首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land use change and biological invasions collectively threaten biodiversity. Yet, few studies have addressed how altering the landscape structure and nutrient supply can promote biological invasions and particularly invasive spread (the spread of an invader from the place of introduction), or asked whether and how these factors interact with biotic interactions and invader properties. We here bridge this knowledge gap by providing a holistic network-based approach. Our approach combines a trophic network model with a spatial network model allowing us to test which combinations of abiotic and biotic factors can facilitate invasions and in particular invasive spread in food webs. We numerically simulated 6300 single-species invasions in clustered and random landscapes at different levels of nutrient supply. In total, our simulation experiment yielded 69% successful invasions – 71% in clustered landscapes and 66% in random landscapes, with the proportion of successful invasions increasing with nutrient supply. However, invasive spread was generally higher in random than in clustered landscapes. The latter can facilitate invasive spread within a habitat cluster, but prevent invasive spread between clusters. Low nutrient levels generally prevented the establishment of invasive species and their subsequent spread. However, successful invaders could have more severe impacts as they contribute more to total biomass density and species richness under such conditions. Good dispersal abilities drive the broad-scale spread of invasive species in fragmented landscapes. Our approach makes an important contribution towards a better understanding of what combination of landscape and invader properties can facilitate or prevent invasive spread in natural ecosystems. This should allow ecologists to more effectively predict and manage biological invasions.  相似文献   

2.
Patchiness is a defining characteristic of most natural and anthropogenic habitats, yet much of our understanding of how invasions spread has come from models of spatially homogeneous environments. Except for populations with Allee effects, an invader's growth rate when rare and dispersal determine its spread velocity; intraspecific competition has little to no influence. How this result might change with landscape patchiness, however, is poorly understood. We used simulation models and their analytical approximations to explore the effect of density dependence on the spread of annual plant invaders moving through heterogeneous landscapes with gaps in suitable habitat. We found that landscape patchiness and discrete invader population size interacted to generate a strong role for density dependence. Intraspecific competition greatly slowed the spread of invasions through patchy landscapes by regulating how rapidly a population could produce enough seeds to surpass habitat gaps. Populations with continuously varying density showed no such effect of density dependence. We adapted a stochastic dispersal model to approximate spread when gap sizes were small relative to the mean dispersal distance and a Markov chain approximation for landscapes with large gaps. Our work suggests that ecologists must consider reproduction at both low and high densities when predicting invader spread.  相似文献   

3.
To model the invasion of Prunus serotina invasion within a real forest landscape we built a spatially explicit, non-linear Markov chain which incorporated a stage-structured population matrix and dispersal functions. Sensitivity analyses were subsequently conducted to identify key processes controlling the spatial spread of the invader, testing the hypothesis that the landscape invasion patterns are driven in the most part by disturbance patterns, local demographical processes controlling propagule pressure, habitat suitability, and long-distance dispersal. When offspring emigration was considered as a density-dependent phenomenon, local demographic factors generated invasion patterns at larger spatial scales through three factors: adult longevity; adult fecundity; and the intensity of self-thinning during stand development. Three other factors acted at the landscape scale: habitat quality, which determined the proportion of the landscape mosaic which was potentially invasible; disturbances, which determined when suitable habitats became temporarily invasible; and the existence of long distance dispersal events, which determined how far from the existing source populations new founder populations could be created. As a flexible “all-in-one” model, PRUNUS offers perspectives for generalization to other plant invasions, and the study of interactions between key processes at multiple spatial scales.  相似文献   

4.
Both exotic and native species have been shown to evolve in response to invasions, yet the impacts of rapidly evolving interactions between novel species pairs have been largely ignored in studies of invasive species spread. Here, I use a mathematical model of an interacting invasive predator and its native prey to determine when and how evolutionary lability in one or both species might impact the dynamics of the invader's spatial advance. The model shows that evolutionarily labile invaders continually evolve better adapted phenotypes along the moving invasion front, offering an explanation for accelerating spread and spatial phenotype clines following invasion. I then analytically derive a formula to estimate the relative change in spread rate due to evolution. Using parameter estimates from the literature, this formula shows that moderate heritabilities and selection strengths are sufficient to account for changes in spread rates observed in historical and ongoing invasions. Evolutionarily labile native species can slow invader spread when genes flow from native populations with exposure to the invader into native populations ahead of the invasion front. This outcome is more likely in systems with highly diffuse native dispersal, net directional movement of natives toward the invasion front, or human inoculation of uninvaded native populations.  相似文献   

5.
Both habitat heterogeneity and species’ life-history traits play important roles in driving population dynamics, yet there is little scientific consensus around the combined effect of these two factors on populations in complex landscapes. Using a spatially explicit agent-based model, we explored how interactions between habitat spatial structure (defined here as the scale of spatial autocorrelation in habitat quality) and species life-history strategies (defined here by species environmental tolerance and movement capacity) affect population dynamics in spatially heterogeneous landscapes. We compared the responses of four hypothetical species with different life-history traits to four landscape scenarios differing in the scale of spatial autocorrelation in habitat quality. The results showed that the population size of all hypothetical species exhibited a substantial increase as the scale of spatial autocorrelation in habitat quality increased, yet the pattern of population increase was shaped by species’ movement capacity. The increasing scale of spatial autocorrelation in habitat quality promoted the resource share of individuals, but had little effect on the mean mortality rate of individuals. Species’ movement capacity also determined the proportion of individuals in high-quality cells as well as the proportion of individuals experiencing competition in response to increased spatial autocorrelation in habitat quality. Positive correlations between the resource share of individuals and the proportion of individuals experiencing competition indicate that large-scale spatial autocorrelation in habitat quality may mask the density-dependent effect on populations through increasing the resource share of individuals, especially for species with low mobility. These findings suggest that low-mobility species may be more sensitive to habitat spatial heterogeneity in spatially structured landscapes. In addition, localized movement in combination with spatial autocorrelation may increase the population size, despite increased density effects.  相似文献   

6.
Plant-soil feedbacks and invasive spread   总被引:1,自引:0,他引:1  
Plant invaders have been suggested to change soil microbial communities and biogeochemical cycling in ways that can feedback to benefit themselves. In this paper, we ask when do these feedbacks influence the spread of exotic plants. Because answering this question is empirically challenging, we show how ecological theory on 'pushed' and 'pulled' invasions can be used to examine the problem. We incorporate soil feedbacks into annual plant invasion models, derive the conditions under which such feedbacks affect spread, and support our approach with simulations. We show that in homogeneous landscapes, strong positive feedbacks can influence spreading velocity for annual invaders, but that empirically documented feedbacks are not strong enough to do so. Moreover, to influence spread, invaders must modify the soil environment over a spatial scale larger than is biologically realistic. Though unimportant for annual invader spread in our models, feedbacks do affect invader density and potential impact. We discuss how future research might consider the way landscape structure, dispersal patterns, and the time scales over which plant–soil feedbacks develop regulate the effects of such feedbacks on invader spread.  相似文献   

7.
Landscape diversity slows the spread of an invasive forest pest species   总被引:1,自引:0,他引:1  
According to the associational resistance hypothesis, diverse habitats provide better resistance to biological invasions than monocultures. Host‐plant abundance has been shown to affect the range expansion of invasive pests, but the effect of landscape diversity (i.e. density of host/non‐host patches and diversity of forest habitat patches) on invasions remains largely untested. We used boundary displacement models and boosted regression tree analyses to investigate the effects of landscape diversity on the invasion of Corsica by the maritime pine bast scale Matsucoccus feytaudi over an 18‐yr period. Taking the passive wind dispersal of the scale into account, we showed that open habitats and connectivity between host patches accelerated spread by up to 13%, whereas landscapes with high tree diversity and a high density of non‐host trees decreased scale spread by up to 14%. We suggest a new mechanism for such associational resistance to pest invasion at the landscape level, which we term ‘the pitfall effect’.  相似文献   

8.
Many biological invasions do not occur as a gradual expansion along a continuous front, but result from the expansion of satellite populations that become established at 'invasion hubs'. Although theoretical studies indicate that targeting control efforts at invasion hubs can effectively contain the spread of invasions, few studies have demonstrated this in practice. In arid landscapes worldwide, humans have increased the availability of surface water by creating artificial water points (AWPs) such as troughs and dams for livestock. By experimentally excluding invasive cane toads (Bufo marinus) from AWP, we show that AWP provide a resource subsidy for non-arid-adapted toads and serve as dry season refuges and thus invasion hubs for cane toads in arid Australia. Using data on the distribution of permanent water in arid Australia and the dispersal potential of toads, we predict that systematically excluding toads from AWP would reduce the area of arid Australia across which toads are predicted to disperse and colonize under average climatic conditions by 38 per cent from 2,242,000 to 1,385,000 km(2). Our study shows how human modification of hydrological regimes can create a network of invasion hubs that facilitates a biological invasion, and confirms that targeted control at invasion hubs can reduce landscape connectivity to contain the spread of an invasive vertebrate.  相似文献   

9.
The match between the environmental conditions of an introduction area and the preferences of an introduced species is the first prerequisite for establishment. Yet, introduction areas are usually landscapes, i.e. heterogeneous sets of habitats that are more or less favourable to the introduced species. Because individuals are able to disperse after their introduction, the quality of the habitat surrounding the introduction site is as critical to the persistence of introduced populations as the quality of the introduction site itself. Moreover, demographic mechanisms such as Allee effects or dispersal mortality can hamper dispersal and affect spread across the landscape, in interaction with the spatial distribution of favourable habitat patches. In this study, we investigate the impact of the spatial distribution of heterogeneous quality habitats on establishment and early spread. First, we simulated introductions in one‐dimensional landscapes for different dispersal rates and either dispersal mortality or Allee effects. The landscapes differed by the distribution of favourable and less favourable habitats, which were either clustered into few large aggregates of the same quality or scattered into multiple smaller ones. Second, we tested the predictions of simulations by performing experimental introductions of hymenopteran parasitoids (Trichogramma chilonis) in ‘clustered’ and ‘scattered’ microcosm landscapes. Results highlighted two impacts of the clustering of favourable habitat: by decreasing the risks of dispersal from the introduction site to unfavourable habitat early during the invasion, it increased establishment success. However, by increasing the distance between favourable habitat patches, it also hindered the subsequent spread of introduced species over larger areas.  相似文献   

10.
Invasion biology suffers from a lack of the ability to predict the outcome of particular invasions because of reliance on verbal models and lack of rigorous experimental data at the appropriate scale. More progress is likely to be made by considering invasions as population-level phenomena and initially focusing on specific taxa or particular categories of invasions. To this end, we propose a simple conceptual framework to motivate studies of invasion by salmonids (salmon, trout, grayling, and whitefish) in streams that emphasizes population-level mechanisms affecting native species and promoting spread by the invader. Specifically, the only direct mechanisms by which the abundance of the native species can decline are through biotic interactions which cause decreased reproductive rates or survival at specific life stages, net emigration, debilitating or fatal diseases introduced by the invader, or a combination of these factors. Conversely, abundance of the invader must increase by local reproduction, high survival, net immigration, or a combination of these factors. Review of existing salmonid invasion literature suggests that future studies could be improved by using manipulative field experiments at a spatial and temporal scale appropriate to address population-level processes, characterizing how movement affects the establishment and spread of an invader, and including abiotic context in experimental designs. Using the example of brook trout (Salvelinus fontinalis) invasion into streams containing native Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus) in the central Rocky Mountains (USA), we demonstrate how the framework can be used to design a manipulative field experiment to test for population-level mechanisms causing ecological effects and promoting invasion success. Experiments of this type will give invasion ecologists a useful example of how a taxon-specific invasion framework can improve the ability to predict ecological effects, and provide fishery biologists with the quantitative foundation necessary to better manage stream salmonid invasions.  相似文献   

11.
The spread of invasive species is a global problem of major ecological and economic concern. Landscape level assessment of invasive spread is critical, but remote sensing (RS) analyses are often complicated by the spectral similarity of species and the need to balance spatial resolution with data storage and analysis complexity. One example is the ridge and slough landscape (RSL) of the Florida Everglades, where inflowing nutrients have facilitated large‐scale cattail invasions. Hand delineation of aerial imagery has been successful in mapping cattail spread, but this technique requires considerable time and effort. Computerized classification of medium‐resolution imagery would increase the ability of scientists to provide up‐to‐date data for water management decisions. Advances in RS technologies have created opportunities that were not previously available in landscapes such as the RSL—to automatically classify sawgrass and cattail communities with medium‐resolution satellite imagery using knowledge of the invasion ecology of cattail and landscape context. We developed a computer‐classification technique that provided measure of cattail expansion that matched ground‐truthed data and show an increase in cattail area (similar to previous estimates), but a reduction in the rate of expansion over time. Although this technique can miss small patches of plants that might indicated new invasions, its rapid mapping can improve tracking of invasion fronts in the Everglades and other landscapes.  相似文献   

12.
Mounting theoretical evidence suggests that demographic stochasticity, environmental heterogeneity and biased movement of organisms individually affect the dynamics of biological invasions and range expansions. Studies of species spread in heterogeneous landscapes have traditionally characterized invasion velocities as functions of the mean resource density throughout the landscape, thus neglecting higher‐order moments of the spatial resource distribution. Here, we show theoretically that different spatial arrangements of resources lead to different spread velocities even if the mean resource density throughout the landscape is kept constant. Specifically, we find that increasing the resource autocorrelation length causes a reduction in the speed of species spread. The model shows that demographic stochasticity plays a key role in the slowdown, which is strengthened when individuals can actively move towards resources. We then experimentally corroborated the theoretically predicted reduction in propagation speed in microcosm experiments with the protist Euglena gracilis by comparing spread in landscapes with different resource autocorrelation lengths. Our work identifies the resource autocorrelation length as a key modulator and a simple measure of landscape susceptibility to biological invasions, which needs to be considered for predicting invasion dynamics within naturally heterogeneous environmental corridors.  相似文献   

13.
Biological invasions are one of the major threats to both ecosystem and economic functioning. Their management typically involves culling of the pest or removal of its habitat. The Asiatic red-bellied beautiful squirrel Callosciurus erythraeus is the first known introduction of a squirrel into South America. It established from five releases in 1973, using exotic trees to spread through Argentinean Pampas. It now causes substantial economic damage in agricultural and urban areas across >680 km2, and its continued spread threatens indigenous species. We developed a spatially explicit model of the invasion for the likely range of life-history parameters, matched against empirical data on patch occupancy in 2004. The two best-fitting models suggest the current population to be on the cusp of an explosive expansion. These models were used to predict future trends under alternative scenarios of strategic culling or habitat removal aimed at slowing the spread. The predictions for 18 yr into the future were that 1) the present lack of systematic management will lead to a 5-fold increase in area of occupancy, 2) removal of habitat down to half carrying capacity will thin the population but accelerate its spread, 3) 10 yr of culling above the maximum sustainable yield (MSY) will precipitate declines in abundance and patch occupancy towards extinction, but with immediate recovery upon cessation of the cull. We recommend continuous culling above the MSY in priority patches, aimed at slowing arrival to valuable conservation areas. This study demonstrates the need for prompt action to terminate invasions before they establish. The squirrel invasion is now irreversible after 30 yr of slow spread across fragmented habitat. Although culling requires public awareness campaigns and sustained governmental commitment, it is now the best feasible strategy for managing this invasion.  相似文献   

14.
Cost-effective surveillance strategies are needed for efficient responses to biological invasions and must account for the trade-offs between surveillance effort and management costs. Less surveillance may allow greater population growth and spread prior to detection, thereby increasing the costs of damages and control. In addition, surveillance strategies are usually applied in environments under continual invasion pressure where the number, size and location of established populations are unknown prior to detection. We develop a novel modeling framework that accounts for these features of the decision and invasion environment and determines the long term sampling effort that minimises the total expected costs of new invasions. The optimal solution depends on population establishment and growth rates, sample sensitivity, and sample, eradication, and damage costs. We demonstrate how to optimise surveillance systems under budgetary constraints and find that accounting for spatial heterogeneity in sampling costs and establishment rates can greatly reduce management costs.  相似文献   

15.
Habitat modification and biological invasions are key drivers of global environmental change. However, the extent and impact of exotic plant invasions in modified tropical landscapes remain poorly understood. We examined whether logging drives exotic plant invasions and whether their combined influences alter understory plant community composition in lowland rain forests in Borneo. We tested the relationship between understory communities and local‐ and landscape‐scale logging intensity, using leaf area index (LAI) and aboveground biomass (AGB) data from 192 plots across a logging‐intensity gradient from primary to repeatedly logged forests. Overall, we found relatively low levels of exotic plant invasions, despite an intensive logging history. Exotic species were more speciose, had greater cover, and more biomass in sites with more local‐scale canopy loss. Surprisingly, though, exotic species invasion was not related to either landscape‐scale canopy loss or road configuration. Moreover, logging and invasion did not seem to be acting synergistically on native plant composition, except that seedlings of the canopy‐dominant Dipterocarpaceae family were less abundant in areas with higher exotic plant biomass. Current low levels of invasion, and limited association with native understory community change, suggest there is a window of opportunity to manage invasive impacts. We caution about potential lag effects and the possibly severe negative impacts of exotic plant invasions on the long‐term quality of tropical forest, particularly where agricultural plantations function as permanent seed sources for recurrent dispersal along logging roads. We therefore urge prioritization of strategic management plans to counter the growing threat of exotic plant invasions in modified tropical landscapes.  相似文献   

16.
Mechanisms and consequences of biological invasions are a global issue. Yet, one of the key aspects, the initial phase of invasion, is rarely observed in detail. Data from aerial photographs covering the spread of Heracleum mantegazzianum (Apiaceae, native to Caucasus) on a local scale of hectares in the Czech Republic from the beginning of invasion were used as an input for an individual-based model (IBM), based on small-scale and short-time data. To capture the population development inferred from the photographs, long-distance seed dispersal, changes in landscape structures and suitability of landscape elements to invasion by H. mantegazzianum were implemented in the model. The model was used to address (1) the role of long-distance dispersal in regional invasion dynamics, and (2) the effect of land-use changes on the progress of the invasion. Simulations showed that already small fractions of seed subjected to long-distance dispersal, as determined by systematic comparison of field data and modelling results, had an over-proportional effect on the spread of this species. The effect of land-use changes on the simulated course of invasion depends on the actual level of habitat saturation; it is larger for populations covering a high proportion of available habitat area than for those in the initial phase of invasion. Our results indicate how empirical field data and model outputs can be linked more closely with each other to improve the understanding of invasion dynamics. The multi-level, but nevertheless simple structure of our model suggests that it can be used for studying the spread of similar species invading in comparable landscapes.  相似文献   

17.
Aim We present an integrated approach for predicting future range expansion of an invasive species (Chinese tallow tree) that incorporates statistical forecasting and analytical techniques within a spatially explicit, agent‐based, simulation framework. Location East Texas and Louisiana, USA. Methods We drew upon extensive field data from the US Forest Service and the US Geological Survey to calculate spread rate from 2003 to 2008 and to parameterize logistic regression models estimating habitat quality for Chinese tallow within individual habitat cells. We applied the regression analyses to represent population spread rate as a function of habitat quality, integrated this function into a logistic model representing local spread, and coupled this model with a dispersal model based on a lognormal kernel within the simulation framework. We simulated invasions beginning in 2003 based on several different dispersal velocities and compared the resulting spatial patterns to those observed in 2008 using cross Mantel’s tests. We then used the best dispersal velocity to predict range expansion to the year 2023. Results Chinese tallow invasion is more likely in low and flat areas adjacent to water bodies and roads, and less likely in mature forest stands and in pine plantations where artificial regeneration by planting seedlings is used. Forecasted invasions resulted in a distribution that extended from the Gulf Coast of Texas and Louisiana northward and westward as much as 300 km, representing approximately 1.58 million ha. Main conclusions Our new approach of calculating time series projections of annual range expansion should assist land managers and restoration practitioners plan proactive management strategies and treatments. Also, as field sampling continues on the national array of FIA plots, these new data can be incorporated easily into the present model, as well as being used to develop and/or improve models of other invasive plant species.  相似文献   

18.
Neotropical fruit bats (family Phyllostomidae) facilitate forest regeneration on degraded lands by dispersing shrub and tree seeds. Accordingly, if fruit bats can be attracted to restoration sites, seed dispersal could be enhanced. We surveyed bat communities at 10 sites in southern Costa Rica to evaluate whether restoration treatments attracted more fruit bats if trees were planted on degraded farmlands in plantations or island configurations versus natural regeneration. We also compared the relative influence of tree cover at local and landscape spatial scales on bat abundances. We captured 68% more fruit bat individuals in tree plantations as in controls, whereas tree island plots were intermediate. Bat activity also responded to landscape tree cover within a 200‐m radius of restoration plots, with greater abundance but lower species richness in deforested landscapes. Fruit bat captures in controls and tree island plots declined with increasing landscape tree cover, but captures in plantations were relatively constant. Individual species responded differentially to tree cover measured at different spatial scales. We attribute restoration effects primarily to habitat structure rather than food resources because no planted trees produced fruits regularly eaten by bats. The magnitude of tree planting effects on fruit bats was less than previous studies have found for frugivorous birds, suggesting that bats may play a particularly important role in dispersing seeds in heavily deforested and naturally regenerating areas. Nonetheless, our results show that larger tree plantations in more intact landscapes are more likely to attract diverse fruit bats, potentially enhancing seed dispersal.  相似文献   

19.
1. Dispersal and host detection are behaviours promoting the spread of invading populations in a landscape matrix. In fragmented landscapes, the spatial arrangement of habitat structure affects the dispersal success of organisms. 2. The aim of the present study was to determine the long distance dispersal capabilities of two non‐native pine bark beetles (Hylurgus ligniperda and Hylastes ater) in a modified and fragmented landscape with non‐native pine trees. The role of pine density in relation to the abundance of dispersing beetles was also investigated. 3. This study took place in the Southern Alps, New Zealand. A network of insect panel traps was installed in remote valleys at known distances from pine resources (plantations or windbreaks). Beetle abundance was compared with spatially weighted estimates of nearby pine plantations and pine windbreaks. 4. Both beetles were found ≥25 km from the nearest host patch, indicating strong dispersal and host detection capabilities. Small pine patches appear to serve as stepping stones, promoting spread through the landscape. Hylurgus ligniperda (F.) abundance had a strong inverse association with pine plantations and windbreaks, whereas H. ater abundance was not correlated with distance to pine plantations but positively correlated with distance to pine windbreaks, probably reflecting differences in biology and niche preferences. Host availability and dispersed beetle abundance are the proposed limiting factors impeding the spread of these beetles. 5. These mechanistic insights into the spread and persistence of H. ater and H. ligniperda in a fragmented landscape provide ecologists and land managers with a better understanding of factors leading to successful invasion events, particularly in relation to the importance of long‐distance dispersal ability and the distribution and size of host patches.  相似文献   

20.
Chinese ash (Fraxinus chinensis) is an exotic tree species that has been used in non-commercial monospecific plantations for revegetation programs in the Central Andes of Colombia. At the Otún river watershed, these plantations occur in patches intermixed with old pastures, oak forests, and successional forests. In this heterogeneous landscape, the ash has been able to invade some of its surrounding habitats. This study evaluates the invasion patterns of ash to each of these habitats and experimentally quantifies seed and seedling survivorship and seedling growth as three processes that could determine ash establishment. Of the four habitats examined, old pastures were the most vulnerable to invasion, followed by oak plantations, and successional forest. Ash plantations exhibited recruitment levels intermediate between pastures and oak plantations. Abandoned pastures showed the highest seed germination, seedling survivorship, and seedling growth. In the ash plantations, recruitment seemed negatively affected by the low number of germinated seeds, high mortality of seedlings, and low growth. Invasion in oak plantations was constrained by high seed mortality and burial of seedlings by leaf litter, although the seedlings that did survive grew fast and produced a high number of leaves. Within the successional forest, Chinese ash seeds germinated but establishment was constrained by a reduced seedling survivorship and low growth. This research offers new evidence of how different processes affecting the establishment of an invader may differ among landscape elements, and it also yields important information for the management and control of ash in these Andean landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号