首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strain DY59T, a Gram-positive non-motile bacterium, was isolated from soil in South Korea, and was characterized to determine its taxonomic position. Phylogenetic analysis based on the 16S rRNA gene sequence of strain DY59T revealed that the strain DY59T belonged to the family Deinococcaceae in the class Deinococci. The highest degree of sequence similarities of strain DY59T were found with Deinococcus radiopugnans KACC 11999T (99.0%), Deinococcus marmoris KACC 12218T (97.9%), Deinococcus saxicola KACC 12240T (97.0%), Deinococcus aerolatus KACC 12745T (96.2%), and Deinococcus frigens KACC 12220T (96.1%). Chemotaxonomic data revealed that the predominant fatty acids were iso-C15:0 (19.0%), C16:1 ω7c (17.7%), C15:1 ω6c (12.6%), iso-C17:0 (10.3%), and iso-C17:1 ω9c (10.3%). A complex polar lipid profile consisted of a major unknown phosphoglycolipid. The predominant respiratory quinone is MK-8. The cell wall peptidoglycan contained D-alanine, L-glutamic acid, glycine, and L-ornithine (di-amino acid). The novel strain showed resistance to gamma radiation, with a D10 value (i.e. the dose required to reduce the bacterial population by 10-fold) in excess of 5 kGy. Based on the phylogenetic, chemotaxonomic, and phenotypic data, strain DY59T (=KCTC 33033T =JCM 18581T) should be classified as a type strain of a novel species, for which the name Deinococcus swuensis sp. nov. is proposed.  相似文献   

2.
A rod-shaped, white color colony with lobate architectures, strain h2T was isolated from a moderately acidic soil on Jeju Island, Republic of Korea. Comparative analysis of the 16S rRNA gene sequence showed that the strain h2T is closely related to Paenibacillus relictisesami DSM 25385T (97.4%, 16S rRNA gene sequence similarity), Paenibacillus azoreducens KACC 11244T (97.2%), and Paenibacillus cookii LMG 18419T (97.0%). DNA-DNA hybridization indicated that the strain h2T has relatively low levels of DNA-DNA relatedness with respect to P. relictisesami DSM 25385T (10.2%) and P. azoreducens KACC 11244T (13.7%). Additionally, the genomic DNA G + C content of h2T is 51.5 mol%. The isolated strain grew at pH 4.0–9.0 (optimum, pH 6.0–7.0) and 0–5% (w/v) NaCl (optimum, 0%) and a temperature of 15–45°C (optimum 35°C). The quinones in the strain are MK-6 and MK-7, and the predominant fatty acid is C15:0 anteiso (32.1%) followed by C17:0 anteiso (26.5%), and C16:0 iso (21.0%). Based on its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain h2T is proposed as a novel species in the genus Paenibacillus, for which the name Paenibacillus albilobatus sp. nov. is proposed (= KCCM 43269T = JCM 32395T = LMG 30408T). The type strain of Paenibacillus albilobatus is h2T.  相似文献   

3.
Strain DCT-19T, representing a Gram-stain-positive, rodshaped, aerobic bacterium, was isolated from a native plant belonging to the genus Campanula on Dokdo, the Republic of Korea. Comparative analysis of the 16S rRNA gene sequence showed that this strain was closely related to Paenibacillus amylolyticus NRRL NRS-290T (98.6%, 16S rRNA gene sequence similarity), Paenibacillus tundrae A10bT (98.1%), and Paenibacillus xylanexedens NRRL B-51090T (97.6%). DNADNA hybridization indicated that this strain had relatively low levels of DNA-DNA relatedness with P. amylolyticus NRRL NRS-290T (30.0%), P. xylanexedens NRRL B-51090T (29.0%), and P. tundrae A10bT (24.5%). Additionally, the genomic DNA G + C content of DCT-19T was 44.8%. The isolated strain grew at pH 6.0–8.0 (optimum, pH 7.0), 0–4% (w/v) NaCl (optimum, 0%), and a temperature of 15–45°C (optimum 25–30°C). The sole respiratory quinone in the strain was menaquinone-7, and the predominant fatty acids were C15:0 anteiso, C16:0 iso, and C16:0. In addition, the major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. Based on its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain DCT-19T is proposed as a novel species in the genus Paenibacillus, for which the name Paenibacillus seodonensis sp. nov. is proposed (=KCTC 43009T =LMG 30888T). The type strain of Paenibacillus seodonensis is DCT-19T.  相似文献   

4.
A nitrogen-fixing bacterium, designated strain gs65T, was isolated from a rhizosphere soil sample of Caragana kansuensis Pojark. Phylogenetic analysis based on a fragment of the nifH gene and the full-length 16S rRNA gene sequence revealed that strain gs65T is a member of the genus Paenibacillus. High levels of 16S rRNA gene similarity were found between strain gs65T and Paenibacillus borealis DSM 13188T (97.5 %), Paenibacillus odorifer ATCC BAA-93T (97.3 %), Paenibacillus durus DSM 1735T (97.0 %) and Paenibacillus sophorae DSM23020T (96.9 %). Levels of 16S rRNA gene sequence similarity between strain gs65T and the type strains of other recognized members of the genus Paenibacillus were below 97.0 %. Levels of DNA–DNA relatedness between strain gs65T and P. borealis DSM 13188T, P. odorifer ATCC BAA-93T (97.3 %), P. durus DSM 1735T and P. sophorae DSM23020T were 35.9, 38.0, 34.2 and 35.5 % respectively. The DNA G+C content of strain gs65T was determined to be 51.6 mol%. The major fatty acids were found to be iso-C14:0, anteiso-C15:0 and iso-C16:0. On the basis of its phenotypic characteristics and levels of DNA–DNA hybridization, strain gs65T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus taohuashanense sp. nov. is proposed. The type strain is gs65T (=CGMCC 1.12175T = DSM 25809T).  相似文献   

5.
Gram stain-negative and non-motile bacteria, designated as DY53T and DY43, were isolated from mountain soil in South Korea prior exposure with 5 kGy gamma radiation. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strains belonged to the family Cytophagaceae in the class Cytophagia. 16S rRNA gene sequence similarity of strains DY53T and DY43 was 100 %. The highest degrees of sequence similarities of strains DY53T and DY43 were found with Hymenobacter perfusus A1-12T (98.8 %), Hymenobacter rigui WPCB131T (98.5 %), H. yonginensis HMD1010T (97.9 %), H. xinjiangensis X2-1gT (96.6 %), and H. gelipurpurascens Txg1T (96.5 %). The DNA G+C content of the novel strains DY53T and DY43 were 59.5 mol%. Chemotaxonomic data revealed that strains possessed major fatty acids such as C15:0 iso, C15:0 anteiso, C16:1 ω5c, summed feature 3 (16:1 ω7c/ω6c), summed feature 4 (17:1 anteiso B/iso I) and C17:0 iso, and major polar lipid was phosphatidylethanolamine. The novel strains showed resistance to gamma radiation, with a D10 value (i.e., the dose required to reduce the bacterial population by tenfold) in excess of 5 kGy. Based on these data, strains DY53T and DY43 should be classified as representing a novel species, for which the name Hymenobacter swuensis sp. nov. is proposed, with the type strain DY53T (=KCTC 32018T = JCM 18582T) and DY43 (=KCTC 32010).  相似文献   

6.
A Gram stain-negative, aerobic and rod-shaped bacterium, strain DY22T, was isolated from a deep-sea sediment collected from the east Pacific Ocean. The isolate was found to grow in the presence of 0–20.0 % (w/v) NaCl and at pH 4.5–8.5; optimum growth was observed with 0.5–2.0 % (w/v) NaCl and at pH 5.0–7.0. Chemotaxonomic analysis showed the presence of ubiquinone-9 as predominant respiratory quinone and C16:0, C19:0 ω8c cyclo and C12:0 3-OH as major cellular fatty acids. The genomic DNA G+C content was determined to be 59.6 mol%. Comparative 16S rRNA gene sequence analysis revealed that the novel isolate belongs to the genus Salinicola. Strain DY22T exhibited the closest phylogenetic affinity to the type strain of Salinicola salarius with 97.2 % sequence similarity and less than 97 % sequence similarity with respect to other Salinicola species with validly published names. The DNA–DNA reassociation values between strain DY22T and S. salarius DSM 18044T was 52 ± 4 %. On the basis of phenotypic, chemotaxonomic and genotypic data, strain DY22T represents a novel species of the genus Salinicola, for which the name Salinicola peritrichatus sp. nov. (type strain DY22T = CGMCC 1.12381T = JCM 18795T) is proposed.  相似文献   

7.
A novel Gram-positive, rod-shaped, motile, spore-forming, nitrogen-fixing bacterium, designated strain 112T, was isolated from cabbage rhizosphere in Beijing, China. The strain was found to grow at 10–40 °C and pH 4–11, with an optimum of 30 °C and pH 7.0, respectively. Phylogenetic analysis based on a fragment of the full-length 16S rRNA gene sequence revealed that strain 112T is a member of the genus Paenibacillus. High levels of 16S rRNA gene similarities were found between strain 112T, Paenibacillus sabinae DSM 17841T (97.82 %) and Paenibacillus forsythiae DSM 17842T (97.22 %). However, the DNA–DNA hybridization values between strain 112T and the type strains of these two species were 10.36 and 6.28 %, respectively. The predominant menaquinone was found to be menaquinone 7 (MK-7). The major fatty acids were determined to be anteiso-C15:0 and C16:0. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminophospholipids. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. The DNA G+C content was determined to be 55.4 mol%. On the basis of its phenotypic characteristics, 16S rRNA gene sequence analysis and the value of DNA–DNA hybridization, strain 112T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus brassicae sp. nov. is proposed. The type strain is 112T (= ACCC 01125T = DSM 24983T).  相似文献   

8.
9.
A nitrogen-fixing, endospore-forming bacterium, designated strain L201T was isolated from the leaves of Bryophyllum pinnatum growing in South China Agricultural University. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain L201T is affiliated with the genus Paenibacillus, and closely related to Paenibacillus albidus Q4-3T (97.4%), Paenibacillus odorifer DSM 15391T (97.3%) and Paenibacillus borealis DSM 13188T (97.2%). The main fatty acids components was anteiso-C15:0 (48.1%). The predominant isoprenoid quinone was MK-7. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The G+C content of strain L201T was 43.9%. DNA–DNA relatedness between L201T and the reference strain was 29.8%. Biological and biochemical tests, protein patterns, genomic DNA fingerprinting and comparison of cellular fatty acids distinguished strain L201T from the closely related Paenibacillus species. Based on these data, the novel species Paenibacillus bryophyllum sp. nov. is proposed, with the type strain L201T(=?KCTC 33951 T?=?GDMCC 1.1251 T).  相似文献   

10.
Using a new culture method for unculturable soil bacteria, strain NB5T was isolated from forest soil at Kyonggi University, and characterized taxonomically on the basis of 16S rRNA gene sequence as well as phenotypic and chemotaxonomic characteristics. The novel strain was a Gram- and catalase-positive, rod-shaped bacterium, which grew in the pH range 6.0–9.5 (optimum, 6.5–9.5) and at temperatures between 15°C and 45°C (optimum, 25–40°C). Growth was possible at 0–5% NaCl (optimum, 0% to 3%) in nutrient, Luria-Bertani, and trypticase soy broths (TSB), as well as R2A medium (with optimal growth in TSB). A phylogenetic analysis of the 16S rRNA gene sequence showed that the novel strain was affiliated with the genus Paenibacillus and had 96.8% and 96.5% similarity to P. nanensis MX2-3T and P. agaridevorans DSM 1355T, respectively. The predominant menaquinone in NB5T was MK-7; the major fatty acids were anteiso-C15:0 and iso-C16:0; and the DNA G+C content was 54.5 mol%. We propose this strain as a novel species of the genus Paenibacillus, and suggest the name Paenibacillus pinesoli sp. nov. (type strain, KACC 17472T=KEMB 9005-025T=JCM 19203T).  相似文献   

11.
A novel Gram-positive, rod-shaped, motile, spore-forming, nitrogen-fixing bacterium, designated strain 7188T, was isolated from jujube rhizosphere soil in Beijing, China. The strain grew at 4–40 °C and pH 6–12, with an optimum of 30 °C and pH 7.0, respectively. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain 7188T is a member of the genus Paenibacillus. Levels of 16S rRNA gene sequence similarities between strain 7188T and the type strains of all recognized members of the genus Paenibacillus were below 96 %. The major cellular fatty acids were anteiso-C15:0, anteiso-C17:0 and C16:0. The predominant menaquinone was MK-7. The DNA G+C content of strain 7188T was 60.3 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminophospholipids. The diamino acid in the cell wall peptidoglycan is meso-diaminopimelic acid. On the basis of these results, strain 7188T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus beijingensis sp. nov. is proposed. The type strain is 7188T (=ACCC 03082T = DSM 24997T).  相似文献   

12.
A novel bacterial strain Sl 79T was isolated from a deep surface sediment sample obtained from the Sea of Japan and investigated by phenotypic and molecular methods. The bacterium Sl 79T was Gram-positive, facultatively anaerobic, spore-forming, motile and able to form two different types of colonies. It contained the major menaquinone MK-7 and anteiso-C15:0 followed by iso-C15:0 as predominant fatty acids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Sl 79T belonged to the genus Paenibacillus where it clustered to Paenibacillus apiarius NRRL NRS-1438T with a sequence similarity of 97.7 % and sharing sequence similarities below than 96.7 % to other validly named Paenibacillus species. Strain Sl 79T was found to possess a remarkable inhibitory activity against indicatory microorganisms. On the basis of combined spectral analyses, strain Paenibacillus sp. Sl 79T was established to produce isocoumarin and novel peptide antibiotics. On the basis of DNA–DNA relatedness, phenotypic and phylogenetic data obtained, it was concluded that strain Sl 79T represents a novel species, Paenibacillus profundus sp. nov. with the type strain Sl 79T = KMM 9420T = NRIC 0885T.  相似文献   

13.
Strain JLT2015T was isolated from surface seawater of the Southeastern Pacific. The strain was Gram-negative, aerobic, motile by gliding, and rod shaped. The dominant fatty acids were C18:1ω7c, C16:0, and C16:1ω7c. The major respiratory ubiquinone was Q-10, and the predominant polyamine pattern was spermidine. The components of the polar lipid profile were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and sphingoglycolipid. The DNA G+C content was 64.2 %. Phylogenetic analysis based on 16S rRNA gene sequence revealed strain JLT2015T belonged to belong to the family Sphingomonadaceae, exhibiting 94.7 % 16S rRNA gene sequence similarity with Novosphingobium pentaromativorans. On the basis of the taxonomic data presented, together with phylogenetic and genetic characteristics, strain JLT2015T is considered to represent a novel genus, for which the name Pacificamonas flava gen. nov., sp. nov. is proposed. The type strain of Pacificamonas flava is JLT2015T (=LMG27364T = CGMCC1.12401T).  相似文献   

14.
A novel cellulolytic bacterium, strain S23T, was isolated from the rhizosphere of the pine trees in Daejeon, Republic of Korea. This isolate was Gram-positive, strictly aerobic, rod-shaped, catalase-negative, oxidase-positive, motile by means of peritrichous flagella, and tested positive for alkaline phosphatase, esterase lipase, leucine arylamidase, α-galactosidase, and β-galactosidase activities. The DNA G+C content was 49.5 mol%. The main cellular fatty acids were anteiso-C15:0 (51.9%), iso-C16:0 (14.7%), and iso-C15:0 (13.2%). The major isoprenoid quinone was menaquinone 7 (MK-7). Diagnostic diamino acid in the cell-wall pepti-doglycan was meso-diaminopimelic acid. Comparative 16S rRNA gene sequence analysis showed that this strain clustered with Paenibacillus species. The 16S rRNA gene sequence similarity values between S23T and other Paenibacillus species were between 89.9% and 95.9%, and S23T was most closely related to Paenibacillus tarimensis SA-7-6T. On the basis of phylogenetic and phenotypic properties of strain S23T, the isolate is considered as a novel species belonging to the genus Paenibacillus. Therefore, the name, Paenibacillus pinihumi sp. nov., is proposed for the rhizosphere isolate; the type strain is S23T (=KCTC 13695T =KACC 14199T =JCM 16419T)  相似文献   

15.
A phosphate-solubilizing bacterial strain designated PS38T was isolated from farm soil. The isolate was a Gram-positive, motile, endospore-forming, rod-shaped bacterium. It grew optimally at 37°C and pH 7.5. The predominant cellular fatty acids were anteiso-C15:0, anteiso-C17:0, and iso-C16:0. The DNA G+C content was 49.5 mol% and the predominant menaquinone was MK-7. Phylogenese analyses based on 16S rRNA gene sequences showed that the strain PS38T belonged to the genus Paenibacillus and was most closely related to Paenibacillus chibensis JCM 9905T, P. barengoltzii SAFN-016T, P. timonensis 2301032T, and P. motobuensis MC10T with 96.3%, 96.0%, 95.9%, and 95.5% 16S rRNA gene sequence similarity, respectively. On the basis of morphological, chemotaxonomic, physiological, and phylogenetic properties, strain PS38T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus telluris sp. nov. is proposed. The type strain is PS38T (=KCTC 13946T =CGMCC 1.10695T).  相似文献   

16.
A novel nitrogen-fixing bacterium, BJ-18T, was isolated from wheat rhizosphere soil. Strain BJ-18T was observed to be Gram-positive, facultatively anaerobic, motile and rod-shaped (0.4–0.9 μm × 2.0–2.9 μm). Phylogenetic analysis based on a partial nifH gene sequence and an assay for nitrogenase activity showed its nitrogen-fixing capacity. Phylogenetic analysis based on full 16S rRNA gene sequences suggested that strain BJ-18T is a member of the genus Paenibacillus. High similarity of 16S rRNA gene sequence was found between BJ-18T and Paenibacillus peoriae DSM 8320T (99.05 %), Paenibacillus jamilae DSM 13815T (98.86 %), Paenibacillus brasiliensis DSM 13188T (98.55 %), Paenibacillus polymyxa DSM 36T (98.74 %), Paenibacillus terrae DSM 15891T (97.99 %) and Paenibacillus kribbensis JCM 11465T (97.92 %), whereas the similarity was below 96.0 % between BJ-18T and the other Paenibacillus species. DNA–DNA relatedness between strain BJ-18T and P. peoriae DSM 8320T, P. jamilae DSM 13815T, P. brasiliensis DSM 13188T, P. polymyxa DSM 36T, P. kribbensis JCM 11465T and P. terrae DSM 15891T was determined to be 43.6 ± 2.7, 34.2 ± 5.3, 47.9 ± 6.6, 36.8 ± 3.5, 27.4 ± 4.3 and 23.6 ± 4.1 % respectively. The DNA G+C content of BJ-18T was determined to be 45.8 mol %. The major fatty acid was identified as anteiso-C15:0 (67.1 %). The polar lipids present in strain BJ-18T were identified as diphosphatidylglycerol, phosphatidyl methylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. The phenotypic and genotypic characteristics, and DNA–DNA relatedness data, suggest that BJ-18T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus beijingensis sp. nov. (Type strain BJ-18T=DSM25425T=CGMCC 1.12045T) is proposed.  相似文献   

17.
A Gram-positive, thermophilic, strictly aerobic bacterium, designated WP-1T, was isolated from a sediment sample from a hot spring in Fujian province of China and subjected to a polyphasic taxonomic study. Cells of strain WP-1T were rods (~0.6–0.8 × 2.5–3.5 μm) and motile by means of peritrichous flagella. Endospores were ellipsoidal in terminal or subterminal positions. Strain WP-1T grew at 37–60 °C (optimum 42–45 °C), 0–3 % NaCl (optimum 1 %, w/v) and pH 3.0–9.0 (optimum pH 6.5–7.0). The predominant menaquinone was MK-7. The major fatty acids were anteiso-C15:0, iso-C16:0, C16:0 and anteiso-C17:0. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, two glycolipids, two unidentified phospholipids and two unknown polar lipids. The cell-wall peptidoglycan contained meso-diaminopimelic acid (meso-DAP). The G + C content of the genomic DNA was 52.5 %. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain WP-1T is a member of the genus Paenibacillus and exhibited sequence similarity of 99.3 % to Paenibacillus macerans DSM 24T and both strains represented a separate lineage from all other Paenibacillus species. However, the level of DNA–DNA relatedness between strain WP-1T and P. macerans DSM 24T was 34.0 ± 4.7 %. On the basis of phylogenetic, physiological and chemotaxonomic analysis data, strain WP-1T is considered to represent as a novel species of the genus Paenibacillus, for which the name Paenibacillus thermophilus sp. nov., is proposed, with the type strain WP-1T (=DSM 24746T = JCM 17693T = CCTCC AB 2011115T).  相似文献   

18.
A novel bacterium, strain 1ZS3-15T, was isolated from rhizosphere of rice. Its taxonomic position was investigated using a polyphasic approach. The novel strain was observed to be Gram-stain positive, spore-forming, aerobic, motile and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 1ZS3-15T was recovered within the genus Paenibacillus. It is closely related to Paenibacillus pectinilyticus KCTC 13222T (97.9 % similarity), Paenibacillus frigoriresistens CCTCC AB 2011150T (96.8 %), Paenibacillus alginolyticus JCM 9068T (96.4 %) and Paenibacillus chondroitinus DSM 5051T (95.5 %). The fatty acid profile of strain 1ZS3-15T, which showed a predominance of anteiso-C15:0 and iso-C16:0, supported the allocation of the strain into the genus Paenibacillus. The predominant menaquinone was found to be MK-7. The polar lipids profile of strain 1ZS3-15T was found to consist of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified lipid and two unidentified aminophospholipids. The cell wall peptidoglycan contains meso-diaminopimelic acid. Based on draft genome sequences, the DNA–DNA relatedness between strain 1ZS3-15T and the closely related species P. pectinilyticus KCTC 13222T are 24.2 ± 1.0 %, and the Average Nucleotide Identity values between the strains are 78.9 ± 0.1 %, which demonstrated that this isolate represents a new species in the genus Paenibacillus. The DNA G+C content was determined to be 45.3 mol%, which is within the range reported for Paenibacillus species. Characterisation by genotypic, chemotaxonomic and phenotypic analysis indicated that strain 1ZS3-15T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus oryzisoli sp. nov. is proposed. The type strain is 1ZS3-15T (= ACCC 19783T = JCM 30487T).  相似文献   

19.
Two novel aerobic p-n-nonylphenol-degrading bacterial strains were isolated from seawater obtained from the coastal region of Ogasawara Islands, Japan. The 16S rRNA gene sequence analysis indicated that the strains are affiliated with the order Alteromonadales within the class Gammaproteobacteria. One isolate, strain KU41G2, is most closely related to Maricurvus nonylphenolicus (99.2 % similarity), and is tentatively identified as M. nonylphenolicus. The other isolate, strain KU41GT, is also most closely related to M. nonylphenolicus; however, the 16S rRNA gene sequence similarity was only 94.7 %. Cells of strain KU41GT are Gram-negative rods with a single polar flagellum. The predominant respiratory lipoquinone was ubiquinone-8, and the major cellular fatty acids were C17:1 ω8c (24.2 %); C15:0 iso 2-OH; and/or C16:1 ω7c (16.3 %), C15:0 (10.3 %), C11:0 3-OH (9.5 %), C9:0 3-OH (6.7 %), C10:0 3-OH (6.4 %), and C18:1 ω7c (5.5 %). The DNA G+C content was 53.3 mol%. On the basis of physiological, chemotaxonomic, and phylogenetic data, strain KU41GT is suggested to represent a novel species of a new genus, for which we propose the name Pseudomaricurvus alkylphenolicus gen. nov., sp. nov. The type strain of P. alkylphenolicus is KU41GT (=JCM 19135T = KCTC 32386T).  相似文献   

20.
Strain CO 4–7T was isolated from greenhouse soil used for cultivation of cucumbers in Korea. The 16S rRNA gene sequence of strain CO 4–7T showed the highest sequence similarity with Paenibacillus contaminans CKOBP-6T (94.2%) among the type strains. Strain CO 4–7T was a strictly aerobic, Gram-staining-positive, endospore-forming, and motile rodshaped bacterium. Strain CO 4–7T grew at 10–45°C (optimum, 30°C), at pH 6.0–7.5 (optimum, pH 6.5) and in the presence of 0–5% NaCl (optimum, 0.5%). The DNA G+C content of strain CO 4–7T was 48.5 mol%. It contained MK-7 as the major isoprenoid quinone and anteiso-C15:0 (51.8%), C16:0 (12.7%), and iso-C16:0 (8.6%) as the major fatty acids. The cell wall contained meso-diaminopimelic acid. Based on evidence from our polyphasic taxonomic study, it was concluded that strain CO 4-7T should be classified as a novel species of the genus Paenibacillus, for which, the name Paenibacillus cucumis sp. nov. is proposed. The type strain is CO 4–7T (=KACC 17444T=JCM 19515T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号