首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both export of 14C from the source leaves of roses (Rosa × hybrida cv. Golden Times) and import of 14C to the petals were reduced by plant exposure to low night temperature. However, the import was affected to a greater extent than the export. During all stages of flower bud development the concentration of reducing sugars in petals of roses grown at reduced night temperature was lower than in petals of plants grown at higher night temperature. There was no significant difference in starch content in response to the night temperature, and the content of starch decreased toward complete flower bud opening. The concentration of sucrose in flowers at the low night temperature remained low during all stages of flower bud development, while at the high night temperature the concentration of sucrose increased during flower bud development, reaching a peak at the stage when petals start to unfold. At both temperatures the concentration of sucrose declined at complete flower opening. The activity of sucrose synthase (EC 2.4.1.14) was inhibited by low temperature in young rose shoots more than in the petals, while the activity of acid invertase (EC 3.2.1.26) was affected similarly in both tissues by the temperature treatments.  相似文献   

2.
Sucrose phosphate synthase and acid invertase activities in the mature leaves of roses (Rosa hybrida cv Golden Times) were greater in plants grown under a higher night temperature than under a lower temperature regime. In young shoots, the activity of acid invertase was promoted by the lower temperature while that of sucrose synthase was increased at the higher temperature. At both temperatures benzyladenine when applied to the axillary bud stimulated sucrose phosphate synthase activity and advancement of its peak of activity in the leaf subtending to the bud, and also stimulated sucrose synthase activity in the young shoot. At the lower temperature, application of benzyladenine to the axillary bud stimulated acid invertase activity in the young shoot but not in the leaves.  相似文献   

3.
The aim of this study was to investigate carbohydrate metabolism in rice seedlings subjected to salt-alkaline stress. Two relatively salt-alkaline tolerant (Changbai 9) and sensitive (Jinongda 138) rice cultivars, grown hydroponically, were subjected to salt-alkaline stress via 50 mM of salt-alkaline solution. The carbohydrate content and the activities of metabolism-related enzymes in the leaves and roots were investigated. The results showed that the contents of sucrose, fructose, and glucose in the leaves and roots increased under salt-alkaline stress. Starch content increased in the leaves but decreased in the roots under salt-alkaline stress. The activities of sucrose-phosphate synthase, sucrose synthase, amylase, and ADP-glucose pyrophosphorylase increased whereas the activities of neutral invertase and acid invertase decreased in the leaves under salt-alkaline stress. The activities of sucrose-phosphate synthase, sucrose synthase, amylase, neutral invertase, and acid invertase increased in the roots under salt-alkaline stress. In conclusion, salt-alkaline stress caused the accumulation of photosynthetic assimilates in the leaves and decreased assimilation export to the roots.  相似文献   

4.
The activity of sucrose-phosphate synthase (SPS) in sugar beet (Beta vulgaris L.) leaves was shown to exceed considerably the synthesizing activity of sucrose synthase (SS). The rise in SPS activity was related to the daylight period; i.e., it was associated with the rate of photosynthesis. The highest SPS activity was characteristic of fully expanded source leaves. In young developing leaves (leaves expanded to less than half of their final size), which represent the sink organs, the SPS activity was 2.5 times lower. At all stages of leaf development, the synthesizing SS activity was rather low. The diurnal change of SS activity was independent of photosynthesis and showed a slight rise from 6:00–8:00 p.m. Under field conditions, the highest SPS activity was found in leaves in the terminal stage of their development (105-day-old plants); the synthesizing activity of SS showed little changes during this period. The activity of soluble acid invertase was characteristic of young leaves. In mature leaves, the activity of this enzyme correlated with the daylight period. These changes occurred on the background of low sucrose content in leaves. The regulation of SPS, SS, and invertase activity is discussed. It is supposed that compartmentation of these enzymes in the photosynthesizing cell is important for transport, metabolism, and the osmotic function of sucrose in leaves.  相似文献   

5.
The organ topography of sucrose synthase and soluble acid invertase in pea seedlings at heterotrophic stage (3–14 days) was studied. Sucrose synthase was most active in the roots, with the highest activity on the 6–8th days. In the leaves, its activity decreased from day 3 to day 14. In the stems, sucrose synthase activity was at an invariantly low level. The patterns of sucrose synthase activity in etiolated and green plants were similar. As distinct from sucrose synthase, invertase activity was the highest in the stem, especially in etiolated plants. The peak of its activity was observed on the 6-8th days. In the leaves, invertase activity was lower but its pattern was the same. In the roots, acid invertase activity decreased from the 3rd day and did not depend on illumination. The conclusion is that differences in sucrose synthase and acid invertase activities in roots, leaves, and stem are determined by differences in the import of hydrolytic products of stored compound from the cotyledons as well as by different demands of these organs for these products for the processes of organ expansion and for the maintenance of organ metabolism.  相似文献   

6.
Vassey TL 《Plant physiology》1989,89(1):347-351
The activity of sucrose phosphate synthase, sucrose synthase, and acid invertase was monitored in 1- to 2-month-old sugar beet (Beta vulgaris L.) leaves. Sugar beet leaves achieve full laminar length in 13 days. Therefore, leaves were harvested at 2-day intervals for 15 days. Sucrose phosphate synthase activity was not detectable for 6 days in the dark-grown leaves. Once activity was measurable, sucrose phosphate synthase activity never exceeded half that observed in the light-grown leaves. After 8 days in the dark, leaves which were illuminated for 30 minutes showed no significant change in sucrose phosphate synthase activity. Leaves illuminated for 24 hours after 8 days in darkness, however, recovered sucrose phosphate synthase activity to 80% of that of normally grown leaves. Sucrose synthase and acid invertase activity in the light-grown leaves both increased for the first 7 days and then decreased as the leaves matured. In contrast, the activity of sucrose synthase oscillated throughout the growth period in the dark-grown leaves. Acid invertase activity in the dark-grown leaves seemed to be the same as the activity found in the light-grown leaves.  相似文献   

7.
When Phalaenopsis amabilis is grown under high temperature (30/25°C, day/night), flowering is blocked, and this can be reversed by gibberellin A3 (GA3) treatment. Associated with GA3 treatment under high temperature are increases in sucrose, glucose and fructose as compared with warm-treated plants. Spraying with sucrose solution alone caused leaf epinasty in plants grown under high temperature. Epinasty was released by about 9 days of GA3 treatment. In GA3-treated plants under high temperatures, sucrose application to the source leaves led to an increase in sugar content in both leaves and inflorescence. In contrast, although in warm-treated plants sucrose application to the source leaves increased sugar content in the leaves, it did not increase sucrose content in the inflorescence. These results corroborate our hypothesis that in Phalaenopsis GA3 stimulates sink activity in the apical meristem and promotes the translocation of sucrose from source leaves to the apex of the inflorescence, where it accumulates. GA3 treatment led to an increase in sucrose synthase activity and had no effect on invertase activity.  相似文献   

8.
A decrease in CO2 uptake, an increase in leaf starch and sucrose content and a decrease in the content of reducing sugars were found in rose ( Rosa hybrida cvs: Sonia and Golden Times) plants exposed to lower night temperature (12°C) in comparison with those grown at 18°C. These responses were not present when plants were grown under a night temperature regime of alternating temperature, 2 h at 18°C followed by 2 h at 12°C for 3 repetitive periods of a total of 12 h. The export of labelled carbon from the source leaves and translocation into the adjacent axillary buds were inhibited by lower night temperature, but not by the alternating temperature regime. The translocation of labelled carbon toward the basal plant parts was promoted by the lower temperature but not by alternating temperature. The partitioning of labelled carbon between the 2 uppermost lateral buds was also affected by the night temperature regime.  相似文献   

9.
Sucrose and reducing sugar concentrations in petals of cut carnation flowers, whose life was prolonged up to 7 days by bathing stalks in sucrose solutions, were respectively 3-fold and 2-fold higher than those bathed in water. Reducing sugar concentrations were about 7-fold higher than sucrose concentrations. A study of invertase and sucrose synthase activities in flower petals of carnation and four other species of flowers revealed that both enzymes may be involved in hydrolysis of translocated sucrose. Invertase activity, while being up to 20-fold higher than sucrose synthase activity in some species was approximately comparable in others. More detailed studies on invertase from petals of 3 flower species demonstrated the presence of only the acid form of the enzyme with a Km value for sucrose of about 2.5 mM.  相似文献   

10.
The activities of sucrose-phosphate synthase (SPS), sucrose synthase (SUSY), neutral invertase (NI) and soluble acid invertase (SAI) regulates sucrose activity in sugarcane were studied. Micropropagated sugarcane plants were obtained from callus cultures of four Mexican commercially available sugarcane varieties characterized by differences in sugar production, and activities of SPS, SUSY, NI, SAI and concentrations of sucrose were monitored in the sugarcane stem. The results indicated that sucrose accumulation was positively and significantly related to an increase in activity of SPS and SUSY and negatively to a reduction in activity of SAI and NI (P<0.05). SPS explained most of the variations found for sucrose accumulation and least for NI. The relationship between activity of SPS, SUSY, NI and SAI in sugarcane stem was similar in each variety.  相似文献   

11.
以河套蜜瓜为试材,在果实迅速膨大期通过去果处理改变库源关系,研究源叶净光合速率,蔗糖、还原糖和淀粉含量及其代谢相关酶活性的昼夜变化规律。结果表明:(1)源叶的净光合速率为单峰曲线,无明显的"光合午休"现象,去果处理对其无影响。(2)源叶中蔗糖和还原糖含量的昼夜变化为单峰曲线,蔗糖磷酸合成酶和蔗糖合成酶合成方向活性的昼夜变化为双峰曲线,蔗糖合成酶分解方向、酸性转化酶和中性转化酶活性的昼夜变化无明显规律,改变库源关系对这些指标均无显著影响;蔗糖含量升高受蔗糖磷酸合成酶和蔗糖合成酶合成方向正调控,而蔗糖含量降低则受多种酶的共同调节。(3)源叶中淀粉含量和腺苷二磷酸葡萄糖焦磷酸化酶活性的昼夜变化为单峰曲线,去果处理可以显著提高淀粉含量和腺苷二磷酸葡萄糖焦磷酸化酶活性,淀粉含量升高受腺苷二磷酸葡萄糖焦磷酸化酶正调控。  相似文献   

12.
To investigate the effects of sucrose-phosphate synthase (SPS) on carbon partitioning, transgenicArabidopsis plants transformed withSynechocystis SPS were constructed. The integration, copy number and expression level were confirmed by Southern and Northern blot analyses. SPS activity in leaves from the transgenic and wild type plants was not significantly different. The level of sucrose and starch in the leaves of transgenic plant were slightly decreased compared to wild type. The glucose and fructose contents were increased up to two-fold compared to wild type during the light period. It is our speculation that the decreased sucrose level of the transgenic plant might be caused by the high acid invertase. These authors contributed equally to this work  相似文献   

13.
Wheat plants were grown at a day/night temperature of 18/13°C under glasshouse conditions. Twenty-two d after anthesis, one set of plants was shaded to 50% of the normal photon fluence rate, another was 'degrained' by selective spikelet removal which left only the grains in the five central spikelets; a further set was left as control. Individual plants were harvested at days 22, 30 or 42 after anthesis. Extracts from the peduncle and the penultimate internode were prepared to determine the activities of sucrose phosphate synthase, sucrose synthase, fructan exohydrolase and acid invertase, and to assess the concentration of hexose sugars, sucrose and fructans. Measurements were also made of ear and individual grain weights, and stem f. wt and d. wt. There was a decline in the amount of fructans with time, more pronounced in 'shaded' (source-limited) than in control plants. By contrast, in 'degrained' (sink-limited) plants, the amount of fructans in the stem initially rose, then decreased, with a concomitant increase in the amount of fructose. The shifts in sugar content of the wheat culm reflected both the sink demand of the ear and source activity. The activity of fructan exohydrolase correlated with the carbohydrate changes. Under limited photosynthate assimilation, the mobilization of fructans from the internodes towards the ear was related to an increase in this enzyme, whereas the other enzymes played a less direct role in the mobilization of fructan reserves from the wheat stem.  相似文献   

14.
We examined the photosynthetic properties, the activity of antioxidantenzymes and the amount of caroten-oids of two maize genotypescharacterized by different sensitivity to low temperature. Plantsof the low-temperature-sensitive genotype A-619 and of the low-temperature-resistantgenotype VA-36 were grown at 25/20C (control plants) and at16/14C (plants grown at low temperature). Twenty-five daysafter seeding, the exposure to low temperature caused, in allplants, a reduction of leaf chlorophyll and carotenoid content,but an increase in the activity of the oxygen-detoxifying enzymes,superoxide dismutase and ascorbate per-oxidase. However, theresponse of photosynthesis, stomatal conductance and the fluorescenceproperties to light and temperature were not affected by growthat low temperature. Fifty days after seeding, photosynthesis, stomatal conductance,and fluorescence properties of A-619 leaves grown at low temperaturewere significantly reduced with respect to control plants atall temperatures and light intensities. In the leaves of A-619plants grown at low temperature, the electron transport ratewas not tightly down-regulated by carbon metabolism and an excessof electrons was shown by the increased ratio between the quantumyield of electron transport of photosystem II and the quantumyield of CO2 assimilation. On the contrary, VA-36 leaves grownat 16C maintained the same photosynthetic characteristics andphotochemical properties as control plants. The chlorophyllcontent of both genotypes and carotenoid content of A-619 plantswere lower in leaves of plants maintained at 16C than in thosegrown at 25C. In contrast, the carotenoid content of VA-36leaves of plants grown at low temperature were higher than inplants grown at 25C. The activity of superoxide dismutase and ascorbate peroxidaseof VA-36 plants grown at low temperature were higher than incontrols. In A-619 plants grown at fow temperature the activityof superoxide dismutase was higher than in controls, but theactivity of ascorbate peroxidase was lower than in controls.Our findings suggest that when maize plants are grown at lowtemperature the electron transport rate may be in excess ofcarbon metabolism and electrons may be used to reduce oxygen.A co-ordinate increase of pigment amounts and of the activityof oxygen-detoxifying enzymes is necessary to protect maizeleaves from the accumulation of oxygen radicals at low temperature.In A-619 plants, the carotenoid content did not increase andthe activity of ascorbate peroxidase was low when plants wereexposed to low temperature for 50 d. As a result, the photochemicalapparatus of A-619 leaves was damaged and photo-oxidation occurred.These experiments also indicated that when photosynthesis wasreduced by a transitory reduction of temperature, the electrontransport was still tightly down-regulated by carbon metabolismand the photosynthetic apparatus of both genotypes was not damaged. Key words: Photosynthesis, electron transport, antioxid-ants, carotenoids, low temperature.  相似文献   

15.
Abortion of pepper flowers depends on the light intensity perceivedby the plant and on the amounts of sucrose taken up by the flower(Aloni B, Karni L, Zaidman Z, Schaffer AA. 1996.Annals of Botany78: 163–168). We hypothesize that changes in the activityof sucrose-cleaving enzymes within the flower ovary might beresponsible for the changes in flower abortion under differentlight conditions. In the present study we report that the activityof sucrose synthase, but not of cytosolic acid invertase, increasesin flowers of pepper plants which were exposed, for 2 d, toincreasing photosynthetically active radiation (PAR) in therange of 85–400 µmol m-2s-1at midday. Sucrose synthaseactivity increased in parallel with the increasing concentrationsof starch in the flower ovary. Feeding flower explants, preparedfrom 3-d-predarkened plants, with 100 mM sucrose for 24 h, causeda 23% increase in reducing sugars and a 2.5-fold increase instarch concentration, compared with explants fed with buffer.Likewise, feeding explants of pepper flowers with sucrose, glucose,fructose and also mannitol increased the sucrose synthase activityin the ovaries. Concomitantly, sucrose, glucose and fructose,but not mannitol, reduced the abortion of flower explants. Itis suggested that sucrose entry into the flower increases theflower sink activity by inhibiting abscission and inducing metabolicchanges, thus enhancing flower set. Pepper; Capsicum annuum L.; abscission; light; pepper flowers; sucrose; glucose; fructose; starch; acid invertase; sucrose synthase  相似文献   

16.
Current concepts of the factors determining sink strength and the subsequent regulation of carbohydrate metabolism in tomato fruit are based upon an understanding of the relative roles of sucrose synthase, sucrose phosphate synthase and invertase, derived from studies in mutants and transformed plants. These enzymes participate in at least four futile cycles that involve sugar transport between the cytosol, vacuole and apoplast. Key reactions are (1) the continuous rapid degradation of sucrose in the cytosol by sucrose synthase (SuSy), (2) sucrose re-synthesis via either SuSy or sucrose phosphate synthase (SPS), (3) sucrose hydrolysis in the vacuole or apoplast by acid invertase, (4) subsequent transport of hexoses to the cytosol where they are once more converted into sucrose, and (5) rapid synthesis and breakdown of starch in the amyloplast. In this way futile cycles of sucrose/hexose interchange govern fruit sugar content and composition. The major function of the high and constant invertase activity in red tomato fruit is, therefore, to maintain high cellular hexose concentrations, the hydrolysis of sucrose in the vacuole and in the intercellular space allowing more efficient storage of sugar in these compartments. Vacuolar sugar storage may be important in sustaining fruit cell growth at times when less sucrose is available for the sink organs because of exhaustion of the carbohydrate pools in source leaves.  相似文献   

17.
宁夏枸杞果实糖积累和蔗糖代谢相关酶活性的关系   总被引:9,自引:2,他引:7  
通过对枸杞果实发育过程中果实生长模式、蔗糖、果糖、葡萄糖和淀粉含量及糖代谢相关酶活性的测定,研究了宁夏枸杞果实生长发育过程中糖的代谢积累与相关酶活性的关系.结果表明:(1)宁夏枸杞果实发育呈双S"曲线,果实主要以积累己糖为主.(2)蔗糖磷酸合成酶(SPS)活性在果实发育初期处于下降的趋势,在花后19d开始上升,果实转色后又逐渐下降;蔗糖合成酶(SS)活性总体表现为SS分解方向的活性大于SS合成方向的活性,说明枸杞果实发育过程中,SS的活性主要以分解方向的为主;酸性转化酶(AI)和中性转化酶(NI)的活性随果实发育呈上升趋势,但在果实成熟后期有所下降,且AI和NI活性高于合成酶类的活性,较高的转化酶类活性促进了果实内部己糖的积累.(3)在枸杞果实生长发育中,葡萄糖和果糖含量与AI和NI均呈极显著正相关,而与其它酶不具有相关性.说明AI和NI在宁夏枸杞果实的糖代谢中起着主要的调控作用.  相似文献   

18.
Metabolic changes in the contents of sucrose and hexoses in relation to the activities of invertase, sucrose synthase and sucrose-phosphate synthase in early (CoJ 64) and late (Co 1148) maturing cultivars of sugarcane have been studied. During early stages of cane growth, lower activities of sucrose synthase and sucrose-phosphate synthase in leaf blade In CoJ 64 over Co 1148 were observed. However, sucrose content in sheath/blade was higher in CoJ 64 than in Co 1148. With the advancing age, the activity of soluble acid invertase (pH 5.4) in stem declined more rapidly in CoJ 64. This resulted in building up of high ratio of sucroselinvert sugars in stem tissue of this cultivar. Feeding uniformly-labelled sucrose and glucose to the cut discs of leaf sheath resulted in higher uptake of 14C in CoJ 64 than in Co 1148. Uptake by stem tissue discs of 14C from sucrose was less than that from hexoses. Based on these results, it is suggested that (i) the rapid fall in the activity of soluble acid invertase in stem concomitant with fast accumulation of sucrose in this tissue is an index of early maturity of the cane, and (ii) high content of sucrose in sheath is a reflection of an efficient translocation of this sugar in early maturing cultivars.  相似文献   

19.
The effects of chilling stress on leaf photosynthesis and sucrose metabolism were investigated in tomato plants (Lycopersicon esculentum Mill. cultivar Marmande). Twenty-one-day-old seedlings were grown in a growth chamber at 25/23 °C (day/night) (control) and at 10/8 °C (day/night) (chilled) for 7 days. The most evident effect of chilling was the marked reduction of plant growth and of CO2 assimilation as measured after 7 days, the latter being associated with a decrease in stomatal closure and an increase in Ci. The inhibition in photosynthetic rate was also related to an impairment of photochemistry of photosystem II (PSII), as seen from the slight, but significant change in the ratio of Fv/Fm. The capacity of chilled leaves to maintain higher qP values with respect to the controls suggests that some protection mechanism prevented excess reduction of PSII acceptors. The results of the determination of starch and soluble sugar content could show that chilling impaired sucrose translocation. The activity of leaf invertase increased significantly in chilled plants, while that of other sucrose-metabolizing enzymes was not affected by growing temperature. Furthermore, the increase in invertase (neutral and acid) activity, which is typical of senescent tissue characterized by reduced growth, seems to confirm that tomato is a plant which is not a plant genetically adapted to low temperatures.  相似文献   

20.
Changes induced by the pollination of ovaries may be mediated by phytohormones and involve sudar-mediated by phytohormones and involve sugar-metabolizing enzymes. In order to further explore these relationships, soluble sugars, sucrose-phosphate synthase (EC 2.4.1.14), sucrose synthase (EC 2.4.1.13), acid and neutral invertases (EC 3.2.1.26), indole-3-acetic acid (IAA), and ethylene were investigated in muskmelon (Cucumis melo L.) ovaries sampled before, during, and after anthesis. The fresh weight of ovaries increased 100% within 48 h after pollination, but did not change significantly in the absence of pollination. While sugar content per ovary increased after pollination, sugar content per mg protein was unaffected. Sucrose was not detected in nonpollinated ovaries 48 h after anthesis. Free IAA content was highest in ovaries sampled 48h before anthesis. Pollination had no immediate effect on IAA content per mg protein in postanthesis ovaries. Although detected in all ovaries sampled, ethylene production increased significantly only in nonpollinated ovaries. Activity of sucrose-phosphate synthase was the same at all stages. The specific activities of sucrose synthase and the invertases were highest in nonpollinated ovaries. The increase in rate of sugar import into ovaries following pollination was not accompanied by an increase in the specific activity of any enzyme assayed, but was coincident with an increase in the total activity per ovary of surcose synthase and acid invertase. There appears to be no direct relationship between sucrose-metabolizing enzymes, IAA or ethylene in developing pollinated ovaries but the increase in sucrose cleavage activity in nonpollinated ovaries may be related to the increase in ethylene production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号