首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The phosphorylation of a protein of 80 kDa in permeable mouse lymphocytes is shown to be dependent both on exogenously added calcium and on concanavalin A. Lymphocyte plasma membranes are rendered permeable to exogenously added [γ-32P]ATP and other small molecules by treatment with 20 μg/ml α-lysophosphatidylcholine for 1 min on ice. Treated cells are permeable to Trypan blue dye and exhibit phosphatidylinositol turnover in response to concanavalin A stimulation. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autofluorography, maximal phosphorylation of this protein occurs 5 min after addition of 20 μM calcium and 4 μg/ml concanavalin A. Exogenously added cyclic nucleotide cofactors do not enhance the phosphorylation of this 80 kDa protein, nor do inhibitors of calcium or calmodulin-dependent kinases suppress it, although in each case, other proteins are affected. In contrast, an inhibitor of the calcium-activated, phospholipid-dependent protein kinase (protein kinase C), H-7, strongly suppresses the phosphorylation of the 80 kDa protein. The tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, a known activator of protein kinase C, significantly increases the phosphorylation of the 80 kDa protein. Finally, this protein is phosphorylated at a serine residue. These results taken together suggest that it is a substrate for protein kinase C. The possibility that it may also be an element of the concanavalin A signal transduction mechanism is discussed.  相似文献   

2.
Concanavalin A stimulates glucose uptake in isolated rat thymocytes, at concentrations as low as 1.0 μg/ml. The magnitude of the response is dosedependent with maximal glucose uptake (greater than 100% over control) observed over the 50–500 μg/ml range. The response to concanavalin A occurs within 5 minutes and is maximal by 1 hour. Exposure of thymocytes to physiological concentrations of cortisol has been shown previously to lead to a 15–30% reduction in glucose uptake within 20 minutes (1). Cortisol added simultaneously to or after concanavalin A has no effect on glucose uptake, but when it is added before concanavalin A, a glucocorticoid response is observed even in the face of concanavalin A-induced glucose uptake. Unlike the cortisol effect, the concanavalin A-induced increase in thymocyte glucose uptake is not inhibited by either cycloheximide or cordycepin. The antagonism between cortisol and concanavalin A may in part exist at the specific glucocorticoid receptor level, since exposure of cells to concanavalin A rapidly and significantly reduces the number of specific, saturable glucocorticoid binding sites in isolated thymocytes.  相似文献   

3.
Cell growth of tumour ascites cell was inhibited by concanavalin A, phytohaemagglutinin and Ricinus lectin at 2–100 μg/ml. As expected, the Ricinus lectin inhibited the protein synthesis estimated by leucine incorporation and decreased thymidine incorporation, whereas concanavalin A and phytohaemagglutinin stimulate the uptake and the incorporation of both leucine and thymidine, and thus, synthesis of protein and DNA. Theses results suggest that different mechanisms are involved in the hepatoma cell growth inhibition by the lectins. This difference was not related to the kinetic characteristics of the lectin interactions with the cells whihc represent a first and necessary step. It was showed that concanavalin A and phytohaemagglutinin as well as chloroquine inhibited the 14C-labelled asialofetuin degradation. We can conclude that Ricinus lectic present a toxic effect whereas both concanavalin A and phytohaemagglutinin show an anti-protease activity.  相似文献   

4.
Total protein kinase activity and the expression of the type I and type II cyclic adenosine 3′:5′-monophosphate-dependent protein kinases were studied in subcellular fractions of rat thymocytes and the effect of concanavalin A treatment on protein kinase activity was assessed. At a concentration of 100 μ/ml of concanavalin A a marked decline of total nuclear protein kinase activity occurred which lasted approximately 20 to 90 min. Concomitantly, a twofold increase of total protein kinase activity in the 900g supernatant fraction was observed which lasted from 5 to 30 min. Studies using the heat-stable protein kinase inhibitor revealed that the concanavalin A-mediated activity changes were primarily due to changes of cAMP-dependent protein kinase activity, whereas cAMP-independent protein kinase activity remained unchanged. Analysis of the type I and type II cAMP-dependent protein kinase isozyme pattern before and after concanavalin A treatment revealed a selective change of the relative expression of isozyme activities. Whereas type I protein kinase was the major nuclear isozyme before concanavalin A treatment, nuclear type II cAMP-dependent protein kinase increased markedly with a concomitant loss of type I isozyme expression. In the 900g supernatant fraction, containing primarily the type II isozyme in unstimulated cells, concanavalin A treatment caused an increase of the expression of the type I isozyme. The concanavalin A-mediated relative changes of cAMP-dependent protein kinase isozyme expression were confirmed by photoaffinity labeling of the regulatory subunits RI and RII before and after concanavalin A stimulation. The intracellular concanavalin A-mediated isozyme changes were time dependent, exhibiting maximal effects about 20 min after concanavalin A addition. These results indicate that selective regulation of intracellular cAMP-dependent protein kinase isozyme expression may be a mechanism related to isozyme-specific phosphorylation of specific intracellular substrates in concanavalin A-activated thymocytes.  相似文献   

5.
Cation transport has been investigated in three lines of Chinese ovary cells CHO-K1 during the cell culture growth. With the increase in the cell density potassium and sodium contents decreased from 1.2 to 0.8-0.5 and from 0.5 to 0.15-0.1 mmole/g protein, respectively. The time courses of potassium and sodium changes were different, and the increase in intracellular K/Na ratio from 1.5-2.0 to 5-10 with the increase in cell density was revealed. The rubidium influx was found to decrease during the culture growth mainly due to the decrease in ouabain-inhibitable and (ouabain + furosemide)- non-inhibitable influxes. The changes in cation fluxes and cation contents were observed in transformed cells without contact inhibition of division and were considered as a manifestation of density-dependent alterations of plasma membrane.  相似文献   

6.
BackgroundLead (Pb) is a worldwide concern due to its persistent property in the environment. However, due to diminutive evidence and elusiveness, the impact of lead exposure on the biochemical and haematological parameter in school-age children is not well established.AimThis study primarily aimed to investigate blood lead (BL) in children and its association with haematological and biochemical parameter.MethodsA total of 43 children (4–12 years) were recruited in each control and study group. Furthermore, the study group were subdivided into two groups (group A (<10 μg/dl) and group B (>10 μg/dl)). BL level, haematological parameter including haemoglobin, packed cell volume, red blood cells, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, total leukocytes count, neutrophils, lymphocytes, monocytes, mean corpuscular volume, red cell distribution width, eosinophil’s, platelets in the whole blood and biochemical parameter such as liver function test (total bilirubin, alkaline phosphatase, serum glutamic-oxaloacetic transaminase, serum glutamic-pyruvic transaminase, total protein, albumin) and kidney function test (sodium, potassium, blood urea nitrogen, creatinine) in serum were measured using anodic stripping voltammeter (ASV), Cell-Dyn Ruby Haematology analyser, Beckman coulter Unicel Dxc 800 Synchron Clinical analyser respectively.ResultsThe arithmetical mean of BL level was 19.93 ± 9.22 μg/dl (median: 17.5 μg/dl; range 9.1–37.4 μg/dl). Only 21 % children had BL levels <10 μg/dl and there were 79 % children with BL levels >10 μg/dl. Blood mean corpuscular haemoglobin concentration, Neutrophils, Monocytes were significantly higher between the control and study group. Additionally, haemoglobin, packed cell volume, red blood cells, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, Lymphocytes and mean corpuscular volume intensities were significantly lower in >10 μg/dl group whereas total leukocytes count, neutrophils, monocytes, red cell distribution width, eosinophil’s, platelets levels were statistically higher (p < 0.001).Serum alkaline phosphatase, serum glutamic-oxaloacetic transaminase, total protein, were higher (p < 0.05) and sodium, albumin were significantly lower in the study group. The mean value of sodium, potassium, total bilirubin, alkaline phosphatase, serum glutamic-pyruvic transaminase, total protein and blood urea nitrogen, creatinine in two groups (<10 μg/dl and >10 μg/dl) was not significantly different. Serum glutamic-oxaloacetic transaminase level was significantly higher (p = 0.015) while albumin levels were significantly lower (p = 0.034) in >10 μg/dl group. A statistically significant correlation of BL levels with all haematological parameters was also observed. Creatinine is positively and albumin was negatively correlated with BL levels.ConclusionThe outcomes specify that high BL levels were significantly associated with higher haematological and biochemical indices in exposed children. However, lead like noxious metals severely affected the haematological, kidney and liver health of children.  相似文献   

7.
The extensive vacuolation induced in mouse peritoneal macrophages in response to interaction with concanavalin A is markedly enhanced in the presence of chlorpromazine (10-5 M). At a low concentration of concanavalin A (5 μg/ml) chlorpromazine induces more than double the total number of vacuoles (> 2 μm). At higher concentration of concanavalin A (10–40 μg/ml) though the total number of concanavalin A induced vacuoles is not affected, the size distribution of the vacuoles is changed by chlorpromazine; the number of huge vacuoles (> 5 μm) is doubled. Neither [3H]concanavalin A binding nor its interiorization are affected by the simultaneous presence of chlorpromazine with concanavalin A in the incubation medium. A two-fold increase in chlorpromazine concentration (2·10-5 M) results in macrophage contraction and inhibition of concanavalin A-induced vacuolation. The data suggest that chlorpromazine affects vacuole formation at the stage of intra-cellular fusion of concanavalin A-bearing pinosomes.  相似文献   

8.
When concanavalin A (1 μg/ml) or wheat germ agglutinin (2 μg/ml) was preincubated with a suspension of 2% rabbit erythrocytes for 5 min at 20 C, the binding of [125I]-labeled staphylococcal alpha toxin to these erythrocytes was greatly inhibited and the hemolytic action of alpha toxin was decreased. The inhibitory effect of concanavalin A on hemolysis by alpha toxin was completely reversed in the presence of 0.1 M α-methyl-D -glucoside or α-methyl-D -mannoside. Phytohemagglutinin-P from Phaseolus vulgaris and soybean agglutinin inhibited hemolysis by the toxin at concentrations exceeding 20 μg/ml. The effect of concanavalin A on alpha-toxin hemolysis was studied further to ascertain the nature of the inhibition. Double reciprocal plots were made of hemolysis against alpha toxin concentrations, and the data suggested that inhibition of the initial rate of the hemolysis by concanavalin A is competitive in nature. This was probably due to an interaction with the alpha toxin binding sites on the cell membrane surface.  相似文献   

9.
Duck red cells in hypertonic media experience rapid osmotic shrinkage followed by gradual reswelling back toward their original volume. This uptake of salt and water is self limiting and demands a specific ionic composition of the external solution. Although ouabain (10(-4)M) alters the pattern of cation accumulation from predominantly potassium to sodium, it does not affect the rate of the reaction, or the total amount of salt or water taken up. To study the response without the complications of active Na-K transport, ouabain was added to most incubations. All water accumulated by the cells can be accounted for by net salt uptake. Specific external cation requirements for reswelling include: sufficient sodium (more than 23 mM), and elevated potassium (more than 7 mM). In the absence of external potassium cells lose potassium without gaining sodium and continue to shrink instead of reswelling. Adding rubidium to the potassium- free solution promotes an even greater loss of cell potassium, yet causes swelling due to a net uptake of sodium and rubidium followed by chloride. The diuretic furosemide (10(-3)M) inhibits net sodium uptake which depends on potassium (or rubidium), as well as inhibits net sodium uptake which depends on sodium. As a result, cell volume is stabilized in the presence of this drug by inhibition of shrinkage, at low, and of swelling at high external potassium. The response has a high apparent energy of activation (15-20 kcal/mol). We propose that net salt and water movements in hypertonic solutions containing ouabain are mediated by direct coupling or cis-interaction, between sodium and potassium so that the uphill movement of one is driven by the downhill movement of the other in the same direction.  相似文献   

10.
The effect of concanavalin A on transferrin and iron uptake by reticulocytes was determined using rabbit reticulocytes and rabbit transferrin labelled with 59Fe and 125I and concanavalin A (ConA) labelled with 131I. In concentrations of 50–200 μg/ml ConA markedly inhibited iron uptake but did not inhibit transferrin uptake or release from the cells. ConA was itself taken up by rabbit blood cells in a manner similar to that of transferrin except that the uptake was not specific for reticulocytes but occurred also with mature erythrocytes. The inhibition of iron uptake by concanavalin and the uptake of concanavalin by the cells were both inhibited by α-methyl-d-mannoside. It is concluded that the effects observed were due to the binding of concanavalin to glycoproteins of the cell membrane, either by a direct interaction with transferrin receptors or by the production of a non-specific change in the structure of the membrane.  相似文献   

11.
Follicle stimulating hormone (FSH) stimulates “colony formation” by immature rat Sertoli cells in primary culture. “Colony formation” involves cell aggregation. Consequently, the involvement of cell surface glycoproteins in cell aggregation was investigated by treatment of dissociated 10-day rat testis cells with sodium metaperiodate, glucosamine, various lectins, tunicamycin, and puromycin. Treatment of control cultures with 5 μM glucosamine stimulated cell aggregation; however, glucosamine did not affect FSH-stimulated cultures. Treatment of dissociated testis cells with 5 μM sodium metaperiodate, 10 μg/ml castor bean agglutinin (ricin), or 2.5 μg/ml horseshoe crab agglutinin inhibited FSH stimulation of cell aggregation. A similar inhibition of cell aggregation was observed following addition of 10 μg/ml puromycin or tunicamycin to culture media from 0- to 18-hours incubation. Treatment with soybean agglutinin, concanavalin A, or wheat germ agglutinin had no effect. The galactose-specific lectins, Ricin, Ricinus communis agglutinin I, and Bendeirea simplicifolia agglutinin, inhibit the FSH stimulation of 3H-aminoacid incorporation as well as cell aggregation in 24-hour cultres. The inhibition of cell aggregation by sodium metaperiodate treatment was reversed with 5 μM sodium borohydride reduction. Sodium metaperiodate treatment did not alter cell viability (as assayed with trypan blue dye exclusion), did not alter cell attachment, nor significantly decrease 125I-FSH binding by cultured testis cells. The results suggest that FSH stimulation of cell aggregation by immature rat Sertoli cells requires cell surface glycoprotein interactions. Furthermore, the specificity of lectin inhibition suggests that glycoproteins with terminal galactose and sialic acid residues are required for the FSH induction of cell aggregation.  相似文献   

12.
The regulation of intracellular ion concentrations is a fundamental property of living cells. Although many ion transporters have been identified, the systems that modulate their activity remain largely unknown. We have characterized two partially redundant genes from Saccharomyces cerevisiae, HAL4/SAT4 and HAL5, that encode homologous protein kinases implicated in the regulation of cation uptake. Overexpression of these genes increases the tolerance of yeast cells to sodium and lithium, whereas gene disruptions result in greater cation sensitivity. These phenotypic effects of the mutations correlate with changes in cation uptake and are dependent on a functional Trk1-Trk2 potassium transport system. In addition, hal4 hal5 and trk1 trk2 mutants exhibit similar phenotypes: (i) they are deficient in potassium uptake; (ii) their growth is sensitive to a variety of toxic cations, including lithium, sodium, calcium, tetramethylammonium, hygromycin B, and low pH; and (iii) they exhibit increased uptake of methylammonium, an indicator of membrane potential. These results suggest that the Hal4 and Hal5 protein kinases activate the Trk1-Trk2 potassium transporter, increasing the influx of potassium and decreasing the membrane potential. The resulting loss in electrical driving force reduces the uptake of toxic cations and improves salt tolerance. Our data support a role for regulation of membrane potential in adaptation to salt stress that is mediated by the Hal4 and Hal5 kinases.  相似文献   

13.
1. The methods employed in these and preceding (25-27) studies were shown to allow analysis of true cellular sodium and potassium concentrations. 2. The rate of reaccumulation of potassium by potassium-deficient cells is independent of the presence or absence of sodium in the external medium. 3. Phenylurethane (10(-3)M), a photosynthetic and metabolic inhibitor, causes a marked progressive loss of potassium and gain of sodium, both of which changes are completely reversible on transferring the samples to running sea water. 4. Iodoacetate, while not effective in causing potassium and sodium shifts in the light, effects a loss of potassium and a gain of sodium in the light in the presence of phenylurethane. 5. Arsenate (5 x 10(-3)M) completely protects Ulva against the potassium loss usually observed with iodoacetate in the dark while it affords no protection against the sodium influx under the same conditions. Arsenate given after 18 to 20 hours in iodoacetate gives significant protection against potassium loss in the dark, and allows a slight net reaccumulation of potassium in the light. Arsenate in the dark after iodoacetate affords no protection against the sodium uptake caused by iodoacetate in the dark, while in the light under the same conditions sodium is rapidly secreted to the control level within a few hours. This resecretion of sodium is thought to be primarily an effect of light, the presence of arsenate being incidental. 6. The "decoupling agent" 4,6-dinitro-o-cresol causes a marked progressive increase in cellular sodium and a drop in cellular potassium, though the kinetics of these two movements are distinctly different from each other. 7. Pyruvate (50 mg. per cent) given with iodoacetate (2 x 10(-3)M) for 5 hours in the dark completely prevents the sodium increase caused by iodoacetate, while affording less protection against the potassium loss. Phosphoglycerate, on the other hand, offers more protection against potassium loss, and essentially none against the sodium gain. 8. ATP added in small amounts at short intervals to samples maintained in 10(-3)M iodoacetate in the dark affords significant protection against the potassium loss observed in iodoacetate. Cellular sodium is somewhat higher in the ATP-iodoacetate samples than in the iodoacetate samples. 9. In the discussion of the data presented two major points are emphasized: (1) the close correlation between cellular metabolism and normal cation control; (2) two mechanisms must be operative in cation regulation in this organism: one for moving potassium inwards and the other for transporting sodium outwards. These mechanisms are independent of each other.  相似文献   

14.
Treatment of HeLa cells with aphidicolin at 5 or 0.5 μg/ml induced cell cycle arrest at G1/S or G2/M phase, respectively, and was accompanied by unbalanced cell growth. Long-term administration of aphidicolin (more than 48 h) resulted in noticeable loss of reproductive capacity though cells were viable at the time of treatment. Immunofluorescence with anti-Golgi membrane protein monoclonal antibody (mAbG3A5) showed disfigurement of the characteristic mesh-like configuration when cells were treated for more than 48 h. Interestingly, we found that the fragmented Golgi complex formed a ring around the nucleus in more than 20% of the cells. Immunoelectron microscopy using mAbG3A5 antibody demonstrated that the stack structure of the fragmented Golgi complex in aphidicolin-arrested cells appeared partially broken up and seemed to have converted to a vesicle-like structure. Analysis using an antibody to tubulin and anticentrosome human autoimmune serum showed that alterations in the Golgi complex were induced even by the lower 0.5 μg/ml dose. These alterations were accompanied by both changes in the distribution of microtubules and an increase in the number of centrosomes. These cells lost their distinct perinuclear microtubule organiz-ing center (MTOC). On the other hand, treatment with aphidicolin at 5 μg/ml did not induce multiplication of the centrosome although the loss of distinct MTOC was still evident. No changes took place in the Golgi complex, microtubule, or centrosome of cells treated with 0.5 μg/ml aphidicolin when cycloheximide was added simultaneously to the culture. J. Cell. Physiol. 176:602–611, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
In this study dissociated late stage 20 (stage 20+) chick leg-bud mesoderm cells cultured in cycloheximide (1 μg/ml) were tested to determine the retention of their ability to undergo recognizable limb morphogenesis, according to the technique described by Zwilling (1964). The cycloheximide treatment retards the loss of this morphogenetic property compared with the normal loss that occurs in cultures of untreated cells (Finch and Zwilling, 1971). The exposure to cycloheximide extends the period during which this morphogenetic property can be detected for approximately 15–20 hr. Incorporation experiments show that cycloheximide at 1 μg/ml rapidly inhibits the synthesis of protein. RNA, and DNA in cells exposed to the antibiotic. This inhibitory effect is completely reversible in a relatively short time after removal of the cycloheximide.  相似文献   

16.
Aggregation in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
A D Robertson  J F Grutsch 《Cell》1981,24(3):603-611
Cultured peritoneal macrophages have previously been shown to release a potent mitogen for mesenchymal cells. Peritoneal macrophages are derived from peripheral blood monocytes, one of the principal inflammatory cells associated with numerous tissue responses to injury. Cultured human monocytes can be activated by endotoxin or concanavalin A to secrete a potent growth factor(s) that is active on human smooth muscle cells, human fibroblasts and 3T3 cells. The optimal conditions for activation of monocyte release of this monocyte-derived growth factor(s) (MDGF) were to expose 5-day-old monocyte cultures (initially plated at 6.8 × 105 cells/ml medium) to 10 μg/ml endotoxin or 6 μg/ml concanavalin A for approximately 20 hr. Monocytes can secrete MDGF into serum-free medium supplemented with 0.15% bovine serum albumin. MDGF stimulates both DNA synthesis and increase in cell number and is trypsin-sensitive, heat labile and nondialyzable. The relationship of MDGF to other monocyte products and its potential importance in wound repair and atherogenesis are discussed.  相似文献   

17.
The change from high potassium dog erythroid cells to low potassium red blood cells during erythropoiesis was investigated by X-ray microanalysis of single cells. A correlation of morphology and composition, using freeze-dried cryosectioned preparations, showed that during normal erythropoiesis in dog bone marrow the switch from high potassium to low potassium occurs during the change from early to late nucleated erythroid cells, and in synchrony with the beginning of iron accumulation. In contrast, during rapid erythropoiesis in dogs with phenylhydrazine-induced anemia, the most prominent change in cation composition as well as the accumulation of iron occurs during the reticulocyte stage in the peripheral blood. The determination of the absolute amounts of sodium and potassium per cell in stress reticulocytes of peripheral blood indicated that the changeover from high potassium to low potassium actually occurs by the loss of cellular potassium during volume reduction, with little change in the amount of cellular sodium. This suggests that maturation may involve a selective change in potassium permeability. Lastly, it was observed that not all cells followed the predominant pathway with respect to change in morphology, membrane permeability and hemoglobin synthesis. One particular subpopulation appeared to follow a sequence which expressed the complete HK to LK transition before the accumulation of any iron; this implies the possibility of completing protein synthesis in a low potassium intracellular milieu.  相似文献   

18.
19.
Binding of glyceraldehyde 3-phosphate to glyceraldehyde-3-phosphate dehydrogenase, the membrane protein known as Band 6, causes shifts in the 31P nuclear magnetic resonance spectrum of the substrate (Fossel, E.T. and Solomon, A.K. (1977) Biochim. Biophys. Acta 464, 82–92). We have studied the resonance shifts produced by varying the sodium/potassium ratio, at constant ionic strength, in order to examine the relationship between the cation transport system and glyceraldehyde-3-phosphate dehydrogenase. Alteration of the potassium concentration at the extracellular face of the vesicle affects the conformation of glyceraldehyde-3-phosphate dehydrogenase at the cytoplasmic face, thus showing that a conformation change induced by a change in extracellular potassium can be transmitted across the membrane. Alterations of the sodium concentration at the cytoplasmic face also affect the enzyme conformation, whereas sodium changes at the extracellular face are without effect. In contrast, there is no sidedness difference in the effect of potassium concentrations. The half-values for these effects are like those for activation of the red cell (Na+ + K+)-ATPase. We have also produced ionic concentration gradients across the vesicle similar to those Glynn and Lew ((1970) J. Physiol. London 207, 393–402) found to be effective in running the cation pump backwards to produce adenosine triphosphate in the human red cell. The sodium/potassium concentration dependence of this process in red cells is mimicked by 31P resonance shifts in the (glyceraldehyde 3-phosphate/glyceraldehyde-3-phosphate dehydrogenase/inside out vesicle) system. These experiments provide strong support for the existence of a functional linkage between the membrane (Na+ + K+)-ATPase and the glyceraldehyde-3-phosphate dehydrogenase at the cytoplasmic face.  相似文献   

20.
Valinomycin and salinomycin-Na, 2 ionophorous antibiotics, exhibited in vitro antibabesial activities against Babesia gibsoni that infected normal canine erythrocytes containing low potassium (LK) and high sodium concentrations, i.e., LK erythrocytes, which completely lack Na,K-ATPase activity. The level of parasitemia of B. gibsoni was significantly decreased when the parasites were incubated in culture medium containing either 10(-1) ng/ml valinomycin or 10(2) ng/ml salinomycin-Na for 24 hr. Four-hour incubation in the culture medium containing 5 μg/ml salinomycin-Na led to the destruction of most parasites. In contrast, when the parasites infected canine erythrocytes containing high potassium (HK) and low sodium concentrations, i.e., HK erythrocytes, the in vitro antibabesial activities of both ionophorous antibiotics seemed to be weakened, apparently due to the protection by the host cells. Therefore, differential influences of ionophorous antibiotics on LK and HK erythrocytes were observed. In LK erythrocytes, the intracellular concentrations of potassium, sodium, and adenosine triphosphate (ATP) were not modified, and hemolysis was not observed after incubation in the medium containing each ionophorous antibiotic. These results suggested that these ionophorous antibiotics did not affect cells without Na,K-ATPase, and directly affected B. gibsoni. In HK erythrocytes, the ionophorous antibiotics increased the intracellular sodium concentration, and decreased the intracellular potassium and ATP concentrations, causing obvious hemolysis. Additionally, the decrease of the intracellular ATP concentration and the hemolysis in HK erythrocytes caused by valinomycin disappeared when the activity of Na,K-ATPase was inhibited by ouabain. These results indicate that modification of the intracellular cation concentrations by the ionophorous antibiotics led to the activation of Na,K-ATPase and increased consumption of intracellular ATP, and that the depletion of intracellular ATP resulted in hemolysis in HK erythrocytes. Moreover, the antibabesial activity of valinomycin disappeared when B. gibsoni in LK erythrocytes were incubated in culture media containing high potassium concentrations. This showed that the intracellular cation concentration in the parasites was not modified in those media and would remain the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号