首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role for peroxynitrite (ONOO(-)) in the mechanism of preconditioning is not known. Therefore, we studied effects of preconditioning and subsequent ischemia/reperfusion on myocardial ONOO(-) formation in isolated rat hearts. Hearts were subjected to a preconditioning protocol (three intermittent periods of global ischemia/reperfusion of 5 min duration each) followed by a test ischemia/reperfusion (30 min global ischemia and 15 min reperfusion). When compared to nonpreconditioned controls, preceding preconditioning improved postischemic cardiac performance and significantly decreased test ischemia/reperfusion-induced formation of free nitrotyrosine measured in the perfusate as a marker for cardiac endogenous ONOO(-) formation. During preconditioning, however, the first period of ischemia/reperfusion increased nitrotyrosine formation, which was attenuated after the third period of ischemia/reperfusion. We conclude that classic preconditioning inhibits ischemia/reperfusion-induced cardiac formation of ONOO(-) and that subsequent periods of ischemia/reperfusion result in a gradual attenuation of ischemia/reperfusion-induced ONOO(-) generation. This mechanism might be involved in ischemic adaptation of the heart.  相似文献   

2.
Dong JW  Zhu HF  Zhu WZ  Ding HL  Ma TM  Zhou ZN 《Cell research》2003,13(5):385-391
Intermittent hypoxia has been shown to provide myocardial protection against ishemiaJreperfusion-induced injury.Cardiac myocyte loss through apoptosis has been reported in ischemia/reperfusion injury. Our aim was to investigate whether intermittent hypoxia could attenuate ischemia/reperfusion-induced apoptosis in cardiac myocytes and its potential mechanisms. Adult male Sprague-Dawley rats were exposed to hypoxia simulated 5000 m in a hypobaric chamber for 6 h/day, lasting 42 days. Normoxia group rats were kept under normoxic conditions. Isolated perfused hearts from both groups were subjected to 30 min of global ischemia followed by 60 min reperfusion.Incidence of apoptosis in cardiac myocytes was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and DNA agarose gel electrophoresis. Expressions of apoptosis related proteins,Bax and Bcl-2, in cytosolic and membrane fraction were detected by Western Blotting. After ischemia/reperfusion,enhanced recovery of cardiac function was observed in intermittent hypoxia hearts compared with normoxia group.Ischemia/reperfusion-induced apoptosis, as evidenced by TUNEL-positive nuclei and DNA fragmentation, was significantly reduced in intermittent hypoxia group compared with normoxia group. After ischemia/reperfusion,expression of Bax in both cytosolic and membrane fractions was decreased in intermittent hypoxia hearts comparedwith normoxia group. Although ischemia/reperfusion did not induce changes in the level of Bcl-2 expression in cytosolic fraction between intermittent hypoxia and normoxia groups, the expression of Bcl-2 in membrane fraction was upregulated in intermittent hypoxia group compared with normoxia group. These results indicated that the cardioprotection of intermittent hypoxia against ischemia/reperfusion injury appears to be in part due to reducemyocardial apoptosis. Intermittent hypoxia attenuated ischemia/reperfusion-induced apoptosis via increasing the ratio of Bcl-2/Bax, especially in membrane fraction.  相似文献   

3.
目的:线粒体通透性转换孔通透性改变是导致缺血再灌注损伤的原因,线粒体功能的致命性改变最终引起细胞凋亡,本研究旨在观察线粒体通透性转换孔(mitochondrial permeability transition pore,MPTP)在缺血再灌注及缺血预处理脑保护中的作用;方法:将体外培养8天的海马神经元细胞分为五组,正常对照组(A组),缺血再灌注组(B组),缺血预处理+缺血再灌注组(C组),苍术苷+缺血再灌注组(D组),缺血预处理+苍术苷+缺血再灌注组(E组)。使用流式细胞术检测各组细胞凋亡率,罗丹明123染色流式细胞术检测线粒体膜电位,Western-blot检测Bcl-2,Bax的表达。结果:与A组比较,其余四组线粒体膜电位均降低,神经元凋亡率升高(P〈0.05);与B组比较,c组线粒体膜电位升高,神经元凋亡率升高,Bcl-2表达上调,Bax表达下调(P〈0.05);与c组比较,E组粒体膜电位降低,神经元凋亡率升高,Bcl.2表达下调,Bax表达上调(P〈0.05)。结论:我们在细胞及分子生物学水平对MPTP及缺血预处理的研究后发现,缺血预处理能有效减轻海马神经元缺血再灌注损伤,抑制缺血再灌注后神经细胞凋亡,其机制与抑制MPTP的开放有关。  相似文献   

4.
Preconditioning with brief periods of ischemia-reperfusion (I/R) induces a delayed protection of coronary endothelial cells against reperfusion injury. We assessed the possible role of nitric oxide (NO) produced during prolonged I/R as a mediator of this endothelial protection. Anesthetized rats were subjected to 20-min cardiac ischemia/60-min reperfusion, 24 h after sham surgery or cardiac preconditioning (1 x 2-min ischemia/5-min reperfusion and 2 x 5-min ischemia/5-min reperfusion). The nonselective NO synthase (NOS) inhibitor l-NAME, the selective inhibitors of neuronal (7-nitroindazole) or inducible (1400W) NOS, or the peroxynitrite scavenger seleno-l-methionine were administered 10 min before prolonged ischemia. Preconditioning prevented the reperfusion-induced impairment of coronary endothelium-dependent relaxations to acetylcholine (maximal relaxation: sham 77 +/- 3; I/R 44 +/- 6; PC 74 +/- 5%). This protective effect was abolished by l-NAME (41 +/- 7%), whereas 7-NI, 1400W or seleno-l-methionine had no effect. The abolition of preconditioning by l-NAME, but not by selective nNOS or iNOS inhibition, suggests that NO produced by eNOS is a mediator of delayed endothelial preconditioning.  相似文献   

5.
Ischemic preconditioning has been shown to protect several organs from ischemia/reperfusion-induced injury. In the pancreas, protective effect of ischemic preconditioning has been shown against pancreatitis evoked by ischemia/reperfusion, as well as by caerulein. However, the effect of ischemic preconditioning on the course of acute pancreatic is unclear. The aim of our study was to evaluate the influence of ischemic preconditioning on pancreatic regeneration and pancreatic presence of platelet-derived growth factor-A (PDGF-A) and vascular endothelial growth factor (VEGF) in the course of ischemia/reperfusion-induced pancreatitis. METHODS: In male Wistar rats, ischemic preconditioning of the pancreas was performed by short-term clamping of celiac artery (twice for 5 min with 5 min interval). Acute pancreatitis was induced by clamping of inferior splenic artery for 30 min followed by reperfusion. Rats were sacrificed 1, 5, 12 h or 1, 2, 3, 5, 7, 9 and 21 days after the start of reperfusion. Severity of acute pancreatitis and pancreatic regeneration were determined by biochemical and morphological examination, expression of growth factors was determined by immunohistochemical analysis. RESULTS: In ischemia/reperfusion-induced pancreatitis, the pancreatic damage reached the maximal range between the first and second day of reperfusion, and was followed by subsequent pancreatic regeneration. Ischemic preconditioning alone caused mild passing pancreatic damage and an increase in plasma concentration of pro-inflammatory interleukin-1 and anti-inflammatory interleukin-10. Ischemic preconditioning applied before ischemia/reperfusion-induced pancreatitis reduced morphological and biochemical signs of the pancreatitis-evoked pancreatic damage and accelerated pancreatic regeneration. This effect was associated with improvement of pancreatic blood flow. Ischemic preconditioning, ischemia/reperfusion-induced pancreatitis and their combination increased the presence of VEGF in acinar and islet cells, and immunostaining for PDGF-A in blood vessels. This effect was maximally pronounced after combination of ischemic preconditioning plus pancreatitis and occurred earlier than after pancreatitis alone. CONCLUSIONS: Ischemic preconditioning reduces pancreatic damage and accelerates pancreatic healing in the course of ischemia/reperfusion-induced pancreatitis. This effect is associated with the increase in plasma concentration of anti-inflammatory interleukin-10, improvement of pancreatic blood flow and alteration of pancreatic immunohistochemical expression of PDGF-A and VEGF.  相似文献   

6.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α(2)-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α(2)-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α(2)-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α(2)-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α(2)-adrenergic receptor stimulation.  相似文献   

7.
This study examined the hypothesis that low-concentration apomorphine improves postischemic hemodynamic and mitochondrial function in the isolated rat heart model by attenuating oxidation of myocardial proteins. Control and apomorphine-treated hearts were subjected to 35 min of perfusion, 25 min of normothermic global ischemia, and 60 min of reperfusion. Apomorphine (2 microM) was introduced into the perfusate for 20 min starting from the onset of reperfusion. Apomorphine significantly (p <.05) improved postischemic hemodynamic function: work index of the heart (product of LVDP and heart rate) was twice as high in apomorphine-treated hearts compared to controls at the end of reperfusion (p <.01). After isolation of cardiac mitochondria, the respiratory control ratio (RCR) was calculated from the oxygen consumption rate of State 3 and State 4 respiration. Apomorphine significantly improved postischemic RCR (87% of preischemic value vs. 39% in control, p <.05). Using an immunoblot technique, carbonyl content of multiple unidentified myocardial proteins (mitochondrial and nonmitochondrial) was observed to be elevated after global ischemia and reperfusion. Apomorphine significantly attenuated the increased protein oxidation at the end of reperfusion. These results support the conclusion that apomorphine is capable of preventing ischemia/reperfusion-induced oxidative stress and thereby attenuating myocardial protein oxidation and preserving mitochondrial respiration function.  相似文献   

8.
Reperfusion of ischemic tissue can precipitate cell death. Much of this cell killing is related to the return of physiological pH after the tissue acidosis of ischemia. The mitochondrial permeability transition (MPT) is a key mechanism contributing to this pH-dependent reperfusion injury in hepatocytes, myocytes, and other cell types. When ATP depletion occurs after the MPT, necrotic cell death ensues. If ATP levels are maintained, at least in part, the MPT initiates apoptosis caused by mitochondrial swelling and release of cytochrome c and other proapoptotic factors. Cyclosporin A and acidotic pH inhibit opening of permeability transition pores and protect cells against oxidative stress and ischemia/reperfusion injury, whereas Ca2+, mitochondrial reactive oxygen species, and pH above 7 promote mitochondrial inner membrane permeabilization. Reperfusion with nitric oxide (NO) donors also blocks the MPT via a guanylyl cyclase and protein kinase G-dependent signaling pathway, which in turn prevents reperfusion-induced cell killing. In isolated mitochondria, a combination of cGMP, cytosolic extract, and ATP blocks the Ca2+-induced MPT, an effect that is reversed by protein kinase G inhibition. Thus, NO prevents pH-dependent cell killing after ischemia/reperfusion by a guanylyl cyclase/cGMP/protein kinase G signaling cascade that blocks the MPT.  相似文献   

9.
Cardiac ischemia/reperfusion (I/R) injury induces brain pathology. Donepezil, a well-known acetylcholine esterase (AChE) inhibitor, has been proven to exert neuroprotective effects against several neurodegenerative diseases. However, the comprehensive mechanism regarding the therapeutic potential of donepezil on the brain under cardiac I/R injury remains obscure. Here, we hypothesized that treatment with donepezil ameliorates brain pathology following cardiac I/R injury by decreasing blood brain barrier (BBB) breakdown, oxidative stress, neuroinflammation, mitochondrial dysfunction, mitochondrial dynamics imbalance, microglial activation, amyloid-beta (Aβ) accumulation, neuronal apoptosis, and dendritic spine loss. Forty-eight adult male Wistar rats were subjected to surgery for cardiac I/R injury. Then, rats were randomly divided into four groups to receive either (1) saline (vehicle group), donepezil 3 mg/kg via intravenously administered (2) before ischemia (pretreatment group), (3) during ischemia (ischemia group), or (4) at the onset of reperfusion (reperfusion group). At the end of cardiac I/R paradigm, the brains were evaluated for BBB breakdown, brain inflammation, oxidative stress, mitochondrial function, mitochondrial dynamics, microglial morphology, Aβ production, neuronal apoptosis, and dendritic spine density. Administration of donepezil at all time points equally showed an attenuation of brain damage in response to cardiac I/R injury, as indicated by increased expression of BBB junction protein, reduced brain inflammation and oxidative stress, improved mitochondrial function and mitochondrial dynamics, and alleviated Aβ accumulation and microglial activation, resulting in protection of neuronal apoptosis and preservation of dendritic spine number. These findings suggest that donepezil potentially protects brain pathology caused by cardiac I/R injury regardless the timing of treatment.  相似文献   

10.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α2-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α2-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α2-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α2-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α2-adrenergic receptor stimulation.  相似文献   

11.
Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Male Wistar rats (300-350 g) were randomized to a control (n = 10), a remote IPC (n = 10), and a local IPC group (n = 10). Remote IPC was induced by four cycles of 5 min of limb ischemia, followed by 5 min of reperfusion. Local IPC was induced by four cycles of 2 min of regional myocardial ischemia, followed by 3 min of reperfusion. The heart was excised within 5 min after the final cycle of preconditioning, mounted in a perfused Langendorff preparation for 40 min of stabilization, and subjected to 45 min of sustained ischemia by occluding the left coronary artery and 120 min of reperfusion. I/R injury was assessed as infarct size by triphenyltetrazolium staining. The influence of sarcolemmal and mitochondrial K(ATP) channels on remote preconditioning was assessed by the addition of glibenclamide (10 microM, a nonselective K(ATP) blocker), 5-hydroxydecanoic acid (5-HD; 100 microM, a mitochondrial K(ATP) blocker), and HMR-1098 (30 microM, a sarcolemmal K(ATP) blocker) to the Langendorff preparation before I/R. The role of mitochondrial K(ATP) channels as an effector mechanism for memorizing remote preconditioning was further studied by the effect of the specific mitochondrial K(ATP) activator diaxozide (10 mg/kg) on myocardial infarct size. Remote preconditioning reduced I/R injury in the explanted heart (0.17 +/- 0.03 vs. 0.39 +/- 0.05, P < 0.05) and improved left ventricular function during reperfusion compared with control (P < 0.05). Similar effects were obtained with diazoxide. Remote preconditioning was abolished by the addition of 5-HD and glibenclamide but not by HMR-1098. In conclusion, the protective effect of remote preconditioning is memorized in the explanted heart by a mechanism that involves mitochondrial K(ATP) channels.  相似文献   

12.
Activation of the delta-isoform of protein kinase C (deltaPKC) by certain conditions of oxidative stress results in translocation of the kinase to the mitochondria leading to release of cytochrome c and the induction of apoptosis. In the current study, the effects of myocardial reperfusion-induced deltaPKC translocation on mitochondrial function were assessed. Mitochondria isolated from hearts that had undergone ischemia (30 min) followed by reperfusion (15 min) exhibited a significant increase in the rate of superoxide anion (O(2)(-)) generation. This was associated with the translocation of deltaPKC to the mitochondria within the first 5 min of reperfusion. deltaPKC translocation occurred exclusively during reperfusion and could be mimicked by infusion of intact hearts with H(2)O(2) suggesting redox-dependent activation during reperfusion. Infusion of a peptide inhibitor (deltaV(1-1)) specific to the delta-isoform of PKC significantly reduced reperfusion-induced increases in mitochondrial O(2)(-) generation. Finally, the decline in mitochondrial respiratory activity evident upon prolonged reperfusion (120min) was completely prevented by inhibition of deltaPKC translocation. Thus, deltaPKC represents a cytosolic redox-sensitive molecule that plays an important role in amplification of O(2)(-) production and subsequent declines in mitochondrial function during reperfusion.  相似文献   

13.
The aims of this study were to determine whether preconditioning blocks cardiocyte apoptosis and to determine the role of mitochondrial ATP-sensitive K(+) (K(ATP)) channels and the protein kinase C epsilon-isoform (PKC-epsilon) in this effect. Ventricular myocytes from 10-day-old chick embryos were used. In the control series, 10 h of simulated ischemia followed by 12 h of reoxygenation resulted in 42 +/- 3% apoptosis (n = 8). These results were consistent with DNA laddering and TdT-mediated dUTP nick-end labeling (TUNEL) assay. Preconditioning, elicited with three cycles of 1 min of ischemia separated by 5 min of reoxygenation before subjection to prolonged simulated ischemia, markedly attenuated the apoptotic process (28 +/- 4%, n = 8). The selective mitochondrial K(ATP) channel opener diazoxide (400 micromol/l), given before ischemia, mimicked preconditioning effects to prevent apoptosis (22 +/- 4%, n = 6). Pretreatment with 5-hydroxydecanoate (100 micromol/l), a selective mitochondrial K(ATP) channel blocker, abolished preconditioning (42 +/- 2%, n = 6). In addition, the effects of preconditioning and diazoxide were blocked with the specific PKC inhibitors G?-6976 (0.1 micromol/l) or chelerythrine (4 micromol/l), given at simulated ischemia and reoxygenation. Furthermore, preconditioning and diazoxide selectively activated PKC-epsilon in the particulate fraction before simulated ischemia without effect on the total fraction, cytosolic fraction, and PKC delta-isoform. The specific PKC activator phorbol 12-myristate 13-acetate (0.2 micromol/l), added during simulated ischemia and reoxygenation, mimicked preconditioning to block apoptosis. Opening mitochondrial K(ATP) channels blocks cardiocyte apoptosis via activating PKC-epsilon in cultured ventricular myocytes. Through this signal transduction, preconditioning blocks apoptosis and preserves cardiac function in ischemia-reperfusion.  相似文献   

14.
We used Na(+)-Ca(2+) exchanger (NCX) knockout mice to evaluate the effects of NCX in cardiac function and the infarct size after ischemia/reperfusion injury. The contractile function in NCX KO mice hearts was significantly better than that in wild type (WT) mice hearts after ischemia/reperfusion and the infarct size was significantly small in NCX KO mice hearts compared with that in WT mice hearts. NCX is critically involved in the development of ischemia/reperfusion-induced myocardial injury and therefore the inhibition of NCX function may contribute to cardioprotection against ischemia/reperfusion injury.  相似文献   

15.
Our study evaluated the relationship between the endogenous production of prostacyclin and the antiarrhythmic effect of ischemic preconditioning against ischemic and reperfusion-induced tachyarrhythmia. Langendorff perfused rat hearts underwent 30 min regional ischemia with reperfusion. Preconditioning was induced by a single episode of 5 min ischemia and 15 min reperfusion. Prostaglandin 6-keto F1 (a stable metabolite of prostacyclin) was determined in the coronary effluent.In the control group the incidence of tachyarrhythmia was 31 % during ischemia and 67% during reperfusion. Preconditioning did not affect ischemic arrhythmias but attenuated arrhythmias a reperfusion (8%, p < 0.01) and was associated with increased release of prostacyclin prior to reperfusion. Aspirin abolished the antiarrhythmic effect of preconditioning against reperfusion tachyarrhythmias. However, no relationship was found between suppression of prostacyclin production and the occurrence of arrhythmia in individual hearts.Thus, our findings suggest that metabolites of arachidonic acid via the cyclooxygenase pathway are involved in the protective effect of ischemic preconditioning against reperfusion-induced tachyarrhythmias. (Mol Cell Biochem 160/161: 249–255, 1996)  相似文献   

16.
Claudia Penna 《BBA》2009,1787(7):781-793
A series of brief (a few minutes) ischemia/reperfusion cycles (ischemic preconditioning, IP) limits myocardial injury produced by a subsequent prolonged period of coronary artery occlusion and reperfusion. Postconditioning (PostC), which is a series of brief (a few seconds) reperfusion/ischemia cycles at reperfusion onset, attenuates also ischemia/reperfusion injury. In recent years the main idea has been that reactive oxygen species (ROS) play an essential, though double-edged, role in cardioprotection: they may participate in reperfusion injury or may play a role as signaling elements of protection in the pre-ischemic phase. It has been demonstrated that preconditioning triggering is redox-sensitive, using either ROS scavengers or ROS generators. We have shown that nitroxyl triggers preconditioning via pro-oxidative, and/or nitrosative stress-related mechanism(s). Several metabolites, including acetylcholine, bradykinin, opioids and phenylephrine, trigger preconditioning-like protection via a mitochondrial KATP-ROS-dependent mechanism. Intriguingly, and contradictory to the above mentioned theory of ROS as an obligatory part of reperfusion-induced damage, some studies suggest the possibility that some ROS at low concentrations could protect ischemic hearts against reperfusion injury. Yet, we demonstrated that ischemic PostC is also a cardioprotective phenomenon that requires the intervention of redox signaling to be protective. Emerging evidence suggests that in a preconditioning scenario a redox signal is required during the first few minutes of myocardial reperfusion following the index ischemic period. Intriguingly, the ROS signaling in the early reperfusion appear crucial to both preconditioning- and postconditioning-induced protection. Therefore, our and others' results suggest that the role of ROS in reperfusion may be reconsidered as they are not only deleterious.  相似文献   

17.
Reperfusion of myocardial tissue can result in programmed cell death. Nevertheless, relatively little information exists concerning pathways initiated in vivo that ultimately commit cardiac cells to apoptosis during ischemia/reperfusion. The goal of the present study was to determine whether mitochondrial-mediated mechanisms of apoptosis are initiated during in vivo cardiac ischemia/reperfusion. We provide evidence that the content of cytochrome c in the cytosol increases exclusively during reperfusion. Over the same time interval Bax, a pro-apoptotic protein implicated in release of cytochrome c from mitochondria, was found to disappear from cytosolic extracts. This was associated with the appearance of tightly associated Bax in the mitochondrial fraction. Cytochrome c from reperfused cytosolic extracts is present as a high molecular weight oligomer consistent with formation of the apoptosome. In addition, pro-caspase-9 was found to disappear exclusively during reperfusion. Therefore, the results of the current study indicate that the mitochondrial-mediated pathway of apoptosis is initiated as a result of in vivo cardiac ischemia/reperfusion.  相似文献   

18.
Complement receptor 1-related gene/protein y (Crry) is a murine membrane protein that regulates the activity of both classical and alternative complement pathways. We used a recombinant soluble form of Crry fused to the hinge, CH2, and CH3 domains of mouse IgG1 (Crry-Ig) to determine whether inhibition of complement activation prevents and/or reverses mesenteric ischemia/reperfusion-induced injury in mice. Mice were subjected to 30 min of ischemia, followed by 2 h of reperfusion. Crry-Ig was administered either 5 min before or 30 min after initiation of the reperfusion phase. Pretreatment with Crry-Ig reduced local intestinal mucosal injury and decreased generation of leukotriene B(4) (LTB(4)). When given 30 min after the beginning of the reperfusion phase, Crry-Ig resulted in a decrease in ischemia/reperfusion-induced intestinal mucosal injury comparable to that occurring when it was given 5 min before initiation of the reperfusion phase. The beneficial effect of Crry-Ig administered 30 min after the initiation of reperfusion coincided with a decrease in PGE(2) generation despite the fact that it did not prevent local infiltration of neutrophils and did not have a significant effect on LTB(4) production. These data suggest that complement inhibition protects animals from reperfusion-induced intestinal damage even if administered as late as 30 min into reperfusion and that the mechanism of protection is independent of neutrophil infiltration or LTB(4) inhibition.  相似文献   

19.
Erythropoietin has recently been shown to have effects beyond hematopoiesis such as prevention of neuronal and cardiac apoptosis secondary to ischemia. In this study, we evaluated the in vivo protective potential of erythropoietin in the reperfused rabbit heart following ventricular ischemia. We show that "preconditioning" with erythropoietin activates cell survival pathways in myocardial tissue in vivo and adult rabbit cardiac fibroblasts in vitro. These pathways, activated by erythropoietin in both whole hearts and cardiac fibroblasts, are also activated acutely by ischemia/reperfusion injury. Moreover, in vivo studies indicate that erythropoietin treatment either prior to or during ischemia significantly enhances cardiac function and recovery, including left ventricular contractility, following myocardial ischemia/reperfusion. Our data indicate that a contributing in vivo cellular mechanism of this protection is mitigation of myocardial cell apoptosis. This results in decreased infarct size as evidenced by area at risk studies following in vivo ischemia/reperfusion injury, translating into more viable myocardium and less ventricular dysfunction. Therefore, erythropoietin treatment may offer novel protection against ischemic heart disease and may act, at least in part, by direct action on cardiac fibroblasts and myocytes to alter survival and ventricular remodeling.  相似文献   

20.
Sevoflurane postconditioning has been proven to protect the hearts against ischemia/reperfusion injury, manifested mainly by improved cardiac function, reduced myocardial specific biomarker release, and decreased infarct size. This study is to observe the effects of sevoflurane postconditioning on reperfusion-induced ventricular arrhythmias and reactive oxygen species generation in Langendorff perfused rat hearts. Compared with the unprotected hearts subjected to 25 min of global ischemia followed by 30 min of reperfusion, exposure of 3% sevoflurane during the first 15 min of reperfusion significantly improved cardiac function, reduced cardiac troponin I release, decreased infarct size and attenuated reperfusion-induced ventricular arrhythmia. Further analysis on arrhythmia during the 30 min of reperfusion showed that, sevoflurane postconditioning decreased both the duration and incidence of ventricular tachycardia and ventricular fibrillation. In the meantime, intracellular malondialdehyde and reactive oxygen species levels were also reduced. These above results demonstrate that sevoflurane postconditioning protects the hearts against ischemia/reperfusion injury and attenuates reperfusion-induced arrhythmia, which may be associated with the regulation of lipid peroxidation and reactive oxygen species generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号