首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ignition dynamics of a CH4: O2: N2: Ar = 1: 4: 15: 80 mixture by a high-voltage nanosecond discharge is simulated numerically with allowance for experimental data on the dynamics of the discharge current and discharge electric field. The calculated induction time agrees well with experimental data. It is shown that active particles produced in the discharge at a relatively low deposited energy can reduce the induction time by two orders of magnitude. Comparison of simulation results for mixtures with and without nitrogen shows that addition of nitrogen to the mixture leads to a decrease in the average electron energy in the discharge and gives rise to new mechanisms for accumulation of oxygen atoms due to the excitation of nitrogen electronic states and their subsequent quenching in collisions with oxygen molecules. Acceleration of the discharge-initiated ignition is caused by a faster initiation of chain reactions due to the production of active particles, first of all oxygen atoms, in the discharge.  相似文献   

2.
Lightning strike is an important ignition source of forest fires. Artificial lightning discharge is a method for studying lightning fires. However, there is not enough data on the ignition of combustible materials caused by artificial lightning discharge. Previous studies on lightning ignition have focused on the heating and ignition effects of long continuing current (LCC), but the function of the impulse current that occurs before the LCC has not been taken into account. In this paper, an impulse current generator of 8/20 μs was used to simulate the ignition effect of impulse current on conifer needle beds. Different current waveforms have different ignition characteristics. We compared five kinds of conifer needle beds. The average of the current needed to ignite the needle bed of Larix gmelinii (Ruprecht) Kuzeneva was the smallest, and the average of the breakdown voltage was the smallest for the needle bed of Pinus massoniana Lamb. The total energy input to the conifer needle beds was fitted as a multiple log‐linear regression model. The heating energy proportion value varies with different bulk densities, current amplitudes, and moisture contents. Based on this data, the heating energy of the impulse current transferred to the needles can be predicted. This information in conjunction with previous research on LCC was used to derive a lightning ignition prediction model of the full waveform for conifer needle beds.  相似文献   

3.
Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author’s opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.  相似文献   

4.
The electric and spectral characteristics of a nonsteady discharge in an atmospheric air flow blown through a point-plane interelectrode gap were investigated experimentally. The discharge was produced by applying a constant positive voltage to the point electrode, the amplitude of the applied voltage being much higher than the corona ignition voltage. The nonsteady character of the discharge is due to the spontaneously repeating streamer-spark breakdown, followed by the formation of either a diffuse ultracorona or a filamentary glow discharge. In the latter case, the length of the plasma column increases progressively, being blown off by the gas flow from the discharge gap. The extinction of a filamentary discharge is unrelated to the break of the current channel: the discharge decays abruptly when the filament length reaches its critical value. The distribution of active particles (O, OH, and N*2) carried out from the discharge gap is determined from the data of spectral measurements.  相似文献   

5.
Results are presented from experimental studies on the unique beam-plasma generator of microwave radiation with a stochastically jumping phase (MWRSJP). To interpret the experimental results, a computer code was developed that allows one to simulate the process of gas ionization by electrons heated in the MWRSJP field and the behavior of plasma particles in such a field. The conditions for ignition and maintenance of a microwave discharge in air by MWRSJP are found both experimentally and theoretically, and the pressure range in which the power required for discharge ignition and maintenance is minimum are determined.  相似文献   

6.
Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH4: O2 gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.  相似文献   

7.
A self-consistent model describing the influence of a pulsed discharge on H2-air mixtures is developed. The model includes the processes of ionization, dissociation, and excitation of the gas molecules by electron impacts; a set of ion-molecular reactions determining the time evolution of the charged particle densities; the processes involving electronically excited atoms and molecules; and a set of reactions describing the ignition of hydrogen-oxygen mixtures. Results are presented from simulations of the oxidation dynamics of hydrogen molecules in a stoichiometric H2-air mixture and the ignition of such a mixture under the action of a pulsed high-current discharge. The simulation results are compared with available experimental data and calculations performed by other authors.  相似文献   

8.
Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode discharge is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current?voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.  相似文献   

9.
It is shown that on the basis of the earlier revealed effect of generating the ion flow in the beam-plasma discharge from the discharge axis, a plasma processing reactor can be created for low-energy etching of semiconductor structures. The possibility of easily controlling the density and energy of ion flow by means of varying the potential of the discharge collector is demonstrated. The charge compensation of the ion flow incident on the nonconducting surface is implemented using the modulation of the potential of the substrate holder as well as the plasma-potential modulation.  相似文献   

10.
Results from experimental studies of an electric discharge operating between a solid anode and an electrolytic cathode in a wide pressure range are presented. Specific features of the discharge ignition and discharge shape and peculiarities the structure of cathode spots on the electrolyte surface and anode spots on the surface of the solid electrode are revealed. The dependences of the current density on the electrolytic cathode and metal anode on the total current are measured, and the spatial distribution of the electric field is determined. A transition of a glow discharge into a multichannel discharge is investigated. The experimental data on the frequency and amplitude of the current and voltage pulsations are presented. Requirements for the maintenance of an electric discharge with an electrolytic cathode are formulated using the obtained experimental results.  相似文献   

11.
The conversion of ethylene (C2H4) at concentrations of 400 and 930 ppm in an air flow at a temperature of 295 K is simulated. Ethylene is added to air either upstream of the discharge chamber or in the reaction tube, downstream of a pulsed corona discharge. It is taken into account that the distribution of the gas components in the discharge zone is nonuniform due to the streamer nature of the discharge. In the reaction tube, all of the components are assumed to be uniform. Simulation results agree with the experiments carried out at voltage pulse amplitudes of 30 and 40 kV, a gas flow rate of 2–10 l/min, and a specific energy deposition of up to 0.15 J/cm3. It is shown that the ozone produced plays a governing role in the C2H4 conversion. It is found that it is possible to minimize the energy spent on conversion by choosing the optimum pulse repetition rate and the specific energy deposited per pulse. The presence of water vapor impedes the ethylene conversion and increases the concentration of formaldehyde and methane.  相似文献   

12.
Ionikh  Yu. Z. 《Plasma Physics Reports》2020,46(10):1015-1044
Plasma Physics Reports - The review is devoted to studies of the processes and mechanisms of ignition of a glow discharge in tubes whose length significantly exceeds their diameter (long discharge...  相似文献   

13.
The mechanism responsible for the previously discovered phenomenon of acceleration of an ion flow along the normal to the axis of a beam-plasma discharge in a weak magnetic field is investigated. It is suggested that the ions are accelerated in the field of a helicon wave excited in the discharge plasma column. It is shown theoretically that, under actual experimental conditions, a helicon wave can be excited at the expense of the energy of an electron beam. The spectral parameters and spatial structure of the waves excited in a beam-plasma discharge in the frequency ranges of Langmuir and helicon waves are studied experimentally and are shown to be related to the parameters of the ion flow. Theoretical estimates are found to agree well with the experimental results.  相似文献   

14.
非硬化土路径流侵蚀产沙动力参数分析   总被引:1,自引:0,他引:1  
采用野外径流冲刷试验的方法,模拟研究非硬化路面土壤剥蚀率与各水动力学参数之间的关系,并建立各自的定量关系式.结果表明: 不同流量和坡度下,平均土壤剥蚀率可以用放水流量和坡度的幂函系数关系进行描述,并随放水流量和坡度的增大而增大,流量对土壤剥蚀率的影响大于坡度;土壤剥蚀率与水流流速呈幂函数关系;土壤剥蚀率与径流动能呈幂函数关系,径流动能对土壤剥蚀率有重要作用;土壤剥蚀率与单宽径流能耗呈线性函数关系,土壤可蚀性参数和临界单宽径流能耗的均值分别为0.120 g·m-1·J-1和2.875 g·m-1·J-1.放水流量和坡度、单宽能耗可准确地描述道路土壤侵蚀过程并对土壤侵蚀量进行测算.  相似文献   

15.
The physics of the heating of an inertial fusion target by a high-energy ion beam under the conditions of fast ignition of fusion reactions is studied theoretically. The characteristic features of the formation of the spatial distribution of the energy transferred to the plasma from a beam of ions with different initial energies, masses, and charges under fast ignition conditions are determined. The notion of the Bragg peak is extended with respect to the spatial distribution of the temperature of the ion-beam-heated medium. The parameters of the ion beams are determined with which to initiate different regimes of fast ignition of a thermonuclear fuel precompressed to a density of 300–500 g/cm3—the edge regime, in which the ignition region is formed at the outer boundary of the target, and the internal regime, in which the ignition region is formed within the target and, in particular, in its central parts.  相似文献   

16.
Transverse glow discharges in supersonic air and methane flows are studied both experimentally and theoretically. The experiments show that a diffuse volume discharge filling the whole cross section of the flow can easily be initiated in air, whereas a diffuse discharge in a methane flow shows a tendency to transition into a constricted mode. The electron transport coefficients (mobility and drift velocity) and the kinetic coefficients (such as collisional excitation rates of the vibrational levels of a methane molecule, as well as dissociation and ionization rates) are calculated by numerically solving the Boltzmann equation for the electron energy distribution function. The calculated coefficients are used to estimate the parameters of the plasma and the electric field in the positive column of a discharge in methane.  相似文献   

17.
It is shown that, due to the presence of the ponderomotive force, ECR discharges in low-density gases can be ignited in systems with a single magnetic mirror (i.e., with a flaring magnetic field) when the electron mean free path substantially exceeds the system length. The discharge ignition conditions are determined.  相似文献   

18.
Results are presented from theoretical studies of the formation of the spatial temperature distribution in plasma heated by a high-energy ion beam under the conditions in which the free path lengths of ions of different parts of the beam in plasma varies in the course of its heating. Special attention is paid to ionbeam heating of deuterium-tritium (DT) plasma under the conditions of fast ignition of inertial confinement fusion (ICF) targets. The influence of the initial energy spectrum of the heating beam ions on the spatial temperature distribution is investigated. For beams with different ion charges, masses, and initial energy spectra, criteria are determined for the formation of different types of spatial temperature distributions, namely, a distribution with a negative temperature gradient and a quasi-uniform distribution, which correspond to the edge ignition of a precompressed ICF target, as well as a distribution with a temperature peak, which corresponds to the ignition in the inner region of the target.  相似文献   

19.
Energy exchange between an electron beam and plasma during a beam-plasma discharge in a closed cavity excited by the electron beam is analyzed using computer simulations by the KARAT code. A method allowing one to analyze the beam-plasma interaction in the quasi-steady stage of the discharge is proposed. Qualitative characteristics of energy exchange (such as beam energy losses and the energy distributions of beam electrons and plasma particles leaving the discharge) both during spontaneous discharge excitation and in the presence of initial beam modulation by regular or noiselike signals are determined. The results obtained enable one to estimate the energy characteristics of a plasma processing reactor based on a beam-plasma discharge.  相似文献   

20.
Today, natural rivers are increasingly fragmented by human-made obstacles such as dams. Due to these structures fish populations in natural rivers rapidly diminish. In this context, fishways are a useful hydraulic structure in the creation of ecosystem for fish migration. Three dimensional mean flow and turbulence structure of pool-weir fishways were experimentally explored. During the experiments, three different notch sizes were applied while the size of the orifice was kept constant. Two acoustic Doppler velocimeters were employed throughout the velocity measurements. Three-dimensional mean velocity and normalized turbulent kinetic energy patterns in the pool were experimentally analyzed considering the swimming ability of different fish species to check whether the given design conditions provide suitable flow patterns. Based on the data, a linear relationship between the parameters “the discharge” and “the average depth in a pool” was generated. An equation was derived which gives the “energy dissipation rate per unit pool volume” in terms of the parameters “geometrical characteristics of the fishway”, “head difference between pools”, “slope”, and “acceleration due to gravity”. The discharge ratios between “flow through orifice” and “flow over notch” were expressed based on the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号