共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated leaf characteristics and herbivory intensities for saplings of fifteen tropical tree species differing in their successional position. Eight leaf traits were selected, related to the costs of leaf display (specific leaf area [SLA], water content), photosynthesis (N and P concentration per unit mass), and herbivory defence (lignin concentration, C:N ratio). We hypothesised that species traits are shaped by variation in abiotic and biotic (herbivory) selection pressures along the successional gradient. All leaf traits varied with the successional position of the species. The SLA, water content and nutrient concentration decreased, and lignin concentration increased with the successional position. Herbivory damage (defined as the percentage of damage found at one moment in time) varied from 0.9-8.5% among the species, but was not related to their successional position. Herbivory damage appeared to be a poor estimator of the herbivory rate experienced by species, due to the confounding effect of leaf lifespan. Herbivory rate (defined as percentage leaf area removal per unit time) declined with the successional position of the species. Herbivory rate was only positively correlated to water content, and negatively correlated to lignin concentration, suggesting that herbivores select leaves based upon their digestibility rather than upon their nutritive value. Surprisingly, most species traits change linearly with succession, while resource availability (light, nutrients) declines exponentially with succession. 相似文献
2.
《Biochemical Systematics and Ecology》1986,14(1):51-59
Changes in sesquiterpene hydrocarbons, total phenolic compounds, astringency, total nitrogen, water content, leaf specific weight and toughness were monitored in five stages of leaf development in greenhouse-grown saplings of Copaifera pubiflora, C. officinalis and C. venezuelana var. laxa and six stages from adult trees of C. langsdorfii. In all species the phenolic content, astringency, nitrogen and water content decreased whereas the leaf specific weight and toughness increased as the leaf attained maturity. The pattern of sesquiterpene variation during leaf development, however, differed among the species. These analyses of changes in leaf development on adult trees of C. langsdorfii are related to preliminary field studies of microlepidopteran (oecophorid) herbivory in woodland sites in southeastern Brazil. 相似文献
3.
The damage caused by herbivores can be confused with the drop of necrotic spots due to hypersensitive reactions. The negative impact of sessile herbivores on host plants is minimized by hypersensitive reactions that result in the death of attacked tissue. We reported a phenomenon that remarkably resembles herbivore damage, but is in fact a reaction to endophytic herbivores or pathogens. Although the damages on Tapirira guianensis leaves (Anacardiaceae) appear to be chew marks from herbivores, they are in fact dropped necrotic spots caused by gall-inducing insects. The phenomenon is widespread and challenges the view that gall-inducing insects inflict less damage on host plants, which was previously stated according to the rates of herbivory inflicted by free-feeding herbivores. The study highlights the need to reassess the past evaluations for some plant species, as they may have overestimated herbivory rates. 相似文献
4.
Nalaka Geekiyanage Uromi Manage Goodale Kunfang Cao Kaoru Kitajima 《Ecology and evolution》2018,8(1):286-295
Karst hills, that is, jagged topography created by dissolution of limestone and other soluble rocks, are distributed extensively in tropical forest regions, including southern parts of China. They are characterized by a sharp mosaic of water and nutrient availability, from exposed hilltops with poor soil development to valleys with occasional flooding, to which trees show species‐specific distributions. Here we report the relationship of leaf functional traits to habitat preference of tropical karst trees. We described leaf traits of 19 tropical tree species in a seasonal karst rainforest in Guangxi Province, China, 12 species in situ and 13 ex situ in a non‐karst arboretum, which served as a common garden, with six species sampled in both. We examined how the measured leaf traits differed in relation to species’ habitat affinity and evaluated trait consistency between natural habitats vs. the arboretum. Leaf mass per area (LMA) and optical traits (light absorption and reflectance characteristics between 400 and 1,050 nm) showed significant associations with each other and habitats, with hilltop species showing high values of LMA and low values of photochemical reflectance index (PRI). For the six species sampled in both the karst forest and the arboretum, LMA, leaf dry matter content, stomatal density, and vein length per area showed inconsistent within‐species variations, whereas some traits (stomatal pore index and lamina thickness) were similar between the two sites. In conclusion, trees specialized in exposed karst hilltops with little soils are characterized by thick leaves with high tissue density indicative of conservative resources use, and this trait syndrome could potentially be sensed remotely with PRI. 相似文献
5.
Altitude, habitat and tropical insect diversity 总被引:3,自引:0,他引:3
Sample size and species richness of a series of light-trap samples taken in a number of localities in the Republic of Panama are given. Species richness as well as sample size decreased gradually with increasing altitude over a 100–2200 m range, in contrast to data from the literature which demonstrated a maximum at intermediate elevations. It is suggested that differences in technique, especially the continuous nature of the sampling in the present case are responsible for this discrepancy. Moderate human disturbance, which leaves a relatively high tree species diversity in the area has a surprisingly little, if any, effect on insect diversity. A large perturbation of the environment does, however, decrease species richness of the insect fauna. 相似文献
6.
The difficulties specialized phytophagous insects face in finding habitats with an appropriate host should constrain their dispersal. Within the concept of metacommunities, this leads to the prediction that host-plant specialists should sort into local assemblages according to the local environmental conditions, i.e. habitat conditions, whereas assemblages of host-plant generalists should depend also on regional processes. Our study aimed at ranking the importance of local environmental factors and species composition of the vegetation for predicting the species composition of phytophagous moth assemblages with either a narrow or a broad host range. Our database consists of 351,506 specimens representing 820 species of nocturnal Macrolepidoptera sampled between 1980 and 2006 using light traps in 96 strict forest reserves in southern Germany. Species were grouped as specialists or generalists according to the food plants of the larvae; specialists use host plants belonging to one genus. We used predictive canonical correspondence and co-correspondence analyses to rank the importance of local environmental factors, the species composition of the vegetation and the role of host plants for predicting the species composition of host-plant specialists and generalists. The cross-validatory fit for predicting the species composition of phytophagous moths was higher for host-plant specialists than for host-plant generalists using environmental factors as well as the composition of the vegetation. As expected for host-plant specialists, the species composition of the vegetation was a better predictor of the composition of these assemblages than the environmental variables. But surprisingly, this difference for specialized insects was not due to the occurrence of their host plants. Overall, our study supports the idea that owing to evolutionary constraints in finding a host, host-plant specialists and host-plant generalists follow two different models of metacommunities: the species-sorting and the mass-effect model. 相似文献
7.
8.
Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO2 总被引:1,自引:0,他引:1
Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO2. Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO2-induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 l CO2 l–1 or to 610 l CO2 l–1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO2. Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO2 under relatively low nutrient conditions. Hence, the potential importance of CO2-induced shifts in leaf nutritional quality, as determinants of herbivory, may be overestimated for many plant communities growing on nutrient-poor sites if estimates are based on traditional laboratory feeding studies. Finally, slight shifts in the abundance of leaf tissue of various species occurring under elevated CO2 will probably not significantly affect herbivory by generalist insects. However, generalist insect herbivores appear to become more dependent on less-preferred plant species in cases where elevated CO2 results in reduced availability of leaves of a favoured plant species, and this greater dependency may eventually affect insect populations adversely. 相似文献
9.
Urban landscapes are characterized by high proportions of impervious surface resulting in higher temperatures than adjacent natural landscapes. In some cities, like those at cooler latitudes, trees may benefit from warmer urban temperatures, but trees in many cities are beset with problems like drought stress and increased herbivory. What drives patterns of urban tree health across urbanization and latitudinal temperature gradients? In natural systems, latitude–herbivory relationships are well‐studied, and recent temperate studies have shown that herbivory generally increases with decreasing latitudes (warmer temperatures). However, the applicability of this latitude–herbivory theory in already‐warmed urban systems is unknown. In this study, we investigated how the interaction of urbanization, latitudinal warming and scale insect abundance affected urban tree health. We predicted that trees in warmer, lower latitude cities would be in poorer health at lower levels of urbanization than trees at cooler, higher latitudes due to the interaction of urbanization, latitudinal temperature and herbivory. To evaluate our predictions, we surveyed the abundance of scale insect herbivores on a single, common tree species Acer rubrum in eight US cities spanning 10° of latitude. We estimated urbanization at two extents, a local one that accounted for the direct effects on an individual tree, and a larger one that captured the surrounding urban landscape. We found that urban tree health did not vary with latitudinal temperature but was best predicted by local urbanization and herbivore abundance. We did not observe increased herbivore abundance in warmer, lower latitudes cities, but instead herbivore abundance peaked in the mid latitudes of our study. This study demonstrates that urban landscapes may deviate from classical theory developed in natural systems and reinforces the need for research reconciling ecological patterns in urban landscapes. 相似文献
10.
Xuezhao Wang Yunyun He Brian E. Sedio Lu Jin Xuejun Ge Suphanee Glomglieng Min Cao Jianhong Yang Nathan G. Swenson Jie Yang 《Ecology letters》2023,26(11):1898-1910
Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant–herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests. 相似文献
11.
Haike Ruhnke Martin Schädler Stefan Klotz Diethart Matthies Roland Brandl 《Basic and Applied Ecology》2009,10(8):726-736
Individual plants may vary in their suitability as hosts for insect herbivores. The adaptive deme formation hypothesis predicts that this variability will lead to the fine-scale adaptation of herbivorous insects to host individuals. We studied individual and temporal variation in the quality of leaves of the tree species ash, lime, common oak, and sycamore in the field as food for herbivores. We determined herbivore attack and leaf consumption and performance of the generalist caterpillars of Spodoptera littoralis in the laboratory. We further assessed the concentrations of carbon, nitrogen and water in the leaves.All measures of leaf tissue quality varied among and within individuals for all tree species. The level of herbivory differed among the tree individuals in lime, oak and sycamore, but not in ash. Within host individuals, differences in herbivory between the upper and lower crown layer varied in direction and magnitude depending on tree species. In feeding experiments, herbivore performance also varied among and within tree individuals. However, variation in palatability was not consistently related to the leaf traits measured or to herbivory levels in the field. The ranking of individuals with respect to the quality of leaf tissue for herbivorous insects varied between years in lime and oak. Thus, trees of both species might present moving targets for herbivores which prevents fine-scale adaptations. In contrast, among individuals of ash and sycamore the pattern of insect performance remained constant over 2 years. These species may be more suitable hosts for the formation of adapted demes in herbivores. 相似文献
12.
13.
Abstract The influence of soil moisture content on leaf dynamics and insect herbivory was examined between September 1991 and March 1992 in a river red gum (Eucalyptus camaldulensis) forest in southern central New South Wales. Long-term observations of leaves were made in trees standing either within intermittently flooded waterways or at an average of 37. 5m from the edge of the waterways. The mean soil moisture content was significantly (P≤0.05) greater in the waterways than in the non-flooded areas. Trees in the higher soil moisture regime produced significantly larger basal area increments and increased canopy leaf area. This increase in canopy leaf area was achieved, in part, through a significant increase in leaf longevity and mean leaf size. Although a greater number of leaves was initiated and abscissed per shoot from the non-flooded trees, more leaves were collected from litter traps beneath the denser canopies of the flooded trees. Consumption of foliage by insects on the trees subjected to flooding compared to the non-flooded trees was not significantly different. However, the relative impact of insect herbivory was significantly greater on the non-flooded trees. Leaf chewing was the most common form of damage by insects, particularly Chryso-melidae and Curculionidae. No species was present in outbreak during this study. Leaf survival decreased as the per cent area eaten per leaf increased. In addition, irrespective of the level of herbivory, leaf abscission tended to be higher in E. camaldulensis under moisture deficit. The influence of soil moisture content on the balance between river red gum growth and insect herbivory is discussed. 相似文献
14.
Mature tree effects on the mortality and herbivory of current-year seedlings were investigated in a common subcanopy species,Acer mono Maxim., in a cool temperature mixed forest. The mortality of natural seeldings under the canopy withA. mono layers was greater than that under the canopy without them. Also, the mortality of seedlings in planters located under the
crown of anA. mono tree was at least 1.8 times greater than that of those in planters about 5 m away from the crown edge.Pyrrhalta fuscipennis (Coleoptera: Chrysomelidae) and other specialist insects, having probably dropped fromA. mono crowns, were more frequently observed in planters underA. mono crowns than in those far the crowns. Leaf area loss due to specialist herbivores was probably the main cause of increase
in the mortality ofA. mono seedlings close to conspecific adults. It is implied that seedling predation by specialist herbivores coming from parent
trees is a substantial factor promoting local seed dispersal ofA. mono. 相似文献
15.
Leaf size and leaf display of thirty-eight tropical tree species 总被引:1,自引:0,他引:1
Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode,
petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage
in a light-limited environment. We examined 11 metamer traits of sun and shade trees of 38 coexisting moist forest tree species
and determined the relative strengths of intra- and interspecific variation. Species-specific metamer traits were related
to two variables that represent important life history variation; the regeneration light requirements and average leaf size
of the species. Metamer traits varied strongly across species and, in contrast to our expectation, showed only modest changes
in response to light. Intra- and interspecific responses to light were only congruent for a third of the traits evaluated.
Four traits, amongst which leaf size, specific leaf area (SLA), and leaf area ratio at the metamer level (LAR) showed even
opposite intra- and interspecific responses to light. Strikingly, these are classic traits that are thought to be of paramount
importance for plant performance but that have completely different consequences within and across species. Sun trees of a
given species had small leaves to reduce the heat load, but light-demanding species had large leaves compared to shade-tolerants,
probably to outcompete their neighbors. Shade trees of a given species had a high SLA and LAR to capture more light in a light-limited
environment, whereas shade-tolerant species have well-protected leaves with a low SLA compared to light-demanding species,
probably to deter herbivores and enhance leaf lifespan. There was a leaf-size-mediated trade-off between biomechanical and
hydraulic safety, and the efficiency with which species can space their leaves and forage for light. Unexpectedly, metamer
traits were more closely linked to leaf size than to regeneration light requirements, probably because leaf-size-related biomechanical
and vascular constraints limit the trait combinations that are physically possible. This suggests that the leaf size spectrum
overrules more subtle variation caused by the leaf economics spectrum, and that leaf size represents a more important strategy
axis than previously thought.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
16.
Questions: How are leaf attributes and relative growth rate (RGR) of the dominant tree species of tropical deciduous forest (TDF) affected by seasonal changes in soil moisture content (SMC)? What is the relationship of functional attributes with each other? Can leaf attributes singly or in combination predict the growth rate of tree species of TDF? Location: Sonebhadra district of Uttar Pradesh, India. Methods: Eight leaf attributes, specific leaf area (SLA); leaf carbon concentration (LCC); leaf nitrogen concentration (LNC); leaf phosphorus concentration (LPC); chlorophyll concentration (Chl), mass‐based stomatal conductance (Gsmass); mass based photosynthetic rate (Amass); intrinsic water use efficiency (WUEi); and relative growth rate (RGR), of six dominant tree species of a dry tropical forest on four sites were analysed for species, site and season effects over a 2‐year period. Step‐wise multiple regression was performed for predicting RGR from mean values of SMC and leaf attributes. Path analysis was used to determine which leaf attributes influence RGR directly and which indirectly. Results: Species differed significantly in terms of all leaf attributes and RGR. The response of species varied across sites and seasons. The attributes were positively interrelated, except for WUEi, which was negatively related to all other attributes. The positive correlation was strongest between Gsmass and Amass and the negative correlation was strongest between Gsmass and WUEi. Differences in RGR due to site were not significant when soil moisture was controlled, but differences due to season remained significant. The attributes showed plasticity across moisture gradients, which differed among attributes and species. Gsmass was the most plastic attribute. Among the six species, Terminalia tomentosa exhibited the greatest plasticity in six functional attributes. In the step‐wise multiple regression, Amass, SLA and Chl among leaf attributes and SMC among environmental factors influenced the RGR of tree species. Path analysis indicated the importance of SLA, LNC, Chl and Amass in determining RGR. Conclusion: A mass, SMC, SLA and Chl in combination can be used to predict RGR but could explain only three‐quarters of the variability in RGR, indicating that other traits/factors, not studied here, are also important in modulating growth of tropical trees. RGR of tree species in the dry tropical environment is determined by soil moisture, whereas the response of mature trees of different species is modulated by alterations in key functional attributes such as SLA, LNC and Chl. 相似文献
17.
Although associations between mites and leaf domatia have been widely reported, their consequences for plants, especially for natural tree populations, particularly in the tropics, are largely unknown. In experiments with paired Cupania vernalis (Sapindaceae) saplings in a semi-deciduous forest in south-east Brazil, we blocked leaf domatia to examine their effect: (1) on mites and other arthropods, and (2) on damage caused by fungi and herbivorous arthropods. In general, plants with resin-blocked domatia had fewer predaceous mites on leaves than control plants with unaltered domatia, but the total abundances of fungivorous and of phytophagous mites remained unchanged. However, phytophagous eriophyid mites, the most numerous inhabitants of domatia, decreased on leaf surfaces with the blocking treatment. In a second experiment, treated plants lacking functional domatia developed significantly greater numbers and areas of chlorosis, apparently due to increased eriophyid attacks, whereas fungal attack, epiphyll abundance and leaf-area loss were unaffected. This seems to be the first experimental study to demonstrate that leaf domatia can benefit plants against herbivory in a natural system. The possible stabilizing effect of leaf domatia on predator-prey interactions is discussed. 相似文献
18.
Sagrario Gámez-Virués Geoff M. Gurr Anantanarayanan Raman Helen I. Nicol 《Basic and Applied Ecology》2010,11(6):542-549
Shelterbelts have become a refuge and source of food for wildlife because of habitat loss in farmlands. However, effects of shelterbelt attributes such as plant diversity and habitat structure on different trophic levels within shelterbelts are unclear. Effects of shelterbelt woody plant diversity and habitat structure (lower vegetation strata, logs, litter and rocks) were measured on the growth and herbivory of Eucalyptus blakelyi saplings that were caged from birds, caged from birds and arthropods and un-caged. Arthropod diversity of E. blakelyi saplings and shelterbelts was evaluated. Height and stem diameter of saplings in all treatments was positively correlated with plant diversity. Habitat structure was negatively correlated with numbers of leaves on E. blakelyi saplings and positively correlated with herbivory, which was greater in saplings caged from birds. The overall abundance of arthropods inhabiting shelterbelts correlated positively with plant diversity, but negatively with habitat structure. Araneae and Formicidae were the most common taxa on E. blakelyi saplings and were more numerous on saplings caged from birds, suggesting an important role of these vertebrates as predators of shelterbelt arthropods. 相似文献
19.
20.
Leaf flushing phenology and herbivory in a tropical dry deciduous forest,southern India 总被引:3,自引:0,他引:3
Patterns of leaf-flushing phenology of trees in relation to insect herbivore damage were studied at two sites in a seasonal tropical dry forest in Mudumalai, southern India, from April 1988 to August 1990. At both sites the trees began to flush leaves during the dry season, reaching a peak leaf-flushing phase before the onset of rains. Herbivorous insects emerged with the rains and attained a peak biomass during the wet months. Trees that flushed leaves later in the season suffered significantly higher damage by insects compared to those that flushed early or in synchrony during the peak flushing phase. Species whose leaves were endowed with physical defenses such as waxes suffered less damage than those not possessing such defenses. There was a positive association between the abundance of a species and leaf damage levels. These observations indicate that herbivory may have played a major role in moulding leaf flushing phenology in trees of the seasonal tropics. 相似文献