首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Carbohydrate research》1987,165(2):197-206
Condensation of 2,4-di-O-acetyl-3,6-di-O-methyl-α-d-glucopyranosyl bromide with either allyl or benzyl 2,4-di-O-methyl-α-l-rhamnopyranoside in the presence of mercuric cyanide, followed by O-deacetylation, gave the title oligosaccharides in excellent yields.
  相似文献   

2.
A lactosaminyl donor, 3,6-di-O-acetyl-2-deoxy-2-phthalimido-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-β-d- glucopyranosyl chloride, was synthesized in 10 steps, starting from 1,3,4,6-tetra-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranose. Benzyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranoside was prepared by regioselective benzylation at the primary hydroxyl group by the stannyl method, and was used as a key intermediate.
  相似文献   

3.
 Synthesis of five different Sudan-β-d-glucuronides (I, II, III, IV, and RedB) was performed by condensation of a set of red Sudan diazo dyes with methyl (1-deoxy-2,3,4-tri-O-acetyl-1-trichloroacetimidoyl-α-d-glucopyran)uronate. After the acid and alcohol groups had been deprotected, the resulting compounds were used for histochemical localization of β-glucuronidase (GUS) activity in transgenic plants (Petunia hybrida, Arabidopsis thaliana, and Nicotiana tabacum) that contained the GUS reporter system. Because the cleavage of the β-glucuronide results in the liberation of an insoluble Sudan dye, Sudan substrates gave no diffusion artifacts as described for the commonly used 5-bromo-4-chloro-3-indolyl-β-d-glucuronide (X-gluc). A comparison of assays with different Sudan glucuronides and X-gluc demonstrated that the SudanIV variant is a valuable glucuronide substrate for the precise histochemical localization of GUS activity in transgenic plants. Received: 9 December 1999 / Revision received: 25 January 2000 / Accepted: 26 January 2000  相似文献   

4.
5.
A series of 6- and 9-substituted cleistopholine derivatives has been designed, synthesized and investigated to inhibit the aggregation of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and β-myloid (A β). Results showed that these synthetic compounds had excellent AChE inhibitory activity and a significant in vitro inhibitory potency toward the self-induced A β aggregation. When SH-SY5Y cells were treated with these substituted cleistopholine derivatives during they overexpressed the Swedish mutant form of human β -amyloid precursor protein (APPsw), A β 42 secretion levels were significantly reduced. According to a parallel artificial membrane permeation assay for BBB, seven out of these sixteen synthetic compounds probably could cross the blood-brain barrier (BBB) to reach their targets in the central nervous system (CNS).  相似文献   

6.
The stereoselective syntheses of 2-cyclopropyl- and (2S)-2-hydroxymethyl-(3R,4S)-4-hydroxy-β3-homoproline are described. The reported amino acids were constructed through 1,3-dipolar cycloaddition of strained alkylidenecyclopropanes with enantiopure pyrroline N-oxides derived from malic acid followed by thermal rearrangement of the adducts in the presence of trifluoroacetic acid. The two-step sequence afforded the homoprolines suitably protected to be directly used as building blocks in peptidomimetic synthesis as proved by the synthesis of the two model mixed α/β/α tripeptides Phe-β3-HPro-Val.  相似文献   

7.
14ß-Cyanomethyl derivatives of estrone and estradiol have been synthesized starting from 3-benzoyloxyestra-1,3,5(10),14,16-pentaen-17-yl acetate. A comparative study of their cytotoxicity in breast carcinoma ZR-75-1, cervix uteri carcinoma M-HeLa, uterus leiomyosarcoma SK-UT-1B, breast adenocarcinoma MCF-7, ovary teratocarcinoma PA-1, acute myelogenous leukemia KG-1, and Burkitt’s lymphoma Raji cells has been performed.  相似文献   

8.
We have used a well-characterized antibody specific for an epitope consisting of (1→3,6)-β-d-galactosyl residues with terminal glucuronic or 4-O-methylglucuronic acids of a bioactive pectin and immunocytochemistry to investigate its secretion and wall distribution in the hypocotyl and root tissues of flax seedlings. Our results show that this antigenic epitope is associated with flax pectins and is expressed by all the cells of the hypocotyl and root tissues. In the hypocotyl, it is abundant in the primary wall of epidermal cells as well as in the secondary wall of fiber cells, and is relatively less abundant in parenchyma cell walls. In contrast, the epitope is not detected in the middle lamellae and cell junction regions. In the root tip cells, immunogold electron microscopy shows that the cell walls of peripheral, columella, meristematic, cortical, and epidermal cells contain significant amounts of this epitope and that the distribution patterns are distinct. Together, these findings show that the antigenic epitope occurs in discrete domains of the wall implying a strict spatial regulation of the epitope-containing molecules. The results also show that, in root cells, the epitope is present within Golgi cisternae and is predominantly assembled in the trans and the trans-Golgi network compartments. Accepted: 21 October 1999  相似文献   

9.
10.
Endo-β-N-acetylglucosaminidase H from Streptomyces plicatus can be useful in determining both the molecular weight of the protein moiety of glycoproteins and their inherent number of oligosaccharide chains. In the case of carboxypeptidase Y the molecular mass of the carbohydrate free protein was confirmed as 51,000 daltons. The native enzyme was shown to contain 4 oligosaccharide chains each averaging about 14 mannose residues. On treatment of mung bean nuclease I with the endoglycosidase, the molecular mass decreased from 39,000 to 31,000 daltons. The peptides produced on reduction of this enzyme with thiol were 18,700 and 12,500 daltons, indicating that carbohydrate had been present on both. Penicillium nuclease P1 was decreased in size from 40,000 to 30,000 daltons by the endoglycosidase. Although most of the carbohydrate was removed from each of the native enzymes by the endoglycosidase, denaturation of the glycoproteins was necessary to effect complete removal. Enzyme activitywas not affected by carbohydrate depletion of these glycoproteins, a result consistent with similar studies on other oligosaccharide-containing enzymes.  相似文献   

11.
Yang JS  Ren HB  Xie YJ 《Biomacromolecules》2011,12(8):2982-2987
1-Octyl amine was covalently coupled to sodium alginate(NaAlg) in an aqueous-phase reaction via acidamide functions using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC-HCl) as a coupling reagent to provide octyl-grafted amphiphilic alginate-amide derivative(OAAD) for subsequent use in λ-cyhalothrin (LCH) microcapsule application. The structure of OAAD was confirmed by FT-IR and (1)H NMR spectroscopies. The new alginate-amide derivative was used for fabricating microcapsule that can effectively encapsulate LCH by emulsification-gelation technique. The microcapsules were characterized by optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and laser particle size analysis. The encapsulation efficiency and drug release behavior of LCH from the microcapsules were investigated. Results showed that the microcapsules were in spherical form with diameter mostly in the range of 0.5-10 μm and possessed a structure with LCH as core and OAAD as shell. The encapsulation efficiency and the release performance of the microcapsules were influenced by DS of OAAD and amount of CaCl(2). The mechanism of LCH release was found to vary from anomalous to Fickian to quasi-Fickian transport with the DS of OAAD varied from 10.8 to 30.3 and the CaCl(2)/emulsion ratios varied from 0.09 to 0.03%.  相似文献   

12.
Neuropathic pain is a debilitating form of treatment-resistant chronic pain caused by damage to the nervous system. Cannabinoids have been known for suppressing neuropathic pain by modulating the endo cannabinoid system. Since the canonical Wnt/β-catenin signaling has recently been implicated in pain sensation, we investigated the impact of major cannabinoids (16) from the leaves of Cannabis sativa and an epoxy derivative of compound 2, here upon referred to as 2a, on modulating Wnt/β-catenin signaling pathway. The results presented in this study show that compound 1, 2 and 2a exhibited potent inhibitory activity against Wnt/β-catenin pathway in a dose-dependent manner. Compound 2a was seen to inhibit this pathway at slightly lower concentrations than its parent molecule 2, under similar conditions. Taken together, compound 1, 2 and 2a, by virtue of their inhibition of Wnt-catenin signaling pathway, could be developed as effective neuroprotective agents for the management of neuropathic pain.  相似文献   

13.
We synthesized a series of novel dapsone–thalidomide hybrids (3ai) by molecular hybridization and evaluated their potential for the treatment of type 2 leprosy reactions. All of the compounds had analgesic properties. Compounds 3c and 3h were the most active antinociceptive compounds and reduced acetic acid-induced abdominal constrictions by 49.8% and 39.1%, respectively. The hybrid compounds also reduced tumor necrosis factor-α levels in lipopolysaccharide-stimulated L929 cells. Compound 3i was the most active compound; at concentrations of 15.62 and 125 μM, compound 3i decreased tumor necrosis factor-α levels by 86.33% and 87.80%, respectively. In nude mice infected with Mycobacterium leprae in vivo, compound 3i did not reduce the number of bacilli compared with controls. Compound 3i did not have mutagenic effects in Salmonella typhimurium strains TA100 and TA102, with or without metabolic activation (S9 mixture). Our results indicate that compound 3i is a novel lead compound for the treatment of type 2 leprosy reactions.  相似文献   

14.
This study aimed to synthesize triplex-forming oligonucleotides (TFOs) containing 2′-deoxy-6-thioxanthosine (s6X) and 2′-deoxy-6-thioguanosine (s6Gs) residues and examined their triplex-forming ability. Consecutive arrangement of s6X and s6Gs residues increased the triplex-forming ability of the oligonucleotides more than 50 times, compared with the unmodified TFOs. Moreover, the stability of triplex containing a mismatched pair was much lower than that of the full-matched triplex, though s6X could form a s6X-GC mismatched pair via tautomerization of s6X. The present results reveal excellent properties of modified TFOs containing s6Xs and s6Gs residues, which may be harnessed in gene therapy and DNA nanotechnology.  相似文献   

15.
All possible isomers of N-β-d-glucopyranosyl aryl-substituted oxadiazolecarboxamides were synthesised. O-Peracetylated N-cyanocarbonyl-β-d-glucopyranosylamine was transformed into the corresponding N-glucosyl tetrazole-5-carboxamide, which upon acylation gave N-glucosyl 5-aryl-1,3,4-oxadiazole-2-carboxamides. The nitrile group of the N-cyanocarbonyl derivative was converted to amidoxime which was ring closed by acylation to N-glucosyl 5-aryl-1,2,4-oxadiazole-3-carboxamides. A one-pot reaction of protected β-d-glucopyranosylamine with oxalyl chloride and then with arenecarboxamidoximes furnished N-glucosyl 3-aryl-1,2,4-oxadiazole-5-carboxamides. Removal of the O-acetyl protecting groups by the Zemplén method produced test compounds which were evaluated as inhibitors of glycogen phosphorylase. Best inhibitors of these series were N-(β-d-glucopyranosyl) 5-(naphth-1-yl)-1,2,4-oxadiazol-3-carboxamide (Ki = 30 μM), N-(β-d-glucopyranosyl) 5-(naphth-2-yl)-1,3,4-oxadiazol-2-carboxamide (Ki = 33 μM), and N-(β-d-glucopyranosyl) 3-phenyl-1,2,4-oxadiazol-5-carboxamide (Ki = 104 μM). ADMET property predictions revealed these compounds to have promising oral drug-like properties without any toxicity.  相似文献   

16.
The α- and β-anomers of the 17β-d-glucuronide conjugate of ethynylestradiol were synthesized by the SnCl4-promoted reaction between β-acetoxy GAM and the t-17β-hydroxyl group of EE2-3-acetate. The conjugates were resolved by crystallization and HPLC. Positive identification was established by u.v. spectrophotometry, i.r. and mass spectrometry and 1H- and 134C-n.m.r. The structure of the β-anomer was confirmed by X-ray crystallographic analysis. In addition, the α-anomer was refractory to hydrolysis by bovine β-glucuronidase, establishing a biochemical difference between the conjugate pair.  相似文献   

17.
Species belonging to the Festuca-Lolium complex are important forage and turf species and as such, have been studied intensively. However, their out-crossing nature and limited availability of molecular markers make genetic studies difficult. Here, we report on saturation of F. pratensis and L. multiflorum genetic maps using Diversity Array Technology (DArT) markers and the DArTFest array.The 530 and 149 DArT markers were placed on genetic maps of L. multiflorum and F. pratensis, respectively, with overlap of 20 markers, which mapped in both species. The markers were sequenced and comparative sequence analysis was performed between L. multiflorum, rice and Brachypodium. The utility of the DArTFest array was then tested on a Festulolium population FuRs0357 in an integrated analysis using the DArT marker map positions to study associations between markers and freezing tolerance. Ninety six markers were significantly associated with freezing tolerance and five of these markers were genetically mapped to chromosomes 2, 4 and 7. Three genomic loci associated with freezing tolerance in the FuRs0357 population co-localized with chromosome segments and QTLs previously identified to be associated with freezing tolerance. The present work clearly confirms the potential of the DArTFest array in genetic studies of the Festuca-Lolium complex. The annotated DArTFest array resources could accelerate further studies and improvement of desired traits in Festuca-Lolium species.  相似文献   

18.

Background

Chiral epoxides and diols are important synthons for manufacturing fine chemicals and pharmaceuticals. The epoxide hydrolases (EC 3.3.2.-) catalyze the hydrolytic ring opening of epoxides producing the corresponding vicinal diol. Several isoenzymes display catalytic properties that position them as promising biocatalytic tools for the generation of enantiopure epoxides and diols.

Scope of review

This review focuses on the present data on enzyme structure and function in connection to biocatalytic applications. Available data on biocatalysis employed for purposes of stereospecific ring opening, to produce chiral vicinal diols, and kinetic resolution regimes, to achieve enantiopure epoxides, are discussed and related to results gained from structure–activity studies on the enzyme catalysts. More recent examples of the concept of directed evolution of enzyme function are also presented.

Major conclusions

The present understanding of structure–activity relationships in epoxide hydrolases regarding chemical catalysis is strong. With the ongoing research, a more detailed view of the factors that influence substrate specificities and stereospecificities is expected to arise. The already present use of epoxide hydrolases in synthetic applications is expected to expand as new enzymes are being isolated and characterized. Refined methodologies for directed evolution of desired catalytic and physicochemical properties may further boost the development of novel and useful biocatalysts.

General significance

The catalytic power of enzymes provides new possibilities for efficient, specific and sustainable technologies to be developed for production of useful chemicals.  相似文献   

19.
HMBPP ((E)-4-hydroxy-3-methyl-2-butenyl pyrophosphate) is a highly potent innate immunogen that stimulates human γδ T cells expressing the Vγ2Vδ2 T cell antigen receptor. To determine if glycoside conjugates of HMBPP retain activity, the 4-β-glucoside and its acetylated homolog were synthesized and tested for their ability to stimulate γδ T cells. The glycoside HMBPP conjugate stimulated human γδ T cells with an EC(50) of 78nM. The tetraacetyl glycoside HMBPP conjugate was also active (EC(50)=360nM). The two isomeric mono-β-glucosides of the parent (E)-2-methylbut-2-ene-1,4-diol, however, were not active. Thus, HMBPP glycosylated at the 4-OH position stimulates γδ T cells as long as the pyrophosphate moiety is present.  相似文献   

20.
Summary The entrapment of Aspergillus ochraceus spores on to diatomaceous earth particles occurs rapidly, the number of spores entrapped at equilibrium being dependent upon the initial spore:particle ratio. The rate of agitation during spore uptake markedly affected entrapment. Immobilized spores carried out the 11-hydroxylation of progesterone as effectively as free spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号