首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 3-[2-(diarylmethoxyethylidene)]-8-alkylaryl-8-azabicyclo[3.2.1]octanes was synthesized and the binding affinities of the compounds were determined at the dopamine and serotonin transporters. The 8-phenylpropyl analogues 8a (K(i)=4.1 nM) and 8b (K(i)=3.7 nM) were the most potent compounds of the series with binding affinities 3 times greater than GBR-12909. In addition, 8a (SERT/DAT=327) was over 300-fold more selective for the dopamine transporter than the serotonin transporter.  相似文献   

2.
A series of 3alpha-benzyl-8-(diarylmethoxyethyl)-8-azabicyclo[3.2.1]octanes was synthesized and the binding affinities of the compounds were determined at the dopamine transporter. The unsubstituted analogue 7b (K(i)=98nM) was the most potent compound of the series with binding affinity three-times greater than cocaine and only 5-fold less than GBR-12909. The structure-activity data for 7a-f suggests that these compounds may be binding at the dopamine transporter in a similar fashion to GBR 12909.  相似文献   

3.
A series of diarylmethoxymethyltropane-GBR hybrid analogues with all three possible stereochemical orientations at C3 were synthesized and evaluated at dopamine and serotonin transporters. The 3alpha derivatives were found to be the most potent compounds with the 3alpha-di(4-fluorophenyl)methoxymethyl-8-(3-phenylpropyl)-8-azabicyclo[3.2.1]octane 15b (Ki = 5 nM) being the most potent compound of the series. The corresponding 3-di(4-fluorophenyl)-methoxymethyl-8-(3-phenylpropyl)-8-azabicyclo[3.2.1]oct-2-ene 12b (Ki = 12 nM) was slightly less potent than the 3alpha-analogue, while the 3beta-di(4-fluorophenyl)methoxymethyl-8-(3-phenylpropyl)-8-azabicyclo[3.2.1]octane 23b (Ki = 78 nM) exhibited only modest affinity for the dopamine transporter. Only the 3alpha-analogue 15b (SERT/DAT = 48) exhibited higher SERT/DAT selectivity than GBR 12909. These results indicate that the dopamine transporter can tolerate some variability in proximity of the benzhydryl ether to the basic nitrogen atom of the tropane without loss in potency. In addition, the structure-activity data for these tropane-GBR 12909 hybrid analogues support previous findings that the stereochemical and conformational effects imparted by unsaturation at C3 are important for dopamine transporter selectivity over the serotonin transporter.  相似文献   

4.
A series of cis and trans 3beta-aryl-2-carbomethoxy-6-azabicyclo[3.2.1]octanes, with different substitution at the para-position of the aryl group, were synthesized and examined for reuptake inhibition at the dopamine transporter (DAT). The potency for inhibition of DA reuptake was compared with that of cocaine to determine the significance of the replacement of the 8-azabicyclo[3.2.1]octane (tropane nucleus), displayed in cocaine, for the 6-azabicyclo[3.2.1]octane (normorphan framework). This bicyclic core structure constitutes a novel chemical scaffold in DAT inhibitor design, which may provide new insights into the 3D structure of the DAT and its interaction with cocaine and DA. Among these compounds, the trans-amine series 8 were the most potent ligands at the DAT. In particular, the normorphan analogue 8c (bearing a p-chloro substituent at the beta-aryl group, IC(50)=452 nM) displayed a potency that is in the same range as cocaine (IC(50)=459 nM) itself.  相似文献   

5.
Synthesis and binding studies of some epibatidine analogues   总被引:1,自引:0,他引:1  
A series of epibatidine analogues and their positional isomers bearing an 8-azabicyclo[3.2.1]octane moiety is described. Some of the compounds, especially those containing 8-azabicyclo[3.2.1]oct-2-ene moiety show high affinity for the nicotinic cholinergic receptor.  相似文献   

6.
The synthesis and structure–activity relationships of 8-substituted-3-[2-(diarylmethoxyethylidenyl)]-8-azabicyclo[3.2.1]octane derivatives were investigated at the dopamine transporter (DAT), the serotonin transporter (SERT) and norepinephrine transporter (NET). The rigid ethylidenyl-8-azabicyclic[3.2.1]octane skeleton imparted modestly stereoselective binding and uptake inhibition at the DAT. Additional structure–activity studies provided a transporter affinity profile that was reminiscent of the structure–activity of GBR 12909. From these studies, the 8-cyclopropylmethyl group has been identified as a unique moiety that imparts high SERT/DAT selectivity. In this study the 8-cyclopropylmethyl derivative 22e (DAT Ki of 4.0 nM) was among the most potent compounds of the series at the DAT and was the most DAT selective ligand of the series (SERT/DAT: 1060). Similarly, the 8-chlorobenzyl derivative 22g (DAT Ki of 3.9 nM) was found to be highly selective for the DAT over the NET (NET/DAT: 1358).  相似文献   

7.
A series of analogues 2a-i related to 3-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-8-(1H-indol-2-ylmethyl)-3,8-diazabicyclo[3.2.1]octane (1) in which the 3,8-diazabicyclo[3.2.1]octane core was replaced by 3,6-diazabicyclo[3.1.1]heptane ring system has been synthesized and evaluated for their ability to inhibit DA reuptake into striatal nerve endings (synaptosomes). Biological data showed that compound 2a, the closest analogue of lead 1, possessed an increased reuptake inhibition activity over 1 (2a, K(i)=5.5 nM). Replacement of the indole ring with bioisosteric aromatic rings--benzothiophene (2b), benzofurane (2c), or indene (2d)--resulted, with the exception of 2d, in a double digit nanomolar activity. Changing the indenyl moiety of 2d with simplified aryl groups led to compounds 2e-h which displayed a similar or slightly decreased activity with respect to the ground term. Naphthalene derivative (2i) demonstrated a weaker activity than aromatic analogues.  相似文献   

8.
Joining aryl 8-azabicyclo[3.2.1]oct-3-enes with aryloxyethanes and aryloxypropanes produces novel series of compounds 11 and 12 with potent 5-HT-T affinity and moderately potent 5-HT(1A) affinity. Moreover, several of these compounds possess functional 5-HT(1A) antagonism. Optimal compounds are, 4-indolyloxyethane 21, 4-indolyloxypropanes 25, and 27, which possess potent 5-HT-T affinity (5-HT-T K(i): 21: 1.2nM, 25: 0.54nM, 27: 0.38nM) and good 5-HT(1A) affinity/antagonism (5-HT(1A)K(i), [(35)S]GTPgammaS: E(max) (%): 21: 111.1nM, 0%; 25: 173.2nM, 0%; 27: 107nM, 0%).  相似文献   

9.
A series of new 3-aryl-tropanes have been synthesized, and their affinities and selectivities were evaluated for monoamine transporters. (1RS)-3-(Fluoren-2-yl)-8-methyl-8-azabicyclo[3.2.1]oct-2-ene exhibited the highest affinity for the human serotonin transporter (IC50 = 14.5 nM). It is also 52-fold and 230-fold selective over human dopamine and norepinephrine transporters, respectively.  相似文献   

10.
3Beta-(5-indolyl)-8-azabicyclo[3.2.1]octanes display potent binding affinity for both the dopamine and serotonin transporters, while certain 3beta-(4-(2-pyrrolyl)phenyl)-8-azabicyclo[3.2.1]octanes selectively bind to the serotonin transporter.  相似文献   

11.
A series of 8-azabicyclo[3.2.1]octane amine hNK1 antagonists has been investigated and structure-activity relationships of the benzylamine and 6-exo substituents described. Acidic substituents at C6 give a series of high affinity compounds for hNK1 with selectivity over the hERG channel.  相似文献   

12.
The synthesis and structure-activity relationships of ureas as CCR3 antagonists are described. Optimization starting with lead compound 2 (IC(50)=190 nM) derived from initial screening hit compound 1 (IC(50)=600 nM) led to the identification of (S)-N-((1R,3S,5S)-8-((6-fluoronaphthalen-2-yl)methyl)-8-azabicyclo[3.2.1]octan-3-yl)-N-(2-nitrophenyl)pyrrolidine-1,2-dicarboxamide 27 (IC(50)=4.9 nM) as a potent CCR3 antagonist.  相似文献   

13.
A series of mono-morpholino 1,3,5-triazine derivatives (8a8q) bearing a 3-oxa-8-azabicyclo[3.2.1]octane were prepared and evaluated for PI3-kinase/mTOR activity. Replacement of one of the bis-morpholines in lead compound 1 (PKI-587) with 3-oxa-8-azabicyclo[3.2.1]octane and reduction of the molecular weight yielded 8m (PKI-179), an orally efficacious dual PI3-kinase/mTOR inhibitor. The in vitro activity, in vivo efficacy, and PK properties of 8m are discussed.  相似文献   

14.
Methods for the synthesis of each of the four stereoisomers of 6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane ( 10, 11, 12 , and 13 ) and 3-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[2.2.1]heptane ( 18, 19, 20 , and 21 ), and the two stereoisomers of 3-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[2.2.2]octane ( 27 and 28 ) were developed. The relative configuration of the compounds was determined on the basis of previously described 1H NOE experiments, and the absolute configuration of 6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octanes ( 10, 11, 12 , and 13 ) and 3-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[2.2.2]octane ( 27 and 28 ) was determined by single crystal X-ray crystallography. Optical purity was determined by capillary electrophoresis (CE) using chiral selectors as trimethyl-β-cyclodextrin and heparin dissolved in the running buffer. All the 3-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicycles had low nanomolar affinity for muscarinic receptors as determined by displacement of radiolabelled oxotremorine-M (3H-Oxo-M) and pirenzepine (3H-Pz) from cortical rat brain homogenates. The binding assay discriminated between diastereomers, but only a minor degree of enantioselectivity was observed in the binding assays. Chirality 9:739–749, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
The bicyclic 5-amino-3-azabicyclo[3.3.0]octanes were shown to be effective replacements for the 3-amino-8-azabicyclo[3.2.1]octane found in the CCR5 antagonist maraviroc.  相似文献   

16.
The synthesis and receptor affinity of 6,8-diazabicyclo[3.2.2]nonanes representing conformationally constrained ethylenediamines are described. The Dieckmann analogous cyclization of the (piperazin-2-yl)propionate 9 provided the bicyclononane 10 only, when the first cyclization product was trapped with chlorotrimethylsilane. 10 was stereoselectively transformed into the bicyclic amines 19a,b and amides 22a,b, which were investigated in competition experiments with radioligands for their sigma(1)-, sigma(2)-, kappa-, and mu-receptor affinities. The (2R)-configured dimethylamine 19a showed promising sigma(1)-receptor affinity (K(i)=23.8 nM) and selectivity, whereas the (2S)-configured (dichlorophenyl)acetamide 22b displayed a sigma-receptor binding profile (sigma(1): K(i)=184 nM; sigma(2): K(i)=263 nM) very similar to the binding profile of the atypical antipsychotic BMY-14802 (26).  相似文献   

17.
A series of carbamate analogues were synthesized from levorphanol (1a), cyclorphan (2a) or butorphan (3a) and evaluated in vitro for their binding affinity at mu, delta, and kappa opioid receptors. Functional activities of these compounds were measured in the [(35)S]GTPgammaS binding assay. Phenyl carbamate derivatives 2d and 3d showed the highest binding affinity for kappa receptor (K(i)=0.046 and 0.051 nM) and for mu receptor (K(i)=0.11 and 0.12 nM). Compound 1c showed the highest mu selectivity. The preliminary assay for agonist and antagonist properties of these ligands in stimulating [(35)S]GTPgammaS binding mediated by the kappa opioid receptor illustrated that all of these ligands were kappa agonists. At the mu receptor, compounds 1b, 1c, 2b, and 3b were agonists, while compounds 2c-e and 3c-e were mu agonists/antagonists.  相似文献   

18.
A series of bis-nicotinium, bis-pyridinium, bis-picolinium, bis-quinolinium and bis-isoquinolinium compounds was evaluated for their binding affinity at nicotinic acetylcholine receptors (nAChRs) using rat brain membranes. N,N'-Decane-1,12-diyl-bis-nicotinium diiodide (bNDI) exhibited the highest affinity for [(3)H]nicotine binding sites (K(i)=330 nM), but did not inhibit [(3)H]methyllycaconitine binding (K(i) >100 microM), indicative of an interaction with alpha4beta2*, but not alpha7* receptor subtypes, respectively. Also, bNDI inhibited (IC(50)=3.76 microM) nicotine-evoked (86)Rb(+) efflux from rat thalamic synaptosomes, indicating antagonist activity at alpha4beta2* nAChRs. N,N'-Dodecane-1,12-diyl-bis-quinolinium dibromide (bQDDB) exhibited highest affinity for [(3)H]methyllycaconitine binding sites (K(i)=1.61 microM), but did not inhibit [(3)H]nicotine binding (K(i)>100 microM), demonstrating an interaction with alpha7*, but not alpha4beta2* nAChRs. Thus, variation of N-n-alkyl chain length together with structural modification of the azaaromatic quaternary ammonium moiety afforded selective antagonists for the alpha4beta2* nAChR subtype, as well as ligands with selectivity at alpha7* nAChRs.  相似文献   

19.
Alpha series of novel 3,6-diazabicyclo[3.1.1]heptane derivatives 4a-f was synthesized and their affinity and selectivity towards alpha4beta2 and alpha7 nAChR subtypes were evaluated. The results of the current study revealed a number of compounds (4a, 4b and 4c) having a very high affinity for alpha4beta2 (K(i) at alpha4beta2 ranging from 0.023 to 0.056 nM) versus alpha7 nAChR subtypes; among these compounds, the 3-(6-bromopyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptane 4c was found to be the most alpha7alpha4beta2 selective term in receptor binding assays (alpha7alpha4beta2=1295). Moreover, compound 4d also had high affinity for the alpha4beta2 nAChR subtype (K(i)=1.2 nM) with considerably high selectivity (alpha7/alpha4beta2=23300).  相似文献   

20.
2-Aryl-4-morpholinothieno[3,2-d]pyrimidines are known PI3K inhibitors. This class of compounds also potently inhibited the homologous enzyme mTOR. Replacement of the morpholine group in these compounds with an 8-oxa-3-azabicyclo[3.2.1]octane group led to mTOR inhibitors with selectivity over PI3K. Optimization of the 2-aryl substituent led to the discovery of 2-(4-ureidophenyl)-thienopyrimidines as highly potent (IC50 <1 nM) mTOR inhibitors with excellent selectivity (up to >1000-fold) over PI3K and good potency in a cellular proliferation assay (IC50 <50 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号