共查询到20条相似文献,搜索用时 0 毫秒
1.
Formation of Dimethyl Sulfide and Methanethiol in Anoxic Freshwater Sediments 总被引:3,自引:6,他引:3 下载免费PDF全文
B. P. Lomans A. Smolders L. M. Intven A. Pol De Op C. Van Der Drift 《Applied microbiology》1997,63(12):4741-4747
Concentrations of volatile organic sulfur compounds (VOSC) were measured in water and sediment columns of ditches in a minerotrophic peatland in The Netherlands. VOSC, with methanethiol (4 to 40 nM) as the major compound, appeared to be mainly of sediment origin. Both VOSC and hydrogen sulfide concentrations decreased dramatically towards the water surface. High methanethiol and high dimethyl sulfide concentrations in the sediment and just above the sediment surface coincided with high concentrations of hydrogen sulfide (correlation factors, r = 0.91 and r = 0.81, respectively). Production and degradation of VOSC were studied in 32 sediment slurries collected from various freshwater systems in The Netherlands. Maximal endogenous methanethiol production rates of the sediments tested (up to 1.44 (mu)mol per liter of sediment slurry (middot) day(sup-1)) were determined after inhibition of methanogenic and sulfate-reducing populations in order to stop VOSC degradation. These experiments showed that the production and degradation of VOSC in sediments are well balanced. Statistical analysis revealed multiple relationships of methanethiol production rates with the combination of methane production rates (indicative of total anaerobic mineralization) and hydrogen sulfide concentrations (r = 0.90) or with the combination of methane production rates and the sulfate/iron ratios in the sediment (r = 0.82). These findings and the observed stimulation of methanethiol formation in sediment slurry incubations in which the hydrogen sulfide concentrations were artificially increased provided strong evidence that the anaerobic methylation of hydrogen sulfide is the main mechanism for VOSC formation in most freshwater systems. Methoxylated aromatic compounds are likely a major source of methyl groups for this methylation of hydrogen sulfide, since they are important degradation products of the abundant biopolymer lignin. Increased sulfate concentrations in several freshwater ecosystems caused by the inflow of water from the river Rhine into these systems result in higher hydrogen sulfide concentrations. As a consequence, higher fluxes of VOSC towards the atmosphere are conceivable. 相似文献
2.
Anaerobic versus Aerobic Degradation of Dimethyl Sulfide and Methanethiol in Anoxic Freshwater Sediments 下载免费PDF全文
Bart P. Lomans Huub J. M. Op den Camp Arjan Pol Godfried D. Vogels 《Applied microbiology》1999,65(2):438-443
Degradation of dimethyl sulfide and methanethiol in slurries prepared from sediments of minerotrophic peatland ditches were studied under various conditions. Maximal aerobic dimethyl sulfide-degrading capacities (4.95 nmol per ml of sediment slurry · h−1), measured in bottles shaken under an air atmosphere, were 10-fold higher than the maximal anaerobic degrading capacities determined from bottles shaken under N2 or H2 atmosphere (0.37 and 0.32 nmol per ml of sediment slurry · h−1, respectively). Incubations under experimental conditions which mimic the in situ conditions (i.e., not shaken and with an air headspace), however, revealed that aerobic degradation of dimethyl sulfide and methanethiol in freshwater sediments is low due to oxygen limitation. Inhibition studies with bromoethanesulfonic acid and sodium tungstate demonstrated that the degradation of dimethyl sulfide and methanethiol in these incubations originated mainly from methanogenic activity. Prolonged incubation under a H2 atmosphere resulted in lower dimethyl sulfide degradation rates. Kinetic analysis of the data resulted in apparent Km values (6 to 8 μM) for aerobic dimethyl sulfide degradation which are comparable to those reported for Thiobacillus spp., Hyphomicrobium spp., and other methylotrophs. Apparent Km values determined for anaerobic degradation of dimethyl sulfide (3 to 8 μM) were of the same order of magnitude. The low apparent Km values obtained explain the low dimethyl sulfide and methanethiol concentrations in freshwater sediments that we reported previously. Our observations point to methanogenesis as the major mechanism of dimethyl sulfide and methanethiol consumption in freshwater sediments. 相似文献
3.
Role of Methanogens and Other Bacteria in Degradation of Dimethyl Sulfide and Methanethiol in Anoxic Freshwater Sediments 下载免费PDF全文
Bart P. Lomans Huub J. M. Op den Camp Arjan Pol Chris van der Drift Godfried D. Vogels 《Applied microbiology》1999,65(5):2116-2121
The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 μmol of DMS was stoichiometrically converted into 112 μmol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, our study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments. 相似文献
4.
Peat bogs dominated by Sphagnum spp. have relatively high areal rates of dimethyl sulfide (DMS) emission to the atmosphere. DMS was produced in anoxic slurries of Sphagnum peat with a linear time course and with an average rate of 40.4 (range, 22.0 to 68.6) nmol per liter of slurry (middot) day(sup-1) observed in nine batches of slurry. Methanethiol (MeSH) was produced at roughly similar rates over the typical 4- to 8-day incubations. DMS and MeSH production in these acidic (pH 4.2 to 4.6) peats were biological, as they were stopped completely by autoclaving and inhibited strongly by addition of antibiotics and 500 (mu)M chloroform. Endogenous DMS production may be due to the degradation of S-methyl-methionine, dimethyl sulfoxide, or methoxyaromatic compounds (e.g., syringic acid), each of which stimulated DMS formation when added at 5 to 10 (mu)M concentrations. However, on the basis of the high rates of thiol (MeSH and ethanethiol) methylation activity that we observed and the availability of endogenous MeSH, we suggest that methylation of MeSH is the major pathway leading to DMS formation in anaerobic peat. Solid-phase adsorption of MeSH plays a key role in its availability for biomethylation reactions. Additions of acetate (1.5 mM) or compounds which could cause acetate to accumulate (e.g., glucose, alanine, and 2-bromoethanesulfonate) suppressed DMS formation. It is likely that acetogenic bacteria are involved in DMS formation, but our data are insufficient to allow firm conclusions about the metabolic pathways or organisms involved. Our observations are the first which point to the methylation of MeSH as the major mechanism for endogenous DMS production in any environment. The rates of net DMS production observed are sufficient to explain the relatively high fluxes of DMS emitted to the atmosphere from Sphagnum sp.-dominated wetlands. 相似文献
5.
Organic phosphorus (Po) was a major fraction of phosphorus (P) in sediments of lakes, and microbes were involved in most of its relevant biogeochemical cycling. Forms and quantification of Po were investigated by sequential fractionation in 18 sediments of Lake Dianchi, Southwest China. Microbial biomass and community structure in these sediments were determined by phospholipid fatty acids (PLFAs). Distribution of Po fractions were in the rank order that humic Po > nucleic acid and polyphosphate > residual P > Ca-Al-Po > Fe-Po > sugar Po > acid soluble Po > H2O-Po. The recoveries of Po and Pi in these detailed sequential fractions including residual P shows that the total contents of Po in sediments of lakes were overestimated by the Standards, Measurements and Testing (SMT) protocol (ignition method). Microbial biomass including Gram-positive bacteria (14.4–20.0%), Gram-negative bacteria (32.7–38.4%), microeukaryotes (14.9–24.4%), aerobic bacteria (43.6–55.8%), anaerobic bacteria (0–2.9%) and type ? methanotrophs (17.6–24.4%) were assigned. Microbial mass and their composition were strongly correlated with H2O-Po, Fe-Po, nucleic acid and polyphosphate, and humic Po, though residual P was likely inert for microbes in sediments. The formation and degradation of Po was closely related with microbial activities in sediments. These findings have implications for understanding the role of microbes on cycling of Po and organic matter in sediments of lakes. 相似文献
6.
Abstract
The microbial mat was chosen as a model ecosystem to study dynamics of dimethyl sulfide (DMS) in marine sediments in order
to gain insight into key processes and factors which determine emission rates. A practical advantage, compared to open ocean
ecosystems, is that microbial mats contain high biomasses of different functional groups of bacteria involved in DMS dynamics,
and that DMS concentrations are generally high enough to allow direct measurement of emission rates. Field data showed that,
during the seasonal development of microbial mats, concentrations of chlorophyll a corresponded to dimethylsulfoniopropionate (DMSP). DMSP is an important precursor of DMS. It was demonstrated, with laboratory
cultures, that various species of benthic diatoms produce substantial amounts of DMSP. The abundances of aerobic and anaerobic
DMS- or DMSO-utilizing bacteria were estimated using the most-probable-number technique. Laboratory experiments with relatively
undisturbed sediment cores showed that microbial mats act as a sink for DMS under oxic/light (day) conditions, and as a source
of DMS under anoxic/dark (night) conditions. Axenic culture studies with Chromatium vinosum M2 and Thiocapsa pfennigii M8 (isolated from a microbial mat) showed that, under anoxic/light conditions, DMS was quantitatively converted to dimethylsulfoxide
(DMSO). T. roseopersicina M11 converted DMSP to DMS and acrylate, apparently without use of either substrate.
Received: 5 May 1997; Accepted: 21 August 1997 相似文献
7.
Obligate Sulfide-Dependent Degradation of Methoxylated Aromatic Compounds and Formation of Methanethiol and Dimethyl Sulfide by a Freshwater Sediment Isolate, Parasporobacterium paucivorans gen. nov., sp. nov. 总被引:1,自引:0,他引:1 下载免费PDF全文
Bart P. Lomans Pieter Leijdekkers Jan-Jaap Wesselink Patrick Bakkes Arjan Pol Chris van der Drift Huub J. M. Op den Camp 《Applied microbiology》2001,67(9):4017-4023
Methanethiol (MT) and dimethyl sulfide (DMS) have been shown to be the dominant volatile organic sulfur compounds in freshwater sediments. Previous research demonstrated that in these habitats MT and DMS are derived mainly from the methylation of sulfide. In order to identify the microorganisms that are responsible for this type of MT and DMS formation, several sulfide-rich freshwater sediments were amended with two potential methyl group-donating compounds, syringate and 3,4,5-trimethoxybenzoate (0.5 mM). The addition of these methoxylated aromatic compounds resulted in excess accumulation of MT and DMS in all sediment slurries even though methanogenic consumption of MT and DMS occurred. From one of the sediment slurries tested, a novel anaerobic bacterium was isolated with syringate as the sole carbon source. The strain, designated Parasporobacterium paucivorans, produced MT and DMS from the methoxy groups of syringate. The hydroxylated aromatic residue (gallate) was converted to acetate and butyrate. Like Sporobacterium olearium, another methoxylated aromatic compound-degrading bacterium, the isolate is a member of the XIVa cluster of the low-GC-content Clostridiales group. However, the new isolate differs from all other known methoxylated aromatic compound-degrading bacteria because it was able to degrade syringate in significant amounts only in the presence of sulfide. 相似文献
8.
Environmental Whole-Genome Amplification To Access Microbial Populations in Contaminated Sediments 总被引:7,自引:4,他引:7 下载免费PDF全文
Carl B. Abulencia Denise L. Wyborski Joseph A. Garcia Mircea Podar Wenqiong Chen Sherman H. Chang Hwai W. Chang David Watson Eoin L. Brodie Terry C. Hazen Martin Keller 《Applied microbiology》2006,72(5):3291-3301
Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using 29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2% genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small-subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9% of the sequences had significant similarities to known proteins, and “clusters of orthologous groups” (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible. 相似文献
9.
Isolation and Characterization of Methanomethylovorans hollandica gen. nov., sp. nov., Isolated from Freshwater Sediment, a Methylotrophic Methanogen Able To Grow on Dimethyl Sulfide and Methanethiol 总被引:1,自引:0,他引:1 下载免费PDF全文
Bart P. Lomans Ronald Maas Rianne Luderer Huub J. M. Op den Camp Arjan Pol Chris van der Drift Godfried D. Vogels 《Applied microbiology》1999,65(8):3641-3650
A newly isolated methanogen, strain DMS1T, is the first obligately anaerobic archaeon which was directly enriched and isolated from a freshwater sediment in defined minimal medium containing dimethyl sulfide (DMS) as the sole carbon and energy source. The use of a chemostat with a continuous DMS-containing gas stream as a method of enrichment, followed by cultivation in deep agar tubes, resulted in a pure culture. Since the only substrates utilized by strain DMS1T are methanol, methylamines, methanethiol (MT), and DMS, this organism is considered an obligately methylotrophic methanogen like most other DMS-degrading methanogens. Strain DMS1T differs from all other DMS-degrading methanogens, since it was isolated from a freshwater pond and requires NaCl concentrations (0 to 0.04 M) typical of the NaCl concentrations required by freshwater microorganisms for growth. DMS was degraded effectively only in a chemostat culture in the presence of low hydrogen sulfide and MT concentrations. Addition of MT or sulfide to the chemostat significantly decreased degradation of DMS. Transient accumulation of DMS in MT-amended cultures indicated that transfer of the first methyl group during DMS degradation is a reversible process. On the basis of its low level of homology with the most closely related methanogen, Methanococcoides burtonii (94.5%), its position on the phylogenetic tree, its morphology (which is different from that of members of the genera Methanolobus, Methanococcoides, and Methanohalophilus), and its salt tolerance and optimum (which are characteristic of freshwater bacteria), we propose that strain DMS1T is a representative of a novel genus. This isolate was named Methanomethylovorans hollandica. Analysis of DMS-amended sediment slurries with a fluorescence microscope revealed the presence of methanogens which were morphologically identical to M. hollandica, as described in this study. Considering its physiological properties, M. hollandica DMS1T is probably responsible for degradation of MT and DMS in freshwater sediments in situ. Due to the reversibility of the DMS conversion, methanogens like strain DMS1T can also be involved in the formation of DMS through methylation of MT. This phenomenon, which previously has been shown to occur in sediment slurries of freshwater origin, might affect the steady-state concentrations and, consequently, the total flux of DMS and MT in these systems. 相似文献
10.
Camelia Algora Friederike Gründger Lorenz Adrian Volkmar Damm Hans-Hermann Richnow Martin Krüger 《Geomicrobiology journal》2013,30(8):690-705
The Northern Baffin Bay between Greenland and Canada is a remote Arctic area restricted in primary production by seasonal ice cover, with presumably low sedimentation rates, carbon content and microbial activities in its sediments. Our aim was to study the so far unknown subseafloor geochemistry and microbial populations driving seafloor ecosystems. Shelf sediments had the highest organic carbon content, numbers of Bacteria and Archaea, and microcosms inoculated from Shelf sediments showed highest sulfate reduction and methane production rates. Sediments in the central deep area and on the southern slope contained less organic carbon and overall lower microbial numbers. Similar 16S rRNA gene copy numbers of Archaea and Bacteria were found for the majority of the sites investigated. Sulfate in pore water correlated with dsrA copy numbers of sulfate-reducing prokaryotes and differed between sites. No methane was found as free gas in the sediments, and mcrA copy numbers of methanogenic Archaea were low. Methanogenic and sulfate-reducing cultures were enriched on a variety of substrates including hydrocarbons. In summary, the Greenlandic shelf sediments contain vital microbial communities adapted to their specific environmental conditions. 相似文献
11.
The deposition of mine tailings generated from 125 years of sulfidic ore mining resulted in the enrichment of Coeur d'Alene
River (CdAR) sediments with significant amounts of toxic heavy metals. A review of literature suggests that microbial populations
play a pivotal role in the biogeochemical cycling of elements in such mining-impacted sedimentary environments. To assess
the indigenous microbial communities associated with metal-enriched sediments of the CdAR, high-density 16S microarray (PhyloChip)
and clone libraries specific to bacteria (16S rRNA), ammonia oxidizers (amoA), and methanogens (mcrA) were analyzed. PhyloChip analysis provided a comprehensive assessment of bacterial populations and detected the largest
number of phylotypes in Proteobacteria followed by Firmicutes and Actinobacteria. Furthermore, PhyloChip and clone libraries displayed considerable metabolic diversity in indigenous microbial populations
by capturing several chemolithotrophic groups such as ammonia oxidizers, iron-reducers and -oxidizers, methanogens, and sulfate-reducers
in the CdAR sediments. Twenty-two phylotypes detected on PhyloChip could not be classified even at phylum level thus suggesting
the presence of novel microbial populations in the CdAR sediments. Clone libraries demonstrated very limited diversity of
ammonia oxidizers and methanogens in the CdAR sediments as evidenced by the fact that only Nitrosospira- and Methanosarcina-related phylotypes were retrieved in amoA and mcrA clone libraries, respectively. 相似文献
12.
The population sizes of ammonifying, protein mineralizing, nitrogen fixing and nitrifying bacteria, and the rates of ammonification and nitrification (natural and potential) were measured in water and sediments of four fish ponds being used for traditional, mono- and polyculture systems of fish farming. Spatial differences in the microbial density in these ponds were related to the fish culturing practices adopted. The seasonal variation of ammonifying bacteria was found to be positively correlated with the NH4-N level in the water. The natural and potential capacity to generate both nitrite and nitrate in these water bodies was strongly correlated with the concentrations of the different forms of inorganic nitrogen present. The rates of NO2-N and NO3-N formation occurring in these fish ponds were directly proportional to the amount of dissolved oxygen and pH of the environment, respectively. 相似文献
13.
Nils Risgaard-Petersen Michael Kristiansen Rasmus B. Frederiksen Anders Lindequist Dittmer Jesper Tataru Bjerg Daniela Trojan Lars Schreiber Lars Riis Damgaard Andreas Schramm Lars Peter Nielsen 《Applied and environmental microbiology》2015,81(17):6003-6011
In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. 相似文献
14.
Microcosm and Experimental Pond Evaluation of Microbial Community Response to Synthetic Oil Contamination in Freshwater Sediments 总被引:1,自引:1,他引:1 下载免费PDF全文
G. S. Sayler R. E. Perkins T. W. Sherrill B. K. Perkins M. C. Reid M. S. Shields H. L. Kong J. W. Davis 《Applied microbiology》1983,46(1):211-219
A multivariate approach was used to evaluate the significance of synthetic oil-induced perturbations in the functional activity of sediment microbial communities. Total viable cell densities, ATP-biomass, alkaline phosphatase and dehydrogenase activity, and mineralization rates of glucose, protein, oleic acid, starch, naphthalene, and phenanthrene were monitored on a periodic basis in microcosms and experimental ponds for 11 months, both before and after exposure to synthetic oil. All variables contributed to significant discrimination between sediment microbial responses in control communities and communities exposed to a gradient of synthetic oil contamination. At high synthetic oil concentrations (4,000 ml/12 m3), a transient reduction in sediment ATP concentrations and increased rates of oleic acid mineralization were demonstrated within 1 week of exposure. These transient effects were followed within 1 month by a significant increase in rates of naphthalene and phenanthrene mineralization. After initial construction, both control and synthetic oil-exposed microbial communities demonstrated wide variability in community activity. All experimental microbial communities approached equilibrium and demonstrated good replication. However, synthetic oil perturbation was demonstrated by wide transient variability in community activity. This variability was primarily the result of the stimulation of polyaromatic hydrocarbon mineralization rates. In general, microcosms and pond communities demonstrated sufficient resiliency to recover from the effects of synthetic oil exposure within 3 months, although polyaromatic hydrocarbon mineralization rates remained significantly elevated. 相似文献
15.
Maryam Yazdani Foshtomi Ulrike Braeckman Sofie Derycke Melanie Sapp Dirk Van Gansbeke Koen Sabbe Anne Willems Magda Vincx Jan Vanaverbeke 《PloS one》2015,10(6)
Objectives
The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea.Spatio-Temporal Patterns of the Microbial Communities
Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices.Macrofauna, Microbes and the Benthic N-Cycle
Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment. 相似文献16.
Availability of Ferric Iron for Microbial Reduction in Bottom Sediments of the Freshwater Tidal Potomac River 总被引:15,自引:23,他引:15 下载免费PDF全文
The distribution of Fe(III), its availability for microbial reduction, and factors controlling Fe(III) availability were investigated in sediments from a freshwater site in the Potomac River Estuary. Fe(III) reduction in sediments incubated under anaerobic conditions and depth profiles of oxalate-extractable Fe(III) indicated that Fe(III) reduction was limited to depths of 4 cm or less, with the most intense Fe(III) reduction in the top 1 cm. In incubations of the upper 4 cm of the sediments, Fe(III) reduction was as important as methane production as a pathway for anaerobic electron flow because of the high rates of Fe(III) reduction in the 0- to 0.5-cm interval. Most of the oxalate-extractable Fe(III) in the sediments was not reduced and persisted to a depth of at least 20 cm. The incomplete reduction was not the result of a lack of suitable electron donors. The oxalate-extractable Fe(III) that was preserved in the sediments was considered to be in a form other than amorphous Fe(III) oxyhydroxide, since synthetic amorphous Fe(III) oxyhydroxide, amorphous Fe(III) oxyhydroxide adsorbed onto clay, and amorphous Fe(III) oxyhydroxide saturated with adsorbed phosphate or fulvic acids were all readily reduced. Fe3O4 and the mixed Fe(III)-Fe(II) compound(s) that were produced during the reduction of amorphous Fe(III) oxyhydroxide in an enrichment culture were oxalate extractable but were not reduced, suggesting that mixed Fe(III)-Fe(II) compounds might account for the persistence of oxalate-extractable Fe(III) in the sediments. The availability of microbially reducible Fe(III) in surficial sediments demonstrates that microbial Fe(III) reduction can be important to organic matter decomposition and iron geochemistry. However, the overall extent of microbial Fe(III) reduction is governed by the inability of microorganisms to reduce most of the Fe(III) in the sediment. 相似文献
17.
Effects of Methylated, Organic, and Inorganic Substrates on Microbial Consumption of Dimethyl Sulfide in Estuarine Waters 总被引:2,自引:0,他引:2 下载免费PDF全文
We examined the effects of a variety of amendments on the consumption of [U-14C]dimethyl sulfide in a Georgia salt marsh. Methylated compounds, particularly those with dimethyl groups, significantly inhibited dimethyl sulfide consumption, while nonmethylated substrates had little effect. Dimethyl disulfide and dimethyl ether were the most effective inhibitors tested. 相似文献
18.
Influence of Incubation Temperature on the Microbial Reductive Dechlorination of 2,3,4,6-Tetrachlorobiphenyl in Two Freshwater Sediments 下载免费PDF全文
We studied the impact of incubation temperatures on the dechlorination of 2,3,4,6-tetrachlorobiphenyl (2346-CB) in two sediments from different climates: polychlorinated biphenyl (PCB)-free sediment from Sandy Creek Nature Center Pond (SCNC) in Athens, Ga., and PCB-contaminated sediment from Woods Pond (WP) in Lenox, Mass. Sediment slurries were incubated anaerobically with 350 (mu)M 2346-CB for 1 year at temperatures ranging from 4 to 66(deg)C. Most of the 2346-CB was dechlorinated between 12 and 34(deg)C in both sediments and, unexpectedly, between 50 and 60(deg)C in WP sediment. This is the first report of PCB dechlorination at thermobiotic temperatures. The data reveal profound differences in dechlorination rate, extent, and products as a function of sediment and temperature. The highest observed rate of dechlorination of 2346-CB to trichlorobiphenyls occurred at 30(deg)C in both sediments, but the rate was higher for WP than for SCNC sediment (46 versus 16 (mu)mol liter(sup-1) day(sup-1)). For SCNC sediment the rate of dechlorination dropped sharply below 30(deg)C, but for WP sediments it was near optimal from 20 to 34(deg)C and then dropped sharply below 20(deg)C. In WP sediment most of the meta chlorines were removed between 8 and 34(deg)C and between 50 and 60(deg)C. para dechlorination was restricted from 18 to 34(deg)C and was optimal at 20(deg)C. ortho dechlorination occurred between 8 and 30(deg)C, with optima around 15 and 27(deg)C, but the extent was highly variable. In SCNC sediment complete meta dechlorination occurred from 12 to 34(deg)C and para dechlorination occurred from 18 to 30(deg)C; both were optimal at 30(deg)C. No ortho dechlorination was observed. Dechlorination products were 246-CB, 236-CB, and 26-CB (both sediments) and 24-CB, 2-CB, and 4-CB (WP sediment). The data suggest that in SCNC sediment similar factors controlled meta and para PCB dechlorination over a broad temperature range (18 to 30(deg)C) but that in WP sediment there were multiple temperature-dependent changes in the factors controlling ortho, meta, and para dechlorination. We attribute the differences observed in the two sediments to differences in their PCB-dechlorinating communities. 相似文献
19.
Our goal is to strengthen the foundations of metaproteomics as a microbial community analysis tool that links the functional identity of actively expressed gene products with host phylogeny. We used shotgun metaproteomics to survey waters in six disparate aquatic habitats (Cayuga Lake, NY; Oneida Lake, NY; Gulf of Maine; Chesapeake Bay, MD; Gulf of Mexico; and the South Pacific). Peptide pools prepared from filter-gathered microbial biomass, analyzed by nano-liquid chromatography–mass spectrometry (MS/MS) generating 9,693?±?1,073 mass spectra identified 326?±?107 bacterial proteins per sample. Distribution of proteobacterial (Alpha and Beta) and cyanobacterial (Prochlorococcus and Synechococcus spp.) protein hosts across all six samples was consistent with the previously published biogeography for these microorganisms. Marine samples were enriched in transport proteins (TRAP-type for dicarboxylates and ATP binding cassette (ABC)-type for amino acids and carbohydrates) compared with the freshwater samples. We were able to match in situ expression of many key proteins catalyzing C-, N-, and S-cycle processes with their bacterial hosts across all six habitats. Pelagibacter was identified as the host of ABC-type sugar-, organic polyanion-, and glycine betaine-transport proteins; this extends previously published studies of Pelagibacter's in situ biogeochemical role in marine C- and N-metabolism. Proteins matched to Ruegeria confirmed these organism's role in marine waters oxidizing both carbon monoxide and sulfide. By documenting both processes expressed in situ and the identity of host cells, metaproteomics tested several existing hypotheses about ecophysiological processes and provided fodder for new ones. 相似文献
20.
Oxidation of Dimethyl Sulfide to Dimethyl Sulfoxide by Phototrophic Purple Bacteria 总被引:1,自引:5,他引:1 下载免费PDF全文
Josef Zeyer Petra Eicher Stuart G. Wakeham Ren P. Schwarzenbach 《Applied microbiology》1987,53(9):2026-2032
Enrichment cultures of phototrophic purple bacteria rapidly oxidized up to 10 mM dimethyl sulfide (DMS) to dimethyl sulfoxide (DMSO). DMSO was qualitatively identified by proton nuclear magnetic resonance. By using a biological assay, DMSO was always quantitatively recovered from the culture media. DMS oxidation was not detected in cultures incubated in the dark, and it was slow in cultures exposed to full daylight. Under optimal conditions, the second-order rate constant for DMS oxidation was 6 day−1 mg of protein−1 ml−1. The rate constant was reduced in the presence of high concentration of sulfide (>1 mM), but was not affected by the addition of acetate. DMS was also oxidized to DMSO by a pure strain (tentatively identified as a Thiocystis sp.) isolated from the enrichment cultures. DMS supported growth of the enrichment cultures and of the pure strain by serving as an electron source for photosynthesis. A determination of the amount of protein produced in the cultures and an estimation of the electron balance suggested that the two electrons liberated during the oxidation of DMS to DMSO were quantitatively used to reduce carbon dioxide to biomass. The oxidation of DMS by phototrophic purple bacteria may be an important source of DMSO detected in anaerobic ponds and marshes. 相似文献