首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Genetic diversity can help explain disease susceptibility and differential drug response. The most common type of variant is the single nucleotide polymorphism (SNP). We present a low-cost, high throughput assay for SNP genotyping. METHODS: The assay uses oligonucleotide probes covalently attached to fluorescently encoded microspheres. These probes are hybridized directly to fluorescently labeled polymerase chain reaction (PCR) products and the results are analyzed in a standard flow cytometer. RESULTS: The genotypes determined with our assay are in good agreement with those determined by TaqMan. The range of G/C content for oligonucleotide probes was 23.5-65% in the 17 bases surrounding the SNP. Further optimization of probe length and target concentration is shown to dramatically enhance the assay performance for certain SNPs. Using microspheres which have unique fluorescent signatures, we performed a 32-plex assay where we simultaneously determined the genotypes of eight different polymorphic genes. CONCLUSIONS: We demonstrate, for the first time, the feasibility of multiplexed genotyping with suspension arrays using direct hybridization analyses. Our approach enables probes to be removed from or added to an array, enhancing flexibility over conventional chips. The ability to multiplex both the PCR preparation and the hybridization should enhance the throughput, cost, and speed of the assay.  相似文献   

2.
High-resolution melting of polymerase chain reaction (PCR) products can detect heterozygous mutations and most homozygous mutations without electrophoretic or chromatographic separations. However, some homozygous single nucleotide polymorphism (SNPs) have melting curves identical to that of the wild-type, as predicted by nearest neighbor thermodynamic models. In these cases, if DNA of a known reference genotype is added to each unknown before PCR, quantitative heteroduplex analysis can differentiate heterozygous, homozygous, and wild-type genotypes if the fraction of reference DNA is chosen carefully. Theoretical calculations suggest that melting curve separation is proportional to heteroduplex content difference and that the addition of reference homozygous DNA at one seventh of total DNA results in the best discrimination between the three genotypes of biallelic SNPs. This theory was verified experimentally by quantitative analysis of both high-resolution melting and temperature-gradient capillary electrophoresis data. Reference genotype proportions other than one seventh of total DNA were suboptimal and failed to distinguish some genotypes. Optimal mixing before PCR followed by high-resolution melting analysis permits genotyping of all SNPs with a single closed-tube analysis.  相似文献   

3.
We describe a convenient, cost-effective and flexible medium-throughput single nucleotide polymorphism (SNP) genotyping method, Multiplex SNP-SCALE, which enables the simultaneous amplification by polymerase chain reaction (PCR) of up to 25 (or potentially more) loci followed by electrophoresis in an automated DNA sequencer. We extended the original SNP-SCALE method to include (i) use of a commercial multiplex PCR kit, (ii) a four-dye system, (iii) much-reduced (2-μL) reaction volumes, (iv) drying down of template DNA before PCR, (v) use of pig-tailed primers, (vi) a PCR product weighting system, (vii) a standard optimized touchdown PCR thermocycling programme, and (viii) software (SNP-SCALE Primer Designer) that automatically designs suitable SNP-SCALE primers for a batch of loci. This new protocol was validated for different types of SNPs. The method is cost- and time-effective for medium-scale evolutionary and ecological projects involving 10s to 100s of loci.  相似文献   

4.
A facile, rapid, stable and sensitive approach for fluorescent detection of single nucleotide polymorphism (SNP) is designed based on DNA ligase reaction and π-stacking between the graphene and the nucleotide bases. In the presence of perfectly matched DNA, DNA ligase can catalyze the linkage of fluorescein amidite-labeled single-stranded DNA (ssDNA) and a phosphorylated ssDNA, and thus the formation of a stable duplex in high yield. However, the catalytic reaction cannot effectively carry out with one-base mismatched DNA target. In this case, we add graphene to the system in order to produce different quenching signals due to its different adsorption affinity for ssDNA and double-stranded DNA. Taking advantage of the unique surface property of graphene and the high discriminability of DNA ligase, the proposed protocol exhibits good performance in SNP genotyping. The results indicate that it is possible to accurately determine SNP with frequency as low as 2.6% within 40 min. Furthermore, the presented flexible strategy facilitates the development of other biosensing applications in the future.  相似文献   

5.
An improved approach for increasing the multiplex level of single nucleotide polymorphism (SNP) typing by adapter ligation-mediated allele-specific amplification (ALM-ASA) has been developed. Based on an adapter ligation, each reaction requires n allele-specific primers plus an adapter-specific primer that is common for all SNPs. Thus, only n+1 primers are used for an n-plex PCR amplification. The specificity of ALM-ASA was increased by a special design of the adapter structure and PCR suppression. Given that the genetic polymorphisms in the liver enzyme cytochrome P450 CYP2D6 (debrisoquine 4-hydroxylase) have profound effects on responses of individuals to a particular drug, we selected 17 SNPs in the CYP2D6 gene as an example for the multiplex SNP typing. Without extensive optimization, we successfully typed 17-plex SNPs in the CYP2D6 gene by ALM-ASA. The results for genotyping 70 different genome samples by the 17-plex ALM-ASA were completely consistent with those obtained by both Sanger's sequencing and PCR restriction fragment length polymorphism (PCR-RFLP) analysis. ALM-ASA is a potential method for SNP typing at an ultra-low cost because of a high multiplex level and a simple optimization step for PCR. High-throughput SNP typing could be readily realized by coupling ALM-ASA with a well-developed automation device for sample processing.  相似文献   

6.
BACKGROUND: We have developed a rapid, high throughput method for single nucleotide polymorphism (SNP) genotyping that employs an oligonucleotide ligation assay (OLA) and flow cytometric analysis of fluorescent microspheres. METHODS: A fluoresceinated oligonucleotide reporter sequence is added to a "capture" probe by OLA. Capture probes are designed to hybridize both to genomic "targets" amplified by polymerase chain reaction and to a separate complementary DNA sequence that has been coupled to a microsphere. These sequences on the capture probes are called "ZipCodes". The OLA-modified capture probes are hybridized to ZipCode complement-coupled microspheres. The use of microspheres with different ratios of red and orange fluorescence makes a multiplexed format possible where many SNPs may be analyzed in a single tube. Flow cytometric analysis of the microspheres simultaneously identifies both the microsphere type and the fluorescent green signal associated with the SNP genotype. RESULTS: Application of this methodology is demonstrated by the multiplexed genotyping of seven CEPH DNA samples for nine SNP markers located near the ApoE locus on chromosome 19. The microsphere-based SNP analysis agreed with genotyping by sequencing in all cases. CONCLUSIONS: Multiplexed SNP genotyping by OLA with flow cytometric analysis of fluorescent microspheres is an accurate and rapid method for the analysis of SNPs.  相似文献   

7.
An integrated allele-specific (AS) polymerase chain reaction (PCR) and capillary electrophoresis (CE) microdevice has been developed for multiplex single nucleotide polymorphism (SNP) genotyping on a portable instrumentation, which was applied for on-site identification of HANWOO (Korean indigenous beef cattle). Twelve sets of primers were designed for targeting beef cattle's eleven SNP loci for HANWOO verification and one primer set for a positive PCR control, and the success rate for identification of HANWOO was demonstrated statistically. The AS PCR and CE separation for multiplex SNP typing was carried out on a glass-based microchip consisting of four layers: a microchannel plate for microfluidic control, a Pt-electrode plate for a resistance temperature detector (RTD), a poly(dimethylsiloxane) (PDMS) membrane and a manifold glass for microvalve function. The operation of the sample loading, AS PCR, microvalve, and CE on a chip was automated with a portable genetic analyzer, and the laser-induced fluorescence detection was performed on a miniaturized fluorescence detector. The blind samples were correctly identified as a HANWOO by showing one or two amplicon peaks in the electropherogram, while the imported beef cattle revealed more than five peaks. Our genetic analysis platform provides rapid, accurate, and on-site multiplex SNP typing.  相似文献   

8.
Sweet orange [Citrus sinensis (L.) Osbeck] represents the most important Citrus species, followed by clementine (C. clementina Hort. ex Tan.). Citrus species and genotypes are difficult to recognize as they have a moderate level of diversity due to nucellar selection, vegetative propagation and origin by single spontaneous mutation. Despite the large number of available sequences and the existence of a draft assembly of sweet orange and clementine, there are currently no single nucleotide polymorphism (SNP) databases for Citrus species. For this purpose, the QualitySNP software was used to discover SNPs in 19 Citrus species starting from 540,000 expressed sequence tags (ESTs) assembled in 52,000 contigs. The vast majority of ESTs, contigs and SNPs were found in C. clementina and C. sinensis: 4,400 out of 16,000 contigs (27 %) of C. clementina and 4,100 out of 17,000 contigs (24 %) of C. sinensis contained putative SNPs. A total of 3,634 sequences were associated with enzymes belonging to 121 metabolic KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, among which the secondary metabolite pathway was the most represented. A total of 163 SNPs from 52 contigs and genes of specific functional categories were validated and 81 polymorphic sites were found. Thirty-seven selected SNPs, validated by Sanger sequencing, confirmed that polymorphisms were mainly between species, while poor within-species variability was discovered. This work provides a collection of 15,879 putative SNP markers that could be exploited by the Citrus community. Furthermore, the validated SNPs associated with specific genes could be used for functional genetic studies in germplasm diversity analysis, mapping and breeding.  相似文献   

9.
Advances in technologies for identifying genetic polymorphisms rapidly and accurately will dramatically accelerate the discovery of disease-related genes. Among a variety of newly described methods for rapid typing of single-nucleotide polymorphisms (SNPs), gene detection using DNA microarrays is gradually achieving widespread use. This method involves the use of short (11- to 13-mer) allele-specific oligonucleotides. This method allows simultaneous analysis of many SNPs in DNAs from a large number of individuals, in a single experiment. In this work, we evaluated the accuracy of a new microarray-based short allele-specific oligonucleotide (ASO) hybridization method. There is a 96-well formatted array on a single plate, in which up to 256 spots are included in each well. Fluorescent probes for our experiments were produced by multiplex PCR amplification often target SNP-containing regions. We genotyped 192 individuals across a panel of ten single base variations, which included an insertion/deletion polymorphism. For comparison, we genotyped the same individuals for the same SNPs by the method of single-base extension with fluorescence detection. The typing accuracies of the microarray-based PCR-ASO and single-base extension methods were calculated as 99.9% and 99.1%, respectively, on the basis of genotyping results determined by direct sequencing. We conclude that the microarray-based hybridization method using short ASO probes represents a potential breakthrough technology for typing large numbers of SNPs rapidly and efficiently.  相似文献   

10.
To date, various methods have been developed to facilitate the genotyping of a single nucleotide polymorphism (SNP) for aiding in the diagnosis and treatment of inherited diseases. The most commonly used method for SNP genotyping is an allele-specific hybridization procedure using an expensive fluorochrome-labeled oligonucleotide probe and a specialized fluorescence analyzer. Here, we introduce a simple and reliable genotyping method using a 1:1 mixture of 5'-phosphate-labeled and nonlabeled allele-specific polymerase chain reaction (PCR) primers. The method is based on the difference in mobility of the phosphorylated and nonphosphorylated PCR products (in the same number of basepairs) on phosphate-affinity polyacrylamide gel electrophoresis. The phosphate-affinity site is a polyacrylamide-bound dinuclear zinc(II) complex, which preferentially captures the 5'-phosphate-labeled allele-specific product compared with the corresponding nonlabeled product. The obtained DNA migration bands can be visualized by ethidium bromide staining. We demonstrate the genotyping of a SNP reported in a human cardiac sodium channel gene, SCN5A, using this novel procedure.  相似文献   

11.

Background

The identification of copy number aberration in the human genome is an important area in cancer research. We develop a model for determining genomic copy numbers using high-density single nucleotide polymorphism genotyping microarrays. The method is based on a Bayesian spatial normal mixture model with an unknown number of components corresponding to true copy numbers. A reversible jump Markov chain Monte Carlo algorithm is used to implement the model and perform posterior inference.

Results

The performance of the algorithm is examined on both simulated and real cancer data, and it is compared with the popular CNAG algorithm for copy number detection.

Conclusions

We demonstrate that our Bayesian mixture model performs at least as well as the hidden Markov model based CNAG algorithm and in certain cases does better. One of the added advantages of our method is the flexibility of modeling normal cell contamination in tumor samples.  相似文献   

12.
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applications in rice (Oryza sativa L.), we designed seven GoldenGate VeraCode oligo pool assay (OPA) sets for the Illumina BeadXpress Reader. Validated markers from existing 1536 Illumina SNPs and 44?K Affymetrix SNP chips developed at Cornell University were used to select subsets of informative SNPs for different germplasm groups with even distribution across the genome. A 96-plex OPA was developed for quality control purposes and for assigning a sample into one of the five O. sativa population subgroups. Six 384-plex OPAs were designed for genetic diversity analysis, DNA fingerprinting, and to have evenly-spaced polymorphic markers for quantitative trait locus (QTL) mapping and background selection for crosses between different germplasm pools in rice: Indica/Indica, Indica/Japonica, Japonica/Japonica, Indica/O. rufipogon, and Japonica/O. rufipogon. After testing on a diverse set of rice varieties, two of the SNP sets were re-designed by replacing poor-performing SNPs. Pilot studies were successfully performed for diversity analysis, QTL mapping, marker-assisted backcrossing, and developing specialized genetic stocks, demonstrating that 384-plex SNP genotyping on the BeadXpress platform is a robust and efficient method for marker genotyping in rice.  相似文献   

13.
We assessed the whole genome amplification strategy, known as multiple displacement amplification (MDA), for use with the TaqMan genotyping platform for DNA samples derived from two case-control studies nested in the Nurses' Health Study and the Physicians' Health Study. Our objectives were to (1) quantify DNA yield from samples of varying starting concentrations and (2) assess whether MDA products give an accurate representation of the original genomic sequence. Multiple displacement amplification yielded a mean 23000-fold increase in DNA quantity and genotyping results demonstrate 99.95% accuracy across six SNPs from four genes for 352 samples included in this study. These results suggest that MDA will provide a sufficiently robust amplification of limiting samples of genomic DNA that can be used for SNP genotyping in large case-control studies of complex diseases.  相似文献   

14.
Single nucleotide polymorphisms (SNPs) are single-base inheritable variations in a given and defined genetic location that occur in at least 1% of the population. SNPs are useful markers for genetic association studies in disease susceptibility or adverse drug reactions, in evolutionary studies and forensic science. Given the potential impact of SNPs, the biotechnology industry has focused on the development of high-throughput methods for SNP genotyping. Many highthroughput SNP genotyping technologies are currently available and many others are being patented recently. Each offers a unique combination of scale, accuracy, throughput and cost. In this review, we described some of the most important recent SNP genotyping methods and also recent patents associated with it.  相似文献   

15.
Molecular genetic marker development in perennial ryegrass has largely been dependent on anonymous sequence variation. The availability of a large-scale EST resource permits the development of functionally-associated genetic markers based on SNP variation in candidate genes. Genic SNP loci and associated haplotypes are suitable for implementation in molecular breeding of outbreeding forage species. Strategies for in vitro SNP discovery through amplicon cloning and sequencing have been designed and implemented. Putative SNPs were identified within and between the parents of the F1(NA6 × AU6) genetic mapping family and were validated among progeny individuals. Proof-of-concept for the process was obtained using the drought tolerance-associated LpASRa2 gene. SNP haplotype structures were determined and correlated with predicted amino acid changes. Gene-length LD was evaluated across diverse germplasm collections. A survey of SNP variation across 100 candidate genes revealed a high frequency of SNP incidence (c. 1 per 54 bp), with similar proportions in exons and introns. A proportion (c. 50%) of the validated genic SNPs were assigned to the F1(NA6 × AU6) genetic map, showing high levels of coincidence with previously mapped RFLP loci. The perennial ryegrass SNP resource will enable genetic map integration, detailed LD studies and selection of superior allele content during varietal development.  相似文献   

16.
Development of a single nucleotide polymorphism map of porcine chromosome 2   总被引:1,自引:0,他引:1  
Single nucleotide polymorphism markers are developed on SSC2, predominantly on the p-arm. Several studies reported a quantitative trait loci (QTL) for backfat thickness in this region. Single nucleotide polymorphisms were identified by comparative re-sequencing of polymerase chain reaction (PCR) products from a panel of eight individuals. The panel consisted of five Large Whites (each from a different Dutch breeding company), a Meishan, a Pietrain and a Wild Boar. In total, 67 different PCR products were sequenced and 301 SNPs were identified in 32,429 bp of consensus sequence, an average of one SNP in every 108 bp. After correction for sample size, this polymorphism rate corresponds to a heterozygosity value of one SNP in every 357 bp. For 63% of the SNPs, there was variation among the five Large Whites, and these SNPs are relevant for linkage and association studies in commercial populations. Comparing the Whites with other breeds revealed higher variation rates with: (i) Meishan, 89%; (ii) Pietrain, 69%; (iii) Wild Boar, 70%. Because many of the experimental populations to identify QTL are based on crosses between these breeds, these SNPs are relevant for the fine mapping of the QTL identified within these crosses.  相似文献   

17.
An efficient procedure for genotyping single nucleotide polymorphisms   总被引:16,自引:0,他引:16       下载免费PDF全文
Analysis of single nucleotide polymorphisms (SNPs) has been and will be increasingly utilized in various genetic disciplines, particularly in studying genetic determinants of complex diseases. Such studies will be facilitated by rapid, simple, low cost and high throughput methodologies for SNP genotyping. One such method is reported here, named tetra-primer ARMS-PCR, which employs two primer pairs to amplify, respectively, the two different alleles of a SNP in a single PCR reaction. A computer program for designing primers was developed. Tetra-primer ARMS-PCR was combined with microplate array diagonal gel electrophoresis, gaining the advantage of high throughput for gel-based resolution of tetra-primer ARMS-PCR products. The technique was applied to analyse a number of SNPs and the results were completely consistent with those from an independent method, restriction fragment length polymorphism analysis.  相似文献   

18.
Using currently available MS-based methods, accurate mass measurements are essential for the characterization of DNA oligomers. However, there is a lack of specificity in mass peaks when the characterization of individual DNA species in a mass spectrum is dependent solely upon the mass-to-charge ratio (m/z). Here, we utilize nucleotide-specific tagging with stable isotopes to provide internal signatures that quantitatively display the nucleotide content of oligomer peaks in MS spectra. The characteristic mass-split patterns induced by the partially 13C/15N-enriched dNTPs in DNA oligomers indicate the number of labeled precursors and in turn the base substitution in each mass peak, and provide for efficient SNP detection. Signals in mass spectra not only reflect the masses of particular DNA oligomers, but also their specific composition of particular nucleotides. The measurements of mass tags are relative in the mass-split pattern and, hence, the accuracy of the determination of nucleotide substitution is indirectly increased. For high sample throughput, 13C/15N-labeled sequences of interest have been generated, excised in solution and purified for MS analysis in a single-tube format. This method can substantially improve the specificity, accuracy and efficiency of mass spectrometry in the characterization of DNA oligomers and genetic variations.  相似文献   

19.
Pseudomonas aeruginosa has a wide ecological distribution that includes natural habitats and clinical settings. To analyze the population structure and distribution of P. aeruginosa, a collection of 111 isolates of diverse habitats and geographical origin, most of which contained a genome with a different SpeI macrorestriction profile, was typed by restriction fragment length polymorphism based on 14 single nucleotide polymorphisms (SNPs) located at seven conserved loci of the core genome (oriC, oprL, fliC, alkB2, citS, oprI, and ampC). The combination of these SNPs plus the type of fliC present (a or b) allowed the assignment of a genetic fingerprint to each strain, thus providing a simple tool for the discrimination of P. aeruginosa strains. Thirteen of the 91 identified SNP genotypes were found in two or more strains. In several cases, strains sharing their SNP genotype had different SpeI macrorestriction profiles. The highly virulent CHA strain shared its SNP genotype with other strains that had different SpeI genotypes and which had been isolated from nonclinical habitats. The reference strain PAO1 also shared its SNP genotype with other strains that had different SpeI genotypes. The P. aeruginosa chromosome contains a conserved core genome and variable amounts of accessory DNA segments (genomic islands and islets) that can be horizontally transferred among strains. The fact that some SNP genotypes were overrepresented in the P. aeruginosa population studied and that several strains sharing an SNP genotype had different SpeI macrorestriction profiles supports the idea that changes occur at a higher rate in the accessory DNA segments than in the conserved core genome.  相似文献   

20.
Single nucleotide polymorphisms (SNPs) represent the most common form of DNA sequence variation in mammalian livestock genomes. While the past decade has witnessed major advances in SNP genotyping technologies, genotyping errors caused, in part, by the biochemistry underlying the genotyping platform used, can occur. These errors can distort project results and conclusions and can result in incorrect decisions in animal management and breeding programs; hence, SNP genotype calls must be accurate and reliable. In this study, 263 Bos spp. samples were genotyped commercially for a total of 16 SNPs. Of the total possible 4,208 SNP genotypes, 4,179 SNP genotypes were generated, yielding a genotype call rate of 99.31% (standard deviation?±?0.93%). Between 110 and 263 samples were subsequently re-genotyped by us for all 16 markers using a custom-designed SNP genotyping platform, and of the possible 3,819 genotypes a total of 3,768 genotypes were generated (98.70% genotype call rate, SD?±?1.89%). A total of 3,744 duplicate genotypes were generated for both genotyping platforms, and comparison of the genotype calls for both methods revealed 3,741 concordant SNP genotype call rates (99.92% SNP genotype concordance rate). These data indicate that both genotyping methods used can provide livestock geneticists with reliable, reproducible SNP genotypic data for in-depth statistical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号