar mixture can be consumed, corresponding to 86 % of theoretic ethanol yield. Simultaneous saccharification and co-fermentation (SSCF) of NaOH-pretreated corncob was then carried out in a high dry matter (DM) loading of 15–25?w/v%. At the DM loading of 15 %, the suitable operating conditions were determined, i.e., Z. mobilis loading of 0.30 g dry weight/L at 30 °C (pH?5.5), under which the ethanol concentration reached 49.2 g/L. Higher final ethanol concentrations were obtained when SSCF was operated at the fed-batch mode. Several amounts of substrate (1 % to 10 %) were added, and the highest final ethanol concentration (60.5 g/L) was obtained at 10 % DM addition.  相似文献   

9.
This study aimed to overexpress a glucose oxidase gene (GOD1) in Aureobasidium sp. P6 to achieve Ca2+-gluconic acid (GA) overproduction. The GOD1 gene was cloned, deleted, and overexpressed. A protein deduced from the GOD1 gene of Aureobasidium sp. P6 strain had 1824 bp that encoded a protein with 606 amino acids, with a conserved NADB-ROSSMAN domain and a GMC-oxred domain. Deleting the GOD1 gene made the disruptant GOK1 completely lose the ability to produce GA and GOD1 activity, whereas overexpressing the GOD1 gene rendered the transformant GOEX8 to produce considerably more Ca2+-GA (160.5?±?5.6 g/L) and higher GOD1 activity (1438.6?±?73.2 U/mg of protein) than its parent P6 strain (118.7?±?4.3 g/L of Ca2+-GA and 1100.0?±?23.6 U/mg of GOD1 protein). During a 10-L fermentation, the transformant GOEX8 grown in the medium containing 160.0 g/L of glucose produced 186.8?±?6.0 g/L of Ca2+-GA, the yield was 1.2 g/g of glucose, and the volumetric productivity was 1.7 g/L/h. Most of the produced GOD1 were located in the yeast cell wall. The purified product was identified to be a GA. The transformant GOEX8 overexpressing the GOD1 gene could produce considerably more Ca2+-GA (186.8?±?6.0 g/L) than its wild-type strain P6.  相似文献   

10.
High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction–azeotropic distillation technique for the same.  相似文献   

11.
代谢工程与全基因组重组构建酿酒酵母抗逆高产乙醇菌株   总被引:1,自引:0,他引:1  
将酿酒酵母海藻糖代谢工程与全基因组重组技术相结合,改良工业酿酒酵母菌株的抗逆性和乙醇发酵性能。对来源于二倍体出发菌株Zd4的两株优良单倍体Z1和Z2菌株进行杂交获得基因组重组菌株Z12,并对Z1和Z2先进行(1)过表达海藻糖-6-磷酸合成酶基因 (TPS1) ,(2)敲除海藻糖水解酶基因 (ATH1), (3)同时过表达 TPS1和敲除ATH1, 经此三种基因工程操作后再进行杂交获得代谢工程菌株的全基因组重组菌株Z12ptps1、Z12 Δath1和Z12pTΔA。与亲株Zd4相比,Z12及结合代谢工程获得的菌株在高糖、高乙醇浓度与高温条件下生长与乙醇发酵性能都有不同程度的改进。对比研究结果表明:在高糖发酵条件下,同时过表达 TPS1和敲除ATH1 的双基因操作工程菌株胞内海藻糖积累、乙醇主发酵速率和乙醇产量相对于亲株的提高幅度要大于只过表达 TPS1,或敲除ATH1 的工程菌。结合了全基因组重组后获得的二倍体工程菌株Z12pTΔA,与原始出发菌株Zd4及重组子Z12相比,主发酵速率分别提高11.4%和6.3%,乙醇产量提高7.0%和4.1%,与其胞内海藻糖含量高于其它菌株、在胁迫条件下具有更强耐逆境能力相一致。结果证明,海藻糖代谢工程与杂交介导的全基因组重组相结合,是提高酿酒酵母抗逆生长与乙醇发酵性能的有效策略与技术途径。  相似文献   

12.
This study developed a novel method of screening cryoprotectants used to improve the survivability of lyophilized Lactobacillus helveticus. To develop a liposome encapsulated β-galactosidase (β-gal) as a cell membrane model, the β-gal liposome was characterized in terms of mean size, poly dispersity index, zeta potential, along with transmission electron microscopy. 800 W of ultrasonic power and 10 min of sonication time were the optimal experimental conditions to obtain the desirable β-gal liposome. Subsequently, different cryoprotectants were mixed with the β-gal liposome during freeze-drying. After freeze-drying, liposomes were hydrolized, and the protective effect of cryoprotectants was assessed as the release rate of encapsulated β-gal. The lowest release rate of β-gal was obtained using 10 mg/100 ml trehalose and 0.2 mg/100 ml hyaluronic acid.  相似文献   

13.
14.
A wild-type yeast strain with a good galactose-utilization efficiency was newly isolated from the soil, and identified and named Saccharomyces cerevisiae KL17 by 18s RNA sequencing. Its performance of producing ethanol from galactose was investigated in flask cultures with media containing various combination and concentrations of galactose and glucose. When the initial galactose concentration was 20 g/L, it showed 2.2 g/L/h of substrate consumption rate and 0.63 g/L/h of ethanol productivity. Although they were about 70 % of those with glucose, such performance of S. cerevisiae KL17 with galactose was considered to be quite high compared with other strains reported to date. Its additional merit was that its galactose metabolism was not repressed by the existence of glucose. Its capability of ethanol production under a high ethanol concentration was demonstrated by fed-batch fermentation in a bioreactor. A high ethanol productivity of 3.03 g/L/h was obtained with an ethanol concentration and yield of 95 and 0.39 g/L, respectively, when the cells were pre-cultured on glucose. When the cells were pre-cultured on galactose instead of glucose, fermentation time could be reduced significantly, resulting in an improved ethanol productivity of 3.46 g/L/h. The inhibitory effects of two major impurities in a crude galactose solution obtained from acid hydrolysis of galactan were assessed. Only 5-Hydroxymethylfurfural (5-HMF) significantly inhibited ethanol fermentation, while levulinic acid (LA) was benign in the range up to 10 g/L.  相似文献   

15.
Its metabolic characteristics suggest that Zymobacter palmae gen. nov., sp. nov. could serve as a useful new ethanol-fermenting bacterium, but its biotechnological exploitation will require certain genetic modifications. We therefore engineered Z. palmae so as to broaden the range of its fermentable sugar substrates to include the pentose sugar xylose. The Escherichia coli genes encoding the xylose catabolic enzymes xylose isomerase, xylulokinase, transaldolase, and transketolase were introduced into Z. palmae, where their expression was driven by the Zymomonas mobilis glyceraldehyde-3-phosphate dehydrogenase promoter. When cultured with 40 g/liter xylose, the recombinant Z. palmae strain was able to ferment 16.4 g/liter xylose within 5 days, producing 91% of the theoretical yield of ethanol with no accumulation of organic acids as metabolic by-products. Notably, xylose acclimation enhanced both the expression of xylose catabolic enzymes and the rate of xylose uptake into recombinant Z. palmae, which enabled the acclimated organism to completely and simultaneously ferment a mixture of 40 g/liter glucose and 40 g/liter xylose within 8 h, producing 95% of the theoretical yield of ethanol. Thus, efficient fermentation of a mixture of glucose and xylose to ethanol can be accomplished by using Z. palmae expressing E. coli xylose catabolic enzymes.  相似文献   

16.

Background

Trehalose is an important protectant in several microorganisms. In Saccharomyces cerevisiae, it is synthesized by a large complex comprising the enzymes Tps1 and Tps2 and the subunits Tps3 and Tsl1, showing an intricate metabolic control.

Methods

To investigate how the trehalose biosynthesis pathway is regulated, we analyzed Tps1 and Tps2 activities as well as trehalose and trehalose-6-phosphate (T6P) contents by mass spectrometry.

Results

Tsl1 deficiency totally abolished the increase in Tps1 activity and accumulation of trehalose in response to a heat stress, whereas absence of Tps3 only reduced Tps1 activity and trehalose synthesis. In extracts of heat stressed cells, Tps1 was inhibited by T6P and by ATP. Mg2 + in the presence of cAMP. In contrast, cAMP-dependent phosphorylation did not inhibit Tps1 in tps3 cells, which accumulated a higher proportion of T6P after stress. Tps2 activity was not induced in a tps3 mutant.

Conclusion

Taken together these results suggest that Tsl1 is a decisive subunit for activity of the TPS complex since in its absence no trehalose synthesis occurred. On the other hand, Tps3 seems to be an activator of Tps2. To perform this task, Tps3 must be non-phosphorylated. To readily stop trehalose synthesis during stress recovery, Tps3 must be phosphorylated by cAMP-dependent protein kinase, decreasing Tps2 activity and, consequently, increasing the concentration of T6P which would inhibit Tps1.

General significance

A better understanding of TPS complex regulation is essential for understanding how yeast deals with stress situations and how it is able to recover when the stress is over.  相似文献   

17.

Background

Enzymes involved in trehalose metabolism have been proposed as potential targets for new antifungals. To analyse this proposal, the susceptibility to Amphotericin B (AmB) of the C. albicans trehalose-deficient mutant tps1Δ/tps1Δ, was examined.

Methods

Determination of endogenous trehalose and antioxidant enzymatic activities as well as RT-PCR analysis in cells subjected to AmB treatments was performed.

Results

Exponential tps1Δ null cultures showed high degree of cell killing upon exposure to increasing AmB doses respect to CAI.4 parental strain. Reintroduction of the TPS1 gene restored the percentage of cell viability. AmB induced significant synthesis of endogenous trehalose in parental cells, due to the transitory accumulation of TPS1 mRNA or to the moderate activation of trehalose synthase (Tps1p) with the simultaneous deactivation of neutral trehalase (Ntc1p). Since tps1Δ/tps1Δ mutant cells are highly susceptible to acute oxidative stress, the putative antioxidant response to AmB was also measured. A conspicuous activation of catalase and glutathione reductase (GR), but not of superoxide dismutase (SOD), was observed when the two cell types were exposed to high concentrations of AmB (5 μg/ml). However, no significant differences were detected between parental and tps1Δ null strains as regards the level of activities.

Conclusions

The protective intracellular accumulation of trehalose together with the induction of antioxidant enzymatic defences are worthy mechanisms involved in the resistance of C. albicans to the fungicidal action of AmB.

General significance

The potential usefulness of trehalose synthesis proteins as an interesting antifungal target is reinforced. More importantly, AmB elicits a complex defensive response in C. albicans.  相似文献   

18.
19.
Desert truffles are seasonal and important edible fungi that grow wild in many countries around the world. Truffles are natural food sources that have significant compositions. In this work, the antioxidant, chemical composition, anticancer, and antiangiogenesis properties of the Terfezia claveryi truffle were investigated. Solvent extractions of the T. claveryi were evaluated for antioxidant activities using (DPPH, FRAP and ABTS methods). The extracts cytotoxicity on the cancer cell lines (HT29, MCF-7, PC3 and U-87 MG) was determined by MTT assay, while the anti-angiogenic efficacy was tested using ex-vivo assay. All extracts showed moderate anticancer activities against all cancer cells (p < 0.05). The hexane extract inhibited the brain cell line (U-87 MG) with an IC50 of 50 μg/ml and significantly promoted cell apoptosis through the mitochondrial pathway and DNA fragmentation p < 0.001. The ethanol extract demonstrated potent antioxidants; DPPH, FRAP, and ABTS with an IC50 value of 52, 48.5 and 64.7 μg/ml, respectively. In addition, the hexane and ethyl acetate extract significantly (p < 0.001) inhibited the sprouting of microvessels by 100% and 81.2%, at 100 μg/ml, respectively. The GC analysis of the most active extract (hexane) showed the presence of several potent phytochemicals such as stigmasterol, beta-Sitosterol, squalene, lupeol, octadecadienoic acid, and oleic acid.  相似文献   

20.
Maize (Zea mays L.) grain is an important feedstock for the ethanol-producing industry. However, little is known about the optimum grain quality for optimizing ethanol yielding efficiencies. We specifically investigated the response of ethanol yields (L Mg?1) to kernel hardness, and its physiological determinant endosperm zein protein profiles, as affected by genotype selection, field nitrogen (N) fertilization, and crop growth environment. We measured ethanol yield and related this to different kernel hardness indicators, kernel composition, and zein profiles. We also described changes in field ethanol yield (L ha?1), by taking into account the crop yield (Mg ha?1). Hard endosperm genotypes always yielded less ethanol than softer endosperm ones per grain mass (L Mg?1). Higher N fertilization rates increased kernel hardness and decreased ethanol yield (L Mg?1) on soft endosperm dented genotypes but had no effect on hard endosperm ones. Ethanol yield was negatively correlated with kernel density, kernel protein concentration, and Z1 and Z2 zein fractions. Within Z2, 15 kDa β-zein explained the largest ethanol yield variation generated by genotypes, N fertilizations, and growth environments. However, and although these differences were as large as 10%, ethanol field yield (L ha?1) was mainly driven by crop yields (r 2 0.98) due to the large crop yield (Mg ha?1) differences observed across treatments. Together, our results helped describe the magnitude that changes in maize kernel hardness can have over ethanol yield, both through genotype selection or crop management. A particular Z2 zein protein rises as relevant for future genetic manipulations of maize ethanol yield determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号