首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Jin S  McKee TD  Oprian DD 《FEBS letters》2003,542(1-3):142-146
Previous studies by Papermaster and coworkers introduced the use of rhodopsin-green fluorescent protein (rho-GFP) fusion proteins in the construction of transgenic Xenopus laevis with retinal rod photoreceptor cell-specific transgene expression [Moritz et al., J. Biol. Chem. 276 (2001) 28242-28251]. These pioneering studies have helped to develop the Xenopus system not only for use in the investigation of rhodopsin biosynthesis and targeting, but for studies of the phototransduction cascade as well. However, the rho-GFP fusion protein used in the earlier work had only 50% of the specific activity of wild-type rhodopsin for activation of transducin and only 10% of the activity of wild-type in rhodopsin kinase assays. While not a problem for the biosynthesis studies, this does present a problem for investigation of the phototransduction cascade. We report here an improved rhodopsin/EGFP fusion protein in which placement of the EGFP domain at the C-terminus of rhodopsin results in wild-type activity for activation of transducin, wild-type ability to serve as a substrate for rhodopsin kinase, and wild-type localization of the protein to the rod photoreceptor cell outer segment in transgenic X. laevis.  相似文献   

2.
Mislocalization of the photopigment rhodopsin may be involved in the pathology of certain inherited retinal degenerative diseases. Here, we have elucidated rhodopsin's targeting signal which is responsible for its polarized distribution to the rod outer segment (ROS). Various green fluorescent protein (GFP)/rhodopsin COOH-terminal fusion proteins were expressed specifically in the major red rod photoreceptors of transgenic Xenopus laevis under the control of the Xenopus opsin promoter. The fusion proteins were targeted to membranes via lipid modifications (palmitoylation and myristoylation) as opposed to membrane spanning domains. Membrane association was found to be necessary but not sufficient for efficient ROS localization. A GFP fusion protein containing only the cytoplasmic COOH-terminal 44 amino acids of Xenopus rhodopsin localized exclusively to ROS membranes. Chimeras between rhodopsin and alpha adrenergic receptor COOH-terminal sequences further refined rhodopsin's ROS localization signal to its distal eight amino acids. Mutations/deletions of this region resulted in partial delocalization of the fusion proteins to rod inner segment (RIS) membranes. The targeting and transport of endogenous wild-type rhodopsin was unaffected by the presence of mislocalized GFP fusion proteins.  相似文献   

3.
The first step in the Visual Cycle, the series of reactions that regenerate the vertebrate visual pigment rhodopsin, is the reduction of all-trans retinal to all-trans retinol, a reaction that requires NADPH. We have used the fluorescence of all-trans retinol to study this reduction in living rod photoreceptors. After the bleaching of rhodopsin, fluorescence (excitation, 360 nm; emission, 457 or 540 nm) appears in frog and wild-type mouse rod outer segments reaching a maximum in 30-60 min at room temperature. With this excitation and emission, the mitochondrial-rich ellipsoid region of the cells shows strong fluorescence as well. Fluorescence measurements at different emission wavelengths establish that the outer segment and ellipsoid signals originate from all-trans retinol and reduced pyridine nucleotides, respectively. Using outer segment fluorescence as a measure of all-trans retinol formation, we find that in frog rod photoreceptors the NADPH necessary for the reduction of all-trans retinal can be supplied by both cytoplasmic and mitochondrial metabolic pathways. Inhibition of the reduction reaction, either by retinoic acid or through suppression of metabolic activity, reduced the formation of retinol. Finally, there are no significant fluorescence changes after bleaching in the rod outer segments of Rpe65(-/-) mice, which lack 11-cis retinal.  相似文献   

4.
Mutations in the rhodopsin gene cause approximately one-tenth of retinitis pigmentosa cases worldwide, and most result in endoplasmic reticulum retention and apoptosis. Other rhodopsin mutations cause receptor mislocalization, diminished/constitutive activity, or faulty protein-protein interactions. The purpose of this study was to test for mechanisms by which the autosomal dominant rhodopsin mutation Ter349Glu causes an early, rapid retinal degeneration in patients. The mutation adds an additional 51 amino acids to the C terminus of the protein. Folding and ligand interaction of Ter349Glu rhodopsin were tested by ultraviolet-visible (UV-visible) spectrophotometry. The ability of the mutant to initiate phototransduction was tested using a radioactive filter binding assay. Photoreceptor localization was assessed both in vitro and in vivo utilizing fluorescent immunochemistry on transfected cells, transgenic Xenopus laevis, and knock-in mice. Photoreceptor ultrastructure was observed by transmission electron microscopy. Spectrally, Ter349Glu rhodopsin behaves similarly to wild-type rhodopsin, absorbing maximally at 500 nm. The mutant protein also displays in vitro G protein activation similar to that of WT. In cultured cells, mislocalization was observed at high expression levels whereas ciliary localization occurred at low expression levels. Similarly, transgenic X. laevis expressing Ter349Glu rhodopsin exhibited partial mislocalization. Analysis of the Ter349Glu rhodopsin knock-in mouse showed a rapid, early onset degeneration in homozygotes with a loss of proper rod outer segment development and improper disc formation. Together, the data show that both mislocalization and rod outer segment morphogenesis are likely associated with the human phenotype.  相似文献   

5.
Light detection by vertebrate rod photoreceptor outer segments results in the destruction of the visual pigment, rhodopsin, as its retinyl moiety is photoisomerized from 11-cis to all-trans. The regeneration of rhodopsin is necessary for vision and begins with the release of the all-trans retinal and its reduction to all-trans retinol. Retinol is then transported out of the rod outer segment for further processing. We used fluorescence imaging to monitor retinol fluorescence and quantify the kinetics of its formation and clearance after rhodopsin bleaching in the outer segments of living isolated frog (Rana pipiens) rod photoreceptors. We independently measured the release of all-trans retinal from bleached rhodopsin in frog rod outer segment membranes and the rate of all-trans retinol removal by the lipophilic carriers interphotoreceptor retinoid binding protein (IRBP) and serum albumin. We find that the kinetics of all-trans retinol formation in frog rod outer segments after rhodopsin bleaching are to a good first approximation determined by the kinetics of all-trans retinal release from the bleached pigment. For the physiological concentrations of carriers, the rate of retinol removal from the outer segment is determined by IRBP concentration, whereas the effect of serum albumin is negligible. The results indicate the presence of a specific interaction between IRBP and the rod outer segment, probably mediated by a receptor. The effect of different concentrations of IRBP on the rate of retinol removal shows no cooperativity and has an EC50 of 40 micromol/L.  相似文献   

6.
The present study demonstrates some important facts on the regeneration of rhodopsin in rod outer segment membranes. 11-cis-Retinal added to a rod outer segment membrane suspension did not react directly with opsin but was rapidly solubilized into membranes and then recombined with opsin in the membrane. It was also revealed that the regeneration of rhodopsin was perturbed by the formation of retinylidene Schiff base with phosphatidylethanolamine in rod outer segment membranes, which decreased with increasing temperature. The activation energy of rhodopsin regeneration in rod outer segment membranes was 18.7 kcal/mol, being smaller than the value of 22 kcal/mol in 1% digitonin solution. 11-cis-Retinal could be found to transfer relatively fast (tau-1/k(1) R 10(3) s) between rod outer segment membranes by using the regeneration of rhodopsin. It was demonstrated that the kinetic measurement for the transport of membrane-soluble molecules such as retinal between membranes could be perform ed with ease and precisely by the method described in this paper.  相似文献   

7.
Zhang L  Salom D  He J  Okun A  Ballesteros J  Palczewski K  Li N 《Biochemistry》2005,44(44):14509-14518
G protein-coupled receptors (GPCRs) constitute the largest superfamily of transmembrane signaling proteins; however, the only known GPCR crystal structure is that of rhodopsin. This disparity reflects the difficulty in generating purified GPCR samples of sufficient quantity and quality. Rhodopsin, the light receptor of retinal rod neurons, is produced in large amounts of homogeneous quality in the vertebrate retina. We used transgenic Xenopus laevis to convert these retina rod cells into bioreactors to successfully produce 20 model GPCRs. The receptors accumulated in rod outer segments and were homogeneously glycosylated. Ligand and [(35)S]GTPgammaS binding assays of the 5HT(1A) and EDG(1) GPCRs confirmed that they were properly folded and functional. 5HT(1A)R was highly purified by taking advantage of the rhodopsin C-terminal immunoaffinity tag common to all GPCR constructs. We have also developed an automated system that can generate hundreds of transgenic tadpoles per day. This expression approach could be extended to other animal model systems and become a general method for the production of large numbers of GPCRs and other membrane proteins for pharmacological and structural studies.  相似文献   

8.
We previously established lines of transgenic Xenopus laevis expressing green fluorescent protein (GFP) or GFP fusion proteins in the rod photoreceptors of their retinas under control of the X. laevis opsin promoter, which permits easy identification of transgenic animals by fluorescence microscopy. However, GFP tags can alter the properties of fusion partners, and in many circumstances a second selectable marker would be useful. The transgene constructs we used also encode a gene that confers resistance to the antibiotic G418 in cultured mammalian cells. In this study, we show that F2 transgenic offspring of these animals are more resistant to G418 toxicity than their non-transgenic siblings, as are primary transgenic X. laevis. G418 resistance can be used as a selectable marker in transgenic X. laevis, and possibly other aquatic transgenic animals.  相似文献   

9.
Guanosine 3′,5′-cyclic monophosphate phosphodiesterase (EC 3.1.4.1) in frog rod outer segment prepared by a sucrose stepwise density gradient method was activated by light in the presence of GTP. Rhodopsin in rod outer segment was solubilized with sucrose laurylmonoester and then purified by concavanalin A-Sepharose column. Addition of photo-bleached preparation of the purified rhodopsin to the rod outer segment, which had been prepared by 43% (w/w) sucrose floatation, caused the activation of phosphodiesterase in the dark, while each component of the photo-product eluted from the column (all-trans retinal and opsin) did not. Regenerated rhodopsin prepared from 11-cis retinal and purified opsin activated phosphosdiesterase when it was bleached. From these facts it is suggested that an intermediate or a process of photolysis of rhodopsin causes activation of phosphodiesterase.  相似文献   

10.
Rab8 is a GTPase involved in membrane trafficking. In photoreceptor cells, rab8 is proposed to participate in the late stages of delivery of rhodopsin-containing post-Golgi membranes to the plasma membrane near the base of the connecting cilium. To test the function of rab8 in vivo, we generated transgenic Xenopus laevis expressing wild-type, constitutively active (Q67L), and dominant negative (T22N) forms of canine rab8 in their rod photoreceptors as green fluorescent protein (GFP) fusion proteins. Wild-type and constitutively active GFP-rab8 proteins were primarily associated with Golgi and post-Golgi membranes, whereas the dominant negative protein was primarily cytoplasmic. Expression of wild-type GFP-rab8 had minimal effects on cell survival and intracellular structures. In contrast, GFP-rab8T22N caused rapid retinal degeneration. In surviving peripheral rods, tubulo-vesicular structures accumulated at the base of the connecting cilium. Expression of GFP-rab8Q67L induced a slower retinal degeneration in some tadpoles. Transgene effects were transmitted to F1 offspring. Expression of the GFP-rab8 fusion proteins appears to decrease the levels of endogenous rab8 protein. Our results demonstrate a role for rab8 in docking of post-Golgi membranes in rods, and constitute the first report of a transgenic X. laevis model of retinal degenerative disease.  相似文献   

11.
Rhodopsin-containing retinal rod disk membranes from cattle have been examined by differential scanning calorimetry. Under conditions of 67 mM phosphate pH 7.0, unbleached rod outer segment disk membranes gave a single major endotherm with a temperature of denaturation (Tm) of 71.9 +/- 0.4 degrees C and a thermal unfolding calorimetric enthalpy change (delta Hcal) of 700 +/- 17 kJ/mol rhodopsin. Bleached rod outer segment disk membranes (membranes that had lost their absorbance at 498 nm after exposure to orange light) gave a single major endotherm with a Tm of 55.9 +/- 0.3 degrees C and a delta Hcal of 520 +/- 17 kJ/mol opsin. Neither bleached nor unbleached rod outer segment disk membranes gave endotherms upon thermal rescans. When thermal stability is examined over the pH range of 4-9, the major endotherms of both bleached and unbleached rod outer segment disk membranes were found to show maximum stability at pH 6.1. The observed delta Hcal values for bleached and unbleached rod outer segment disk membranes exhibit membrane concentration dependences which plateau at protein concentrations beyond 1.5 mg/mL. For partially bleached samples of rod outer segment disk membranes, the calorimetric enthalpy change for opsin appears to be somewhat dependent on the degree of bleaching, indicating intramembrane nearest neighbor interactions which affect the unfolding of opsin. Delta Hcal and Tm are particularly useful for assessing stability and testing for completeness of regeneration of rhodopsin from opsin. Other factors such as sample preparation and the presence of low concentrations of ethanol also affect the delta Hcal values while the Tm values remain fairly constant. This shows that the delta Hcal is a sensitive parameter for monitoring environmental changes of rhodopsin and opsin.  相似文献   

12.
Palmitoylation is a reversible, post-translational modification observed in a number of G-protein-coupled receptors. To gain a better understanding of its role in visual transduction, we produced transgenic knock-in mice that expressed a palmitoylation-deficient rhodopsin (Palm(-/-)). The mutant rhodopsin was expressed at wild-type levels and showed normal cellular localization to rod outer segments, indicating that neither rhodopsin stability nor its intracellular trafficking were compromised. But Palm(-/-) rods had briefer flash responses and reduced sensitivity to flashes and to steps of light. Upon exposure to light, rhodopsin became phosphorylated at a faster rate in mutant than in wild-type retinas. Since quench of rhodopsin begins with its phosphorylation, these results suggest that palmitoylation may modulate rod photoreceptor sensitivity by permitting rhodopsin to remain active for a longer period.  相似文献   

13.
Q344ter is a naturally occurring rhodopsin mutation in humans that causes autosomal dominant retinal degeneration through mechanisms that are not fully understood, but are thought to involve an early termination that removed the trafficking signal, QVAPA, leading to its mislocalization in the rod photoreceptor cell. To better understand the disease mechanism(s), transgenic mice that express Q344ter were generated and crossed with rhodopsin knockout mice. Dark-reared Q344terrho+/− mice exhibited retinal degeneration, demonstrating that rhodopsin mislocalization caused photoreceptor cell death. This degeneration is exacerbated by light-exposure and is correlated with the activation of transducin as well as other G-protein signaling pathways. We observed numerous sub-micrometer sized vesicles in the inter-photoreceptor space of Q344terrho+/− and Q344terrho−/− retinas, similar to that seen in another rhodopsin mutant, P347S. Whereas light microscopy failed to reveal outer segment structures in Q344terrho−/− rods, shortened and disorganized rod outer segment structures were visible using electron microscopy. Thus, some Q344ter molecules trafficked to the outer segment and formed disc structures, albeit inefficiently, in the absence of full length wildtype rhodopsin. These findings helped to establish the in vivo role of the QVAPA domain as well as the pathways leading to Q344ter-induced retinal degeneration.  相似文献   

14.
I M Pepe  C Cugnoli  J Schwemer 《FEBS letters》1990,268(1):177-179
The physiological role of a retinal-binding protein from honeybee is investigated. This protein, upon previous loading with all-trans retinal and subsequent irradiation with monochromatic light of wavelength 490 nm, is able to promote the reconstitution of rhodopsin when added to a suspension of opsin membranes from bleached bovine rod outer segments. In this respect this retinal-binding protein could have a role very similar to that postulated for the well-known cephalopod retinochrome, that serves to catalyze the formation in the presence of light of 11-cis retinal in photo-receptor cells and to provide it for the reconstitution of rhodopsin during the visual cycle.  相似文献   

15.
16.
The developing chick retina from stages 39-45 has been examined by biochemical and electron microscope techniques. The levels of rhodopsin contained in the maturing chick retina were evaluated by detergent extraction and correlated with rod outer segment formation. It was found that the appearance of rhodopsin in significant levels preceded outer segment formation by at least 2 days, thus implying that rhodopsin is synthesized in the receptor cell inner segment and translocated to the outer limb when disk membrane biogenesis occurs. The level of rhodopsin continues to rise as the rod outer segment develops. Development of both rods and cones originates and proceeds most rapidly in the fundus or central region and proceeds toward the periphery. In general, rod outer segments were noted to develop far more rapidly than cone outer segments.  相似文献   

17.
18.
Arrestin (also named 48-kDa protein or S-antigen) binds to photoexcited and phosphorylated rhodopsin and thereby prevents activation of cGMP phosphodiesterase (EC 3.1.4.35) by transducin in retinal rods. We report here that retinal arrestin consists of several subspecies (isoelectric points between pH 5.5-6.2), which can be separated by FPLC anion-exchange chromatography and by FPLC chromatofocusing resulting in highly enriched individual subspecies. The entire heterogeneity pattern of arrestin is present in rod outer segments, independently of whether arrestin orginated from the outer or mostly from the inner segment of rod cells. The different subspecies show a similar binding behavior to photoexcited rhodopsin phosphorylated to various degrees and they quench the cGMP phosphodiesterase activity equally well. In the presence of rod outer segment membranes, arrestin is phosphorylated light-dependently by protein kinase C (0.2 mol phosphate/mol arrestin). This implies that the heterogeneity of arrestin is not primarily due to phosphorylation. Arrestin from different individuals exists as four isoelectric focusing patterns which occur with remarkably different frequencies in calf and cattle. The complexity of the IEF pattern does not increase with aging. Distinct subspecies of arrestin may reflect differences in their primary structure, or may result from differentially regulated post-translational modifications in individuals.  相似文献   

19.
Frog (Rana catesbeiana) rod outer segment membrane contains cyclic GMP phosphodiesterase (EC 3.1.4.1). Irradiation of dark-adapted rod outer segment membrane increased the enzyme activity by 5–20-fold in the presence of GTP. The phosphodiesterase in rod outer segment membrane is also activated by mixing a photo-product of 11-cis (regenerated), 9-cis or 7-cis rhodopsin which is stable at 0°C. However, neither opsin in the membrane nor all-trans retinal activates the enzyme. The phosphodiesterase in rod outer segment membrane is also activated by irradiation at ?4°C. Thus, we conclude that the phosphodiesterase is activated by a common photolysis intermediate of these rhodopsin isomers, perhaps before metarhodopsin II decays.  相似文献   

20.
With the aim of preparing a light-stable rhodopsin-like pigment, an analog, II, of 11-cis retinal was synthesized in which isomerization of the C11-C12 cis-double bond is blocked by a cyclohexene ring built around the C10 to C13-methyl. The analog II formed a rhodopsin-like pigment (rhodopsin-II) with opsin expressed in COS-1 cells and with opsin from rod outer segments. The rate of rhodopsin-II formation from II and opsin was approximately 10 times slower than that of rhodopsin from 11-cis retinal and opsin. After solubilization in dodecyl maltoside and immunoaffinity purification, rhodopsin-II displayed an absorbance ratio (A280nm/A512nm) of 1.6, virtually identical with that of rhodopsin. Acid denaturation of rhodopsin-II formed a chromophore with lambda max, 452 nm, characteristic of protonated retinyl Schiff base. The ground state properties of rhodopsin-II were similar to those of rhodopsin in extinction coefficient (41,200 M-1 cm-1) and opsin-shift (2600 cm-1). Rhodopsin-II was stable to hydroxylamine in the dark, while light-dependent bleaching by hydroxylamine was slowed by approximately 2 orders of magnitude relative to rhodopsin. Illumination of rhodopsin-II for 10 s caused approximately 3 nm blue-shift and 3% loss of visible absorbance. Prolonged illumination caused a maximal blue-shift up to approximately 20 nm and approximately 40% loss of visible absorbance. An apparent photochemical steady state was reached after 12 min of illumination. Subsequent acid denaturation indicated that the retinyl Schiff base linkage was intact. A red-shift (approximately 12 nm) in lambda max and a 45% recovery of visible absorbance was observed after returning the 12-min illuminated pigment to darkness. Rhodopsin-II showed marginal light-dependent transducin activation and phosphorylation by rhodopsin kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号