首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochemical events accompanying changes in structure and behavior of the cell walls of Chlamydia psittaci strain 6BC during its developmental cycle in L cells (mouse fibroblasts) were studied by measuring at short intervals the effect of d-cycloserine and penicillin G on incorporation of labeled intermediates into acid-insoluble fractions of infected L cells in which host incorporation had been inhibited by cycloheximide and into intact chlamydial cells and cell walls separated from the infected L cells. d-Cycloserine enhanced the incorporation of (14)C-l-alanine at all times in the developmental cycle, but the incorporation of (14)C-l-lysine was always inhibited. In parallel experiments, penicillin G had no effect on incorporation of any of these intermediates, but when infected L cells incorporated (14)C-l-alanine in the presence of penicillin G, the labeled alanine was released more rapidly in the subsequent absence of the antibiotic than in its continued presence. When either penicillin G or d-cycloserine was present throughout the developmental cycle, C. psittaci continued to synthesize deoxyribonucleic acid and protein, but at less than normal rates.  相似文献   

2.
Dundas, Ian E. D. (University of Illinois, Urbana), and H. Orin Halvorson. Arginine metabolism in Halobacterium salinarium, an obligately halophilic bacterium. J. Bacteriol. 91:113-119. 1966.-Arginine was shown to be essential for growth of Halobacterium salinarium strain 1 in a chemically defined medium. Citrulline was the only compound which could substitute for arginine without affecting growth. Resting cells of H. salinarium converted arginine to citrulline and citrulline to ornithine. Cells grown in an arginine-free medium with C(14)-ureido-labeled citrulline incorporated the isotope mainly into the arginine of their proteins. The enzymes arginine desimidase and ornithine transcarbamylase were found and studied in cell-free extracts of H. salinarium. Experiments indicated that arginine was degraded in H. salinarium by arginine desimidase to citrulline, and that citrulline was further degraded by ornithine transcarbamylase to carbamyl phosphate and ornithine. Synthesis of arginine from citrulline seems to occur via the formation of argininosuccinic acid.  相似文献   

3.
The effect of 300 μ M arginine on growth of sugarcane cell suspensions was studied. Cells transferred to defined media in the stationary growth stage showed a greater requirement for exogenous arginine than cells similarly transferred in the rapidly dividing stage. Cell arginine levels, rates of arginine synthesis, and enzymes of arginine synthesis all decreased in cells entering the stationary stage. It is concluded that stationary stage cells are deficient in their ability to synthesize arginine and are therefore dependent upon an exogenous supply to resume growth in fresh media.  相似文献   

4.
The incorporation of [3H]thymidine into the deoxyribonucleic acid (DNA) of Chlamydia psittaci (strain 6BC) growing in thymidine kinase (adenosine 5'-triphosphate-thymidine 5'-phosphotransferase, EC 1.7.1.21)-containing L cells, L(TK+), and thymidine kinase-deficient L cells, LM(TK-), was examined by autoradiography. Label was detected over C. psittaci inclusions in L(TK+) but not LM(TK-) cells. No evidence for a chlamydia-specific thymidine kinase activity in either L(TK+) or LM(TK-) cells was obtained. Entry of [3H]thymidine into the DNA of C. psittaci growing in L(TK+) cells was quantitated by measuring label in purified C. psittaci. It was 265 times less efficient than entry into infected host cell DNA. It is concluded that low levels of exogenous thymidine are incorporated into the DNA of C. psittaci and that this incorporation is dependent on a fully competent host thymidine kinase activity. Evidence also is presented that L cells possess at least two thymidine kinase activities, both of which are capable of supplying thymidylate precursors for nuclear DNA synthesis.  相似文献   

5.
Chlamydiae are obligate intracellular bacteria that replicate within a non-acidified vacuole called an inclusion. Chlamydia psittaci (strain GPIC) produces a 39 kDa protein (IncA) that is localized to the inclusion membrane. While IncA is present as a single 39 kDa species in purified reticulate bodies, two additional higher M r forms are found in C. psittaci -infected cells. This finding suggested that IncA may be post-translationally modified in the host cell. Here we present evidence that IncA is a serine/threonine phosphoprotein that is phosphorylated by host cell enzymes. This conclusion is supported by the following experimental findings: (i) treatment of infected cells with inhibitors of host cell phosphatases or kinases altered the electrophoretic migration pattern of IncA; (ii) treatment with calf intestinal alkaline phosphatase eliminated the multiple-banding pattern of IncA, leaving only the protein band with the lowest relative molecular weight; and (iii) radioimmunoprecipitation of lysates of [32P]-orthophosphate-labelled infected HeLa cells with anti-IncA antisera demonstrated that the two highest M r IncA bands were phosphorylated. A vaccinia-virus recombinant expressing incA was used to determine if HeLa cells can phosphorylate IncA in the absence of a chlamydial background. IncA in lysates of these cells migrated identically to that seen in C. psittaci -infected cells, indicating the host cell was responsible for the phosphorylation of the protein. Microinjection of fluorescently labelled anti-IncA antibodies into C. psittaci -infected HeLa cells resulted in immunostaining of the outer face of the inclusion membrane. Collectively, these results demonstrate that IncA is phosphorylated by the host cell, and regions of IncA are exposed at the cytoplasmic face of the inclusion.  相似文献   

6.
Pyrimidine metabolism by intracellular Chlamydia psittaci.   总被引:2,自引:1,他引:1       下载免费PDF全文
Pyrimidine metabolism was studied in the obligate intracellular bacterium Chlamydia psittaci AA Mp in the wild type and a variety of mutant host cell lines with well-defined mutations affecting pyrimidine metabolism. C. psittaci AA Mp cannot synthesize pyrimidines de novo, as assessed by its inability to incorporate aspartic acid into nucleic acid pyrimidines. In addition, the parasite cannot take UTP, CTP, or dCTP from the host cell, nor can it salvage exogenously supplied uridine, cytidine, or deoxycytidine. The primary source of pyrimidine nucleotides is via the salvage of uracil by a uracil phosphoribosyltransferase. Uracil phosphoribosyltransferase activity was detected in crude extracts prepared from highly purified C. psittaci AA Mp reticulate bodies. The presence of CTP synthetase and ribonucleotide reductase is implicated from the incorporation of uracil into nucleic acid cytosine and deoxycytidine. Deoxyuridine was used by the parasite only after cleavage to uracil. C. psittaci AA Mp grew poorly in mutant host cell lines auxotrophic for thymidine. Furthermore, the parasite could not synthesize thymidine nucleotides de novo. C. psittaci AA Mp could take TTP directly from the host cell. In addition, the parasite could incorporate exogenous thymidine and thymine into DNA. Thymidine kinase activity and thymidine-cleaving activity were detected in C. psittaci AA Mp reticulate body extract. Thus, thymidine salvage was totally independent of other pyrimidine salvage.  相似文献   

7.
The PEB1a protein of the gastrointestinal pathogen Campylobacter jejuni mediates interactions with epithelial cells and is an important factor in host colonization. Cell fractionation and immunoblotting showed that PEB1a is most abundant in the periplasm of C. jejuni, and is detectable in the culture supernatant but not in the inner or outer membrane. The protein is homologous with periplasmic-binding proteins associated with ABC transporters and we show by fluorescence spectroscopy that purified recombinant PEB1a binds L-aspartate and L-glutamate with sub microM K(d) values. Binding of L-14C-aspartate or L-14C-glutamate was strongly out-competed by excess unlabelled aspartate or glutamate but only poorly by asparagine and glutamine. A mutant in the Cj0921c gene, encoding PEB1a, was completely unable to transport 5 microM L-14C-glutamate and showed a large reduction (approximately 20-fold) in the rate of L-14C-aspartate transport compared with the wild type. Although microaerobic growth of this mutant was little affected in complex media, growth on aspartate or glutamate in defined media was completely prevented, whereas growth with serine was similar to wild type. 1H-NMR analysis of the culture supernatants of the Cj0921c mutant showed some utilization of aspartate but not glutamate, consistent with the transport data. It is concluded that in addition to the established role of PEB1a as an adhesin, the PEB1 transport system plays a key role in the utilization of aspartate and glutamate, which may be important in vivo carbon sources for this pathogen.  相似文献   

8.
Genetic relationships were reported for Chlamydia psittaci derived from psittacine birds, pigeons, turkeys, humans, cats, muskrats, cattle, and sheep and for C. trachomatis, including representative strains of the three biovars, through physical analysis of genomic DNA including DNA fingerprinting with restriction endonuclease SalI, DNA-DNA hybridization in solution with S1 nuclease, and Southern analysis with genomic DNA probes. A total of 26 strains were divided into four groups of C. psittaci and two groups of C. trachomatis, on the basis of DNA fingerprints. The six groups of Chlamydia spp. were related to host origin: two avian groups (Av1 and Av2), one feline and muskrat group (Fe1), one ruminant group (Ru1), one C. trachomatis biovars trachoma and lymphogranuloma group (CtHu), and one C. trachomatis mouse biovar group (CtMo), although an ovine abortion strain belonged to the avian group Av2. DNA-DNA hybridization assay and Southern analysis with genomic DNA probes indicated three DNA homology groups in the genus Chlamydia: an avian-feline group (groups Av1, Av2, and Fe1), a ruminant group (group Ru1), and a C. trachomatis group (groups CtHu and CtMo). Furthermore, the Southern analysis indicated that the homologous sequences (DNA homology of at least 14%) within the avian-feline group were distributed along the whole genome, whereas the homologous sequences (DNA homology of less than 24%) among the three DNA homology groups were localized in distinct regions of the genome DNA. These results suggest that Chlamydia spp. are derived from a common ancestor and have diverged into various groups showing restricted host ranges as a natural characteristic and that the species C. psittaci should be differentiated into groups related to host origin and DNA homology.  相似文献   

9.
Proteinase Produced by Chlamydia psittaci in L Cells   总被引:2,自引:0,他引:2       下载免费PDF全文
L cells (mouse fibroblasts) infected with Chlamydia psittaci (strain meningopneumonitis) produced a proteinase differing in solubility in ammonium sulfate from the proteinase of uninfected L cells. Synthesis of the enzyme was inhibited by chloramphenicol but not by cycloheximide, indicating that the new proteinase in infected L cells was synthesized by Chlamydia psittaci. The chlamydial proteinase had no demonstrable ion requirements and was not inhibited by a variety of inhibitors of proteinase activity. Gel filtration experiments suggested a molecular weight of approximately 250,000. The proteinase appeared in infected L cells at the time host cells began to die and the large chlamydial cells began to reorganize into small ones. Some possible functions for the chlamydial proteinase were proposed.  相似文献   

10.
Abstract: Genes from Chlamydia psittaci P-1041 were cloned into the Bam HI site of pUC19 and were transformed to host Escherichia coli JM109. Two recombinant plasmids that expressed protein antigens of Chlamydia were isolated. The sizes of the DNA fragments were 1350 and 1710 bp, and encoded for polypeptides of M r 25 and 42 kilodaltons (kDa), respectively. The 25-kDa protein had cross-reactivity with antisera to ten C. psittaci strains and two C. trachomatis strains, whereas the 42-kDa protein reacted only with homologous antiserum to the C. psittaci P-1041 strain. Furthermore, in Southern hybridization analysis these two fragments as probes hybridized with DNA of ten C. psittaci strains and four C. trachomatis strains. These results indicated that the two fragments shared a DNA sequence common to the chlamydial genus.  相似文献   

11.
Exposure of dilute aqueous solutions of tryptophan to near UV light (320 to 390 nm) at subsolar levels yields fluorescent photoproducts capable of inhibiting the growth and differentiation of cultured mouse embryonic fibroblasts and fertilized sea urchin eggs. The ability of these cells to incorporate labelled precursors of protein, RNA, and DNA into their respective macromolecules was markedly inhibited by adding tryptophan preirradiated with near UV light to their incubation media. Thus the inhibition of growth and differentiation of these cells seems to result from a depression of their ability to synthesize macromolecules in the presence of the photoproducts.  相似文献   

12.
The dynamic study of a new Chlamydia species, C. pneumoniae (strain TWAR, isolate TW-480), inoculated into the monolayer culture of cells L-929 was made 24, 48, 72 and 96 hours after inoculation. When compared with C. trachomatis and C. psittaci, C. pneumoniae were found to stand between these two species with respect to the morphology of their intracytoplasmic microcolonies (inclusions): they were round, almost bubble-like, but more densely packed with chlamydiae, surrounded by an undulate membrane, preserving its integrity until the late stages of their development cycle. In cells L-929 C. pneumoniae had a typical development cycle accompanied by the formation of vegetative and spore-like cells, reticular and elementary bodies, as well as intermediate cells, though this process was slower than in C. trachomatis and C. psittaci. Besides normal elementary bodies, many altered ones were formed in the process of the development of C. pneumoniae in cells L-929. Most of these alterations were similar to the process of bacterial L-transformation and could be regarded as the manifestation of chlamydial pathology related to the adaptation to new host cells.  相似文献   

13.
Purine metabolism by intracellular Chlamydia psittaci.   总被引:1,自引:0,他引:1       下载免费PDF全文
Purine metabolism was studied in the obligate intracellular bacterium Chlamydia psittaci AA Mp in the wild type and a variety of mutant host cell lines with well-defined deficiencies in purine metabolism. C. psittaci AA Mp cannot synthesize purines de novo, as assessed by its inability to incorporate exogenous glycine into nucleic acid purines. C. psittaci AA Mp can take ATP and GTP, but not dATP or dGTP, directly from the host cell. Exogenous hypoxanthine and inosine were not utilized by the parasite. In contrast, exogenous adenine, adenosine, and guanine were directly salvaged by C. psittaci AA Mp. Crude extract prepared from highly purified C. psittaci AA Mp reticulate bodies contained adenine and guanine but no hypoxanthine phosphoribosyltransferase activity. Adenosine kinase activity was detected, but guanosine kinase activity was not. There was no competition for incorporation into nucleic acid between adenine and guanine, and high-performance liquid chromatography profiles of radiolabelled nucleic acid nucleobases indicated that adenine, adenosine, and deoxyadenosine were incorporated only into adenine and that guanine, guanosine, and deoxyguanosine were incorporated only into guanine. Thus, there is no interconversion of nucleotides. Deoxyadenosine and deoxyguanosine were cleaved to adenine and guanine before being utilized, and purine (deoxy)nucleoside phosphorylase activity was present in reticulate body extract.  相似文献   

14.
Cycloheximide, which had already been shown to inhibit protein synthesis in Earle's L cells (mouse fibroblasts) without having any effect on the multiplication or protein synthesis in Chlamydia psittaci (strain meningopneumonitis) infecting these host cells, also caused greater than 90% inhibition of deoxyribonucleic acid (DNA) synthesis in L cells after a 3-hr exposure to the drug. L cells infected with the meningopneumonitis agent and treated with cycloheximide were used to follow meningopneumonitis-specific DNA synthesis during intracellular growth of the parasite. The rate at which labeled precursors were incorporated into parasite DNA doubled every 2 hr. The effect of meningopneumonitis infection on L-cell DNA and protein synthesis was investigated in logarithmically growing and in stationary-phase (nondividing) populations of L cells. Host-specific DNA and protein synthesis appeared to be inhibited in infected L cells when compared with logarithmically growing control cells, whereas no inhibition was apparent when the comparison was made with stationary-phase control cells. The maximal amount of protein and DNA synthesis that occurred in meningopneumonitis-infected L cells was equal to the amount of DNA and protein synthesized in logarithmically growing, uninfected L cells. A possible explanation of these results is given.  相似文献   

15.
To provide insights into the effects of temporary focal ischemia on the function of neurons and astrocytes in vivo, we measured the incorporation of radiolabel from [U-14C]glucose into both glutamate and glutamine in brain subregions at 1 h of reperfusion following occlusion of the middle cerebral artery for 2 or 3 h. Under the experimental conditions used, 14C-glutamate is mainly produced in neurons whereas 14C-glutamine is generated in astrocytes from 14C-glutamate of both neuronal and astrocytic origin. Radiolabel incorporation into both amino acids was greatly decreased. The change in 14C-glutamate accumulation provides strong evidence for substantial reductions in neuronal glucose metabolism. The resulting decrease in delivery of 14C-glutamate from the neurons to astrocytes was probably also the major contributor to the change in 14C-glutamine content. These alterations probably result in part from a marked depression of glycolytic activity in the neurons, as suggested by previous studies assessing deoxyglucose utilization. Alterations in 14C-glucose metabolism were not restricted to tissue that would subsequently become infarcted. Thus, these changes did not inevitably lead to death of the affected cells. The ATP : ADP ratio and phosphocreatine content were essentially preserved during recirculation following 2 h of ischemia and showed at most only moderate losses in some subregions following 3 h of ischemia. This retention of energy reserves despite the decreases in 14C-glucose metabolism in neurons suggests that energy needs were substantially reduced in the post-ischemic brain. Marked increases in tissue lactate accumulation during recirculation, particularly following 3 h of ischemia, provided evidence that impaired pyruvate oxidation probably also contributed to the altered 14C-glucose metabolism. These findings indicate the presence of complex changes in energy metabolism that are likely to greatly influence the responses of neurons and astrocytes to temporary focal ischemia.  相似文献   

16.
The disulfide bond cross-linked major outer membrane protein (MOMP) of the extracellular elementary bodies (EBs) of Chlamydia psittaci was reduced to its monomeric form within 1 h of entry of EBs into host cells by a process which was inhibited by chloramphenicol, while monomeric forms of three cross-linked cysteine-rich proteins could not be detected in Sarkosyl outer membrane complexes at any time in either extracellular or intracellular forms of C. psittaci. Synthesis and incorporation of the MOMP into outer membrane complexes were detected early in the infection cycle (12 h postinfection), while synthesis and incorporation of the cysteine-rich proteins were not observed until reticulate bodies had begun to reorganize into EBs at 20 to 22 h postinfection. By 46 h postinfection, the intracellular population of C. psittaci consisted mainly of EBs, the outer membrane complexes of which were replete with monomeric MOMP and cross-linked cysteine-rich proteins. Upon lysis of infected cells at 46 h, the MOMP was rapidly cross-linked, and infectious EBs were released. The status of the MOMP of intracellular Chlamydia trachomatis was similar to the status of the MOMP of C. psittaci in that the MOMP was largely uncross-linked at 24 and 48 h postinfection, but formed interpeptide disulfide bonds when it was exposed to an extracellular environment late in the developmental cycle. In contrast to C. psittaci, only a fraction of the cross-linked MOMP of infecting EBs of C. trachomatis was reduced by 4 h postinfection, and reduction of the MOMP was not inhibited by chloramphenicol. Exposure of extracellular EBs of C. trachomatis and C. psittaci to dithiothreitol reduced the MOMP but failed to stimulate metabolic activities normally associated with reticulate bodies.  相似文献   

17.
In order to examine the ability of R plasmid-bearing Escherichia coli strains to colonize in the mouse alimentary tract, an R plasmid-positive (R(+)) E. coli strain and its R plasmid-negative (R(-)) counterpart were together inoculated into the streptomycin-treated mouse alimentary tract, and the numbers of fecal E. coli strains were enumerated. The numbers of R(+) strains were always at the level similar to or lower than those of their counterparts and rapidly decreased in the fecal population. However, when R plasmids, which were originated from a cryptic plasmid of the host E. coli strain, were utilized, an R(+) strain dominated over its R(-) counterpart during the experimental period. These experimental results indicated that the relationship between the host strain and R plasmids affected the ability of the host strain to colonize in the alimentary tract.  相似文献   

18.
Long-term, 32-P-labeled L cells were infected with the obligately intracellular parasite Chlamydia psittaci (strain 6 BC). At 20 h postinfection, [3-H]uridine was added, and the infected cells were sampled at intervals for incorporation of the labels into the uridine triphosphate (UTP) and cytidine triphosphate (CTP) pools of the host L cell and the uridine monophosphate (UMP) and cytidine monophosphate (CMP) in 16S ribosomal ribonucleic acid (RNA) of the parasite. The specific activity of the nucleotides was calculated from the ratio of 3-H to 32-P counts in the nucleotides. The rate of approach to equilibrium labeling of UTP and CTP in L-cell pools and UMP and CMP in 16S RNA from the exogenous uridine label was determined from the increase in the ratios of the specific activities of CTP to UTP and CMP to UMP with time. The rate of approach to equilibrium CMP:UMP labeling of the 16S RNA of C. psittaci was consistent with the rate predicted from the kinetics of labeling of the CTP and UTP pools of the host L cell. In analogous experiments, the rate of approach to equilibrium guanosine monophosphate:adenosine monophosphate labeling of 16S RNA from an exogenous [14-C]adenine label was consistent with the rate predicted from the kinetics of labeling of the purine nucleoside triphosphate pool of the host cell. These results support the concept that members of the genus Chlamydia owe their obligate intracellular mode of reproduction to a requirement for energy intermediates which is fulfilled by the host cell. In addition, evidence was obtained that the total acid-soluble purine nucleoside triphosphate pool of L cells accurately represents the precursors of L-cell 18S ribosomal RNA.  相似文献   

19.
This paper identifies the first arginine/ornithine antiporter ArcD from the domain of archea. The functional role of ArcD is demonstrated by transport assays with radioactive labelled arginine, by its necessity to enable arginine fermentation under anaerobic growth conditions and by the consumption of arginine from the medium during growth. All three experimentally observables are severely disturbed when the deletion strain ΔArcD is used. The isolated protein is verified by mass spectrometry and reconstituted in vesicles. The proteoliposomes are attached to a membrane and capacitive currents are recorded which appear upon initiation of the transport process by change from arginine-free to arginine-containing buffer. This clearly demonstrates that the purified 34 kD protein is the functional unit.  相似文献   

20.
A variety of pathogenic bacteria use type III secretion pathways to translocate virulence proteins into host eukaryotic cells. YopE is an important virulence factor that is translocated into mammalian cells via a plasmid-encoded type III system in Yersinia spp. YopE action in mammalian cells promotes the disruption of actin filaments, cell rounding and blockage of phagocytosis. It was reported recently that two proteins with sequence similarity to YopE, SptP of Salmonella typhimurium and ExoS of Pseudomonas aeruginosa, function as GTPase-activating proteins (GAPs) for Rho GTPases. YopE contains an 'arginine finger' motif that is present in SptP, ExoS and other Rho GAPs and is essential for catalysis by this class of proteins. We show here that a GST-YopE fusion protein stimulated in vitro GTP hydrolysis by the Rho family members Cdc42, RhoA and Rac1, but not by Ras. Conversion of the essential arginine in the arginine finger motif to alanine (R144A) eliminated the in vitro GAP activity of GST-YopE. Infection assays carried out with a Yersinia pseudotuberculosis strain producing YopER144A demonstrated that GAP function was essential for the disruption of actin filaments, cell rounding and inhibition of phagocytosis by YopE in HeLa cells. Furthermore, the GAP function of YopE was important for Y. pseudotuberculosis pathogenesis in a mouse infection assay. Transfection of HeLa cells with a vector that produces a constitutively active form of RhoA (RhoA-V14) prevented the disruption of actin filaments and cell rounding by YopE. Production of an activated form of Rac1 (Rac1-V12), but not RhoA-V14, in HeLa cells interfered with YopE antiphagocytic activity. These results demonstrate that YopE functions as a RhoGAP to downregulate multiple Rho GTPases, leading to the disruption of actin filaments and inhibition of bacterial uptake into host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号