首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of purine nucleoside phosphorylase (EC 2.4.2.1), from either calf spleen or human erythrocytes, with 2,3-butanedione in borate buffer or with phenylglyoxal in Tris buffer markedly decreased the enzyme activity. At pH 8.0 in 60 min, 95% of the catalytic activity was destroyed upon treatment with 33 mM phenylglyoxal and 62% of the activity was lost with 33 mm 2,3-butanedione. Inorganic phosphate, ribose-1-phosphate, arsenate, and inosine when added prior to chemical modification all afforded protection from inactivation. No apparent decrease in enzyme catalytic activity was observed upon treatment with maleic anhydride, a lysine-specific reagent. Inactivation of electrophoretically homogeneous calf-spleen purine nucleoside phosphorylase by butanedione was accompanied by loss of arginine residues and of no other amino acid residues. A statistical analysis of the inactivation data vis-à-vis the fraction of arginines modified suggested that one essential arginine residue was being modified.  相似文献   

2.
1. Qualitative studies on the stability of rabbit erythrocyte purine nucleoside phosphorylase showed a marked decrease in the susceptibility of the enzyme to thermal inactivation and digestion by proteinases of different specificities in response to certain of its substrates. 2. The extent to which inosine stabilizes the enzyme against thermal and proteolytic inactivation is related in a quantitative manner to the concentration of this substrate; it is proposed that differences in the rates of inactivation of the enzyme may reflect substrate-induced conformational changes in the enzyme structure that could alter the binding properties of the enzyme in a kinetically significant way. 3. A synergistic effect in the stabilization of the enzyme is observed in response to both substrates, inosine and phosphate, when the enzyme is inactivated with Pronase. 4. In the presence of substrate an increased rate of inactivation after reaction with 5,5'-dithiobis-(2-nitrobenzoic acid) is reported. 5. Differential-inactivation studies were also carried out with calf spleen purine nucleoside phosphorylase, and the results are discussed in relation to the kinetic properties displayed by this enzyme.  相似文献   

3.
Purine nucleoside phosphorylase (EC 2.4.2.1; purine nucleoside:orthophosphate ribosyltransferase) from fresh human erythrocytes has been purified to homogeneity in two steps with an overall yield of 56%. The purification involves DEAE-Sephadex chromatography followed by affinity chromatography on a column of Sepharose/formycin B. This scheme is suitable for purification of the phosphorylase from as little as 0.1 ml of packed erythrocytes. The native enzyme appears to be a trimer with native molecular weight of 93,800 and the subunit molecular weight of 29,700 +/- 1,100. Two-dimensional gel electrophoresis of the purified enzyme under denaturing conditions revealed four major separable subunits (numbered 1 to 4) with the same molecular weight. The apparent isoelectric points of subunits 1 to 4 in 9.5 M urea are 6.63, 6.41, 6.29, and 6.20, respectively. The different subunits are likely the result of post-translational modification of the enzyme and provide an explanation of the complex native isoelectric focusing pattern of purine nucleoside phosphorylase from erythrocytes. Three of the four subunits are detectable in two-dimensional electrophoretic gels of crude hemolysates. Knowing the location of the subunits of purine nucleoside phosphorylase in a two-dimensional electropherogram allows one to characterize the purine nucleoside phosphorylase in crude cell extracts from individuals with variant or mutant purine nucleoside phosphorylase as demonstrated in a subsequent communication. Partial purification of the phosphorylase from 1 ml of erythrocytes on DEAE-Sephadex increases the sensitivity of detection of the subunits to the 0.3% level.  相似文献   

4.
Some properties of hexameric purine nucleoside phosphorylase II (EC 2.4.2.1) from Escherichia coli K-12 were studied. The enzyme obeys the Michaelis-Menten kinetics with respect to purine substrates (Km for inosine, deoxyinosine and hypoxanthine are equal to 492, 106 and 26.6 microM, respectively) and exhibits negative kinetic cooperativity towards phosphate and ribose-1-phosphate. The Hill coefficient is equal to approximately 0.5 for both substrates. Hexameric purine nucleoside phosphorylase II is not a metal-dependent enzyme; its activity is inhibited by Cu2+, Zn2+, Ni2+ and SO4(2-). The enzyme is the most stable at pH 6.0; it contains essential thiol groups. All substrates partly protect the enzyme against inactivation by 5.5'-dithiobis(2-nitrobenzoic acid) and heat-inactivation and, with the exception of phosphate-against inactivation by p-chloromercuribenzoate. Hypoxanthine, especially in combination with phosphate, afford the best protection against inactivation.  相似文献   

5.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is allosterically regulated. With the substrate inosine the enzyme displayed complex kinetics: positive cooperativity vs inosine when this substrate was close to physiological concentrations, negative cooperativity at inosine concentrations greater than 60 microM, and substrate inhibition at inosine greater than 1 mM. No cooperativity was observed with the alternative substrate, guanosine. The activity of purine nucleoside phosphorylase toward the substrate inosine was sensitive to the presence of reducing thiols; oxidation caused a loss of cooperativity toward inosine, as well as a 10-fold decreased affinity for inosine. The enzyme also displayed negative cooperativity toward phosphate at physiological concentrations of Pi, but oxidation had no effect on either the affinity or cooperativity toward phosphate. The importance of reduced cysteines on the enzyme is thus specific for binding of the nucleoside substrate. The enzyme was modestly inhibited by the pyrimidine nucleotides CTP (Ki = 118 microM) and UTP (Ki = 164 microM), but showed greater sensitivity to 5-phosphoribosyl-1-pyrophosphate (Ki = 5.2 microM).  相似文献   

6.
Summary The presence of a second purine nucleoside phosphorylase in wild-type strains of E. coli K-12 after growth on xanthosine has been demonstrated. Like other purine nucleoside phosphorylases it is able to carry out both phosphorylosis and synthesis of purine deoxy- and ribonucleosides whilst pyrimidine nucleosides cannot act as substrates. In contrast to the well characterised purine nucleoside phosphorylase of E. coli K-12 (encoded by the deoD gene) this new enzyme could act on xanthosine and is hence called xanthosine phosphorylase. Studies of its substrate specificity showed that xanthosine phosphorylase, like the mammalian purine nucleoside phosphorylases, has no activity towards adenine and the corresponding nucleosides. Determinations of K m and gel filtration behaviour was carried out on crude dialysed extracts. The presence of xanthosine phosphorylase enables E. coli to grow on xanthosine as carbon source. Xanthosine was the only compound found which induced xanthosine phosphorylase. No other known nucleoside catabolising enzyme was induced by xanthosine. The implications of non-linear induction kinetics of xanthosine phosphorylase is discussed.  相似文献   

7.
Yeast hexokinase PII is rapidly inactivated (assayed at pH 8.0) by either butanedione in borate buffer or phenylglyoxal, reagents which are highly selective for the modification of arginyl residues. MgATP alone offers no protection against inactivation, consistent with low affinity of hexokinase for this nucleotide in the absence of sugar. Glucose provides slight protection against inactivation, while the combined presence of glucose and MgATP gives significant protection, suggesting that modified arginyl residues may lie at the active site, possibly serving to bind the anionic polyphosphate of the nucleotide in the ternary enzyme:sugar:nucleotide complex. Extrapolation to complete inactivation suggests that inactivation by butanedione correlates with the modification of 4.2 arginyl residues per subunit, and complete protection against inactivation by the combined presence of glucose and MgATP correlates with the protection of 2 to 3 arginyl residues per subunit. When the modified enzyme is assayed at pH 6.5, significant activity remains. However, modification by butanedione in borate buffer abolishes the burst-type slow transient process, observed when the enzyme is assayed at pH 6.5, to such an extent that after extensive modification the kinetic assays are characterized by a lag-type slow transient process. But even after extensive modification, hexokinase PII still demonstrates negative cooperativity with MgATP and is still strongly activated by citrate when assayed at pH 6.5.  相似文献   

8.
The purine nucleoside phosphorylase from Thermus thermophilus crystallized in space group P4(3)2(1)2 with the unit cell dimensions a = 131.9 A and c = 169.9 A and one biologically active hexamer in the asymmetric unit. The structure was solved by the molecular replacement method and refined at a 1.9A resolution to an r(free) value of 20.8%. The crystals of the binary complex with sulfate ion and ternary complexes with sulfate and adenosine or guanosine were also prepared and their crystal structures were refined at 2.1A, 2.4A and 2.4A, respectively. The overall structure of the T.thermophilus enzyme is similar to the structures of hexameric enzymes from Escherichia coli and Sulfolobus solfataricus, but significant differences are observed in the purine base recognition site. A base recognizing aspartic acid, which is conserved among the hexameric purine nucleoside phosphorylases, is Asn204 in the T.thermophilus enzyme, which is reminiscent of the base recognizing asparagine in trimeric purine nucleoside phosphorylases. Isothermal titration calorimetry measurements indicate that both adenosine and guanosine bind the enzyme with nearly similar affinity. However, the functional assays show that as in trimeric PNPs, only the guanosine is a true substrate of the T.thermophilus enzyme. In the case of adenosine recognition, the Asn204 forms hydrogen bonds with N6 and N7 of the base. While in the case of guanosine recognition, the Asn204 is slightly shifted together with the beta(9)alpha(7) loop and predisposed to hydrogen bond formation with O6 of the base in the transition state. The obtained experimental data suggest that the catalytic properties of the T.thermophilus enzyme are reminiscent of the trimeric rather than hexameric purine nucleoside phosphorylases.  相似文献   

9.
Nucleoside analog inhibition studies have been conducted on thyroidal purine nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) which catalyzed an ordered bi-bi type mechanism where the first substrate is inorganic phosphate and the last product is ribose 1-phosphate. Heterocyclic- and carbohydrate-modified nucleoside inhibitors demonstrate mixed type inhibition suggesting such analogs show an affinity (Ki) for the free enzyme. A kinetic model is proposed which supports the observed inhibition patterns. These studies together with alternate substrate studies indicate that nucleoside binding requires a functional group capable of hydrogen bonding at the 6-position of the purine ring and that the orientation of the bound substrate may be syn. Proper geometry of the phosphate is dependent upon the 3'-substituent to the orientated below the furanose ring. The 5'-hydroxyl group is required for substrate activity. The proposed rate limiting step of the phosphorylase mechanism is the enzymatic protonation of the 7-N position of the nucleoside.  相似文献   

10.
A xanthosine-inducible enzyme, inosine-guanosine phosphorylase, has been partially purified from a strain of Escherichia coli K-12 lacking the deo-encoded purine nucleoside phosphorylase. Inosine-guanosine phosphorylase had a particle weight of 180 kilodaltons and was rapidly inactivated by p-chloromercuriphenylsulfonic acid (p-CMB). The enzyme was not protected from inactivation by inosine (Ino), 2'-deoxyinosine (dIno), hypoxanthine (Hyp), Pi, or alpha-D-ribose-1-phosphate (Rib-1-P). Incubating the inactive enzyme with dithiothreitol restored the catalytic activity. Reaction with p-CMB did not affect the particle weight. Inosine-guanosine phosphorylase was more sensitive to thermal inactivation than purine nucleoside phosphorylase. The half-life determined at 45 degrees C between pH 5 and 8 was 5 to 9 min. Phosphate (20 mM) stabilized the enzyme to thermal inactivation, while Ino (1 mM), dIno (1 mM), xanthosine (Xao) (1 mM), Rib-1-P (2 mM), or Hyp (0.05 mM) had no effect. However, Hyp at 1 mM did stabilize the enzyme. In addition, the combination of Pi (20 mM) and Hyp (0.05 mM) stabilized this enzyme to a greater extent than did Pi alone. Apparent activation energies of 11.5 kcal/mol and 7.9 kcal/mol were determined in the phosphorolytic and synthetic direction, respectively. The pH dependence of Ino cleavage or synthesis did not vary between 6 and 8. The substrate specificity, listed in decreasing order of efficiency (V/Km), was: 2'-deoxyguanosine, dIno, guanosine, Xao, Ino, 5'-dIno, and 2',3'-dideoxyinosine. Inosine-guanosine phosphorylase differed from the deo operon-encoded purine nucleoside phosphorylase in that neither adenosine, 2'-deoxyadenosine, nor hypoxanthine arabinoside were substrates or potent inhibitors. Moreover, the E. coli inosine-guanosine phosphorylase was antigenically distinct from the purine nucleoside phosphorylase since it did not react with any of 14 monoclonal antisera or a polyvalent antiserum raised against deo-encoded purine nucleoside phosphorylase.  相似文献   

11.
1. The partial purification of purine nucleoside phosphorylase from rabbit erythrocytes is described. 2. Analytical and preparative isoelectric focusing gave a pI value for the enzyme of 4.65. 3. Gel-chromatography and sucrose-density-gradient-centrifugation techniques gave estimates of the molecular weight in the range 75000-83000. 4. Lineweaver-Burk plots of kinetic data were non-linear at high inosine concentrations. Extrapolation of the linear part of such plots yielded a Km value for inosine of about 70 micrometer for the rabbit erythrocyte and liver enzymes. 5. A Hill interaction coefficient of 0.75 was obtained, suggesting negative co-operativity with respect to the binding of inosine. 6. Treatment of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) caused partial inactivation, and subsequent Lineweaver-Burk plots with inosine as substrate displayed complete linearity, with an increase in Km value for inosine to 200 micrometer. 7. Starch-gel electrophoresis did not reveal the presence of secondary isoenzymes; all tissue extracts examined gave electrophoretic patterns similar to those obtained with the partially purified enzyme from erythrocytes. 8. Results of hybridization studies with nucleoside phosphorylase from human foetal liver suggest that the rabbit enzyme is also a trimer.  相似文献   

12.
5'-Nucleotidase, adenosine phosphorylase, adenosine deaminase and purine nucleoside phosphorylase, four enzymes involved in the utilization of exogenous compounds in Bacillus cereus, were measured in extracts of this organism grown in different conditions. It was found that adenosine deaminase is inducible by addition of adenine derivatives to the growth medium, and purine, nucleoside phosphorylase by metabolizable purine and pyrimidine ribonucleosides. Adenosine deaminase is repressed by inosine, while both enzymes are repressed by glucose. Evidence is presented that during growth of B. cereus in the presence of AMP, the concerted action of 5'-nucleotidase and adenosine phosphorylase, two constitutive enzymes, leads to formation of adenine, and thereby to induction of adenosine deaminase. The ionsine formed would then cause induction of the purine nucleoside phosphorylase and repression of the deaminase. Taken together with our previous findings showing that purine nucleoside phosphorylase of B. cereus acts as a translocase of the ribose moiety of inosine inside the cell (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol Chem. 253, 7905-7909), our results provide a clear picture of the molecular events leading to the utilization of the sugar moiety of exogenous AMP, adenosine and inosine as an energy source.  相似文献   

13.
We report here the characterization of the first mammalian-like purine nucleoside phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus (PfPNP). The gene PF0853 encoding PfPNP was cloned and expressed in Escherichia coli and the recombinant protein was purified to homogeneity. PfPNP is a homohexamer of 180 kDa which shows a much higher similarity with 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP) than with purine nucleoside phosphorylase (PNP) family members. Like human PNP, PfPNP shows an absolute specificity for inosine and guanosine. PfPNP shares 50% identity with MTAP from P. furiosus (PfMTAP). The alignment of the protein sequences of PfPNP and PfMTAP indicates that only four residue changes are able to switch the specificity of PfPNP from a 6-oxo to a 6-amino purine nucleoside phosphorylase still maintaining the same overall active site organization. PfPNP is highly thermophilic with an optimum temperature of 120 degrees C and is characterized by extreme thermodynamic stability (T(m), 110 degrees C that increases to 120 degrees C in the presence of 100 mm phosphate), kinetic stability (100% residual activity after 4 h incubation at 100 degrees C), and remarkable SDS-resistance. Limited proteolysis indicated that the only proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is not necessary for the integrity of the active site. By integrating biochemical methodologies with mass spectrometry we assigned three pairs of intrasubunit disulfide bridges that play a role in the stability of the enzyme against thermal inactivation. The characterization of the thermal properties of the C254S/C256S mutant suggests that the CXC motif in the C-terminal region may also account for the extreme enzyme thermostability.  相似文献   

14.
The inactivation of cytoplasmic malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37) from porcine heart and the specific modification of arginyl residues have been found to occur when the enzyme is inhibited with the reagent butanedione in sodium borate buffer. The inactivation of the enzyme was found to follow pseudo-first order kinetics. This loss of enzymatic activity was concomitant with the modification of 4 arginyl residues per molecule of enzyme. All 4 residues could be made inaccessible to modification when a malate dehydrogenase-NADH-hydroxymalonate ternary complex was formed. Only 2 of the residues were protected by NADH alone and appear to be essential. Studies of the butanedione inactivation in sodium phosphate buffer and of reactivation of enzymatic activity, upon the removal of excess butanedione and borate, support the role of borate ion stabilization in the inactivation mechanism previously reported by Riordan (Riordan, J.F. (1970) Fed. Proc. 29, Abstr. 462; Riordan, J.F. (1973) Biochemistry 12, 3915-3923). Protection from inactivation was also provided by the competitive inhibitor AMP, while nicotinamide exhibited no effect. Such results suggest that the AMP moiety of the NADH molecule is of major importance in the ability of NADH to protect the enzyme. When fluorescence titrations were used to monitor the ability of cytoplasmic malate dehydrogenase to form a binary complex with NADH and to form a ternary complex with NADH and hydroxymalonate, only the formation of ternary complex seemed to be effected by arginine modification.  相似文献   

15.
Purine nucleoside phosphorylase (PNP) catalyzes reversible phosphorolysis of purine deoxy- and ribonucleosides with formation (d)Rib-1-P and corresponding bases. PNP plays a leading role in the cell metabolism of nucleosides and nucleotides, as well as in maintaining the immune status of an organism. The major aim of the majority of studies on the PNP is the detection of highly effective inhibitors of this enzyme, derivatives of purine nucleosides used in medicine as immunosuppressors, which are essential for creating selective T-cell immunodeficiency in a human body for organ and tissue transplantation. The present work is devoted to the study of the effects of some synthetic derivatives of purine nucleosides on activity of highly purified PNP from rabbit spleen and also from human healthy and tumor tissues of lung and kidneys. Purine nucleoside analogues modified at various positions of both the heterocyclic base and carbohydrate residues have been investigated. Several compounds, including 8-mercapto-acyclovir, 8-bromo-9-(3,4-hydroxybutyl)guanine, which demonstrated potent PNP inhibition, could be offered for subsequent study as immunosuppressors during organ and tissue transplantation.  相似文献   

16.
Purine and pyrimidine metabolism was compared in erythrocytes from three patients from two families with purine nucleoside phosphorylase deficiency and T-cell immunodeficiency, one heterozygote subject for this enzyme deficiency, one patient with a complete deficiency of hypoxanthine-guanine phosphoribosyltransferase, and two normal subjects. The erythrocytes from the heterozygote subject were indistinguishable from the normal erythrocytes. The purine nucleoside phosphorylase deficient erythrocytes had a block in the conversion of inosine to hypoxanthine. The erythrocytes with 0.07% of normal purine nucleoside phosphorylase activity resembled erythrocytes with hypoxanthine-guanine phosphoribosyltransferase deficiency by having an elevated intracellular concentration of PP-ribose-P, increased synthesis of PP-ribose-P, and an elevated rate of carbon dioxide release from orotic acid during its conversion to UMP. Two hypotheses to account for the associated immunodeficiency—that the enzyme deficiency leads to a block of PP-ribose-P synthesis or inhibition of pyrimidine synthesis—could not be supported by observations in erythrocytes from both enzyme-deficient families.This work was supported by U.S. Public Health Service Grant AM 19674 and 5 M01 RR 42 and by a Grant-In-Aid from American Heart Association (77-849) and with funds contributed in part by the Michigan Heart Association. N.L.E. is a Rheumatology Fellow from the Rackman Arthritis Research Unit supported by Training Grant USPHS AM 07080.  相似文献   

17.
1. Incubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) from rabbit kidney outer medulla with butanedione in borate buffer leads to reversible inactivation of the (Na+ + K+)-ATPase activity. 2. The reaction shows second-outer kinetics, suggesting that modification of a single amino acid residue is involved in the inactivation of the enzyme. 3. The pH dependence of the reaction and the effect of borate ions strongly suggest that modification of an arginine residue is involved. 4. Replacement of Na+ by K+ in the butanedione medium decreases inactivation. 5. ATP, ADP and adenylyl imido diphosphate, particularly in the presence of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid to complex Mg2+, protect the enzyme very efficiently against inactivation by butanedione. 6. The (Na+ + Mg2+)-dependent phosphorylation capacity of the enzyme is inhibited in the same degree as the (Na+ + K+)-ATPase activity by butanedione. 7. The K+-stimulated p-nitrophenylphosphatase activity is much less inhibited than the (Na+ + K+)ATPase activity. 8. The ATP stimulation of the K+-stimulated p-nitrophenylphosphatase activity is inhibited by butanedione to the same extent as the (Na+ + K+)-ATPase activity. 9. Modification of sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoic acid) protects partially against the inactivating effect of butanedione. 10. The results suggest that an arginine residue is present in the nucleotide binding centre of the enzyme.  相似文献   

18.
5′-Nucleotidase, adenosine phosphorylase, adenosine deaminase and purine nucleoside phosphorylase, four enzymes involved in the utilization of exogenous purine compounds in Bacillus cereus, were measured in extracts of this organism grown in different conditions. It was found that adenosine deaminase is inducible by addition of adenine derivatives to the growth medium, and purine nucleoside phosphorylase by metabolizable purine and pyrimidine ribonucleosides. Adenosine deaminase is repressed by inosine, while both enzymes are repressed by glucose. Evidence is presented at during growth of B. cereus in the presence of AMP, the concerted action of 5′-nucleotidase and adenosine phosphorylase, two constitutive enzymes, leads to formation of adenine, and thereby to induction of adenosine deaminase. The ionsine formed would then cause induction of the purine nucleoside phosphorylase and repression of the deaminase. Taken together with our previous findings showing that purine nucleoside phosphorylase of B cereus acts as a translocase of the ribose moiety of ionsine inside the cell (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol. Chem. 253, 7905–7909), our results provide a clear picture of the molecular events leading to the utilization of the sugar moiety of exogenous AMP, adenosine and inosine as an energy source.  相似文献   

19.
A series of 7-alkyl analogues of guanosine was prepared by alkylation of 5'-GMP, and enzymatic dephosphorylation of the products to the corresponding nucleosides. The latter were all excellent, as well as fluorescent, substrates of calf spleen nucleoside phosphorylase. Kinetic parameters demonstrated that the purine ring N(7) is not a binding site for the enzyme.  相似文献   

20.
The intraerythrocytic human malaria parasite, Plasmodium falciparum, requires a source of hypoxanthine for nucleic acid synthesis and energy metabolism. Adenosine has been implicated as a major source for intraerythrocytic hypoxanthine production via deamination and phosphorolysis, utilizing adenosine deaminase and purine nucleoside phosphorylase, respectively. To study the expression and characteristics of human malaria purine nucleoside phosphorylase, P. falciparum was successfully cultured in purine nucleoside phosphorylase-deficient human erythrocytes to an 8% parasitemia level. Purine nucleoside phosphorylase activity was undetectable in the uninfected enzyme-deficient host red cells but after parasite infection rose to 1.5% of normal erythrocyte levels. The parasite purine nucleoside phosphorylase was not cross-reactive with antibody against human enzyme, exhibited a calculated native molecular weight of 147,000, and showed a single major electrophoretic form of pI 5.4 and substrate specificity for inosine, guanosine and deoxyguanosine but not xanthosine or adenosine. The Km values for substrates, inosine and guanosine, were 4-fold lower than that for the human erythrocyte enzyme. In these studies we have identified two novel potent inhibitors of both human erythrocyte and parasite purine nucleoside phosphorylase, 8-amino-5'-deoxy-5'-chloroguanosine and 8-amino-9-benzylguanine. These enzyme inhibitors may have some antimalarial potential by limiting hypoxanthine production in the parasite-infected erythrocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号