首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The sunflower downy mildew pathogen Plasmopara halstedii is an invasive plant pathogen in Europe of American origin. Despite efforts to produce resistant host varieties, nationwide monitoring in France has revealed the rapid emergence of new virulent races increasing the number from one founder identified in 1966 to as many as 14 today. We have genotyped 146 samples (including all 14 races) using 13 nuclear and one mtDNA marker. Samples of the same race were found to share alleles/mtDNA haplotype and the two most common races had individuals with multiple matching genotypes. Cluster analyses confirmed that the samples form three groups to which races strongly adhere. Clusters were highly differentiated (F(ST) 0.65) and characterised by high inbreeding coefficients. Despite this, samples of recently emergent races, including six that are unique to France had mixed ancestry between the groups suggesting they have arisen in situ due to hybridisation. Five such samples also had conflicting mtDNA and nuclear DNA profiles. This demonstrates that multiple introductions have aided the establishment of this pathogen in France, and suggests recombination facilitated by these introductions is driving the emergence of new and endemic races in response to host resistance.  相似文献   

2.
Li ZK  Sanchez A  Angeles E  Singh S  Domingo J  Huang N  Khush GS 《Genetics》2001,159(2):757-765
The resistance of rice to its bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) has both qualitative and quantitative components that were investigated using three near-isogenic line sets for four resistance (R) genes (Xa4, xa5, xa13, and Xa21) and 12 Xoo races. Our results indicate that these two resistance components of rice plants were associated with the properties of the R genes. The qualitative component of the R genes was reflected by their large effects against corresponding avirulent Xoo races. The quantitative component of the R genes was their residual effects against corresponding virulent races and their epistatic effects, which together could lead to high-level resistance in a race-specific manner. Our results revealed important differences between the different types of R genes. Two R genes, Xa4 and Xa21, showed complete dominance against the avirulent Xoo races and had large residual effects against virulent ones. They acted independently and cumulatively, suggesting they are involved in different pathways of the rice defensive system. The third R gene, xa5, showed partial dominance or additivity to the avirulent Xoo races and had relatively small but significant residual effects against the virulent races. In contrast, xa13 was completely recessive, had no residual effects against the virulent races, and showed more pronounced race specificity. There was a strong interaction leading to increased resistance between xa13 and xa5 and between either of them and Xa4 or Xa21, suggesting their regulatory roles in the rice defensive pathway(s). Our results indicated that high-level and durable resistance to Xoo should be more efficiently achieved by pyramiding different types of R genes.  相似文献   

3.
Population genetic principles in relation to the pathogenicity genes have been applied on the genotypes (races) of Xanthomonas campestris pv. malvacearum(Xcm) which are characterized on the basis of bacterial blight resistant host genes ( B -genes) attacked. Observed (OF) and expected (EF) frequencies were determined to predict the intensity of selection pressure operating in the pathogen population due to the introduction of particular host resistant gene(s). Race 32 (Vp, V7 V2 V10 VN) was the most prevalent genotype representing 41.55% of the Xcm population. Other prevalent genotypes were race 30 (11.08%, Vp V2 Vin VN), race 20 (8.56%, Vp V2 VN), race 9 (6.80%, Vp Vin) and race 8 (11.59%, Vp V2). The OF (observed frequency) of race 32 was 41.55%, whereas EF (expected frequency) was 15.74% indicating a strong selection pressure favouring this highly virulent genotype. Whereas, race 31 (V7 V2 Vin VN) also overcomes four major genes like race 32 but not the polygene complex, it was less fit and possessed low EF and OF, i.e. 0.25% and 1.18% respectively. Xcm genotypes capable of attacking 3–4 major B -genes were prevalent on G. hirsutum , while genotypes with virulence against 1–2 B -genes favoured G. barbadense cottons. High virulence level in pathogen genotypes, was maintained on resistant/tolerant host genotypes of G. arboreum and G. hirsutum whereas, it was diluted on the highly susceptible G. barbadense.  相似文献   

4.
Sporisorium reilianum is the causal agent of head smut on sorghum and maize. In order to effectively utilize host resistance to control this important disease in crops, it is necessary to monitor changes in disease dynamics and virulence of the pathogen. An outbreak of head smut was recently observed in a sorghum field, near Gaoping, Shanxi, China, and research was undertaken to characterize a putative new race of S. reilianum. A set of differential sorghum lines with resistance to several conventional races was used to characterize the newly collected isolate of S. reilianum. The reactions of differential cultivars/germplasm lines to the new isolate indicate that it is a new physiological race of S. reilianum. The new race is highly virulent on sorghum line A2V4 and its hybrid, Jinza 12, that are known as resistant to all existing Chinese races of S. reilianum, including races 1, 2, and 3. The new isolate of S. reilianum is different from all of the described races of the pathogen; thus, it is designated as race 4 of S. reilianum. Furthermore, a collection of 34 sorghum genotypes including commercial cultivars and germplasm lines was evaluated for disease reaction to the newly described race and the three known races of the pathogen.  相似文献   

5.
Arachidonic acid (AA) induces hypersensitive response (HR) on coleoptile/root regions of two-day-old pearl millet seedlings. The response is comparable to the HR induced by the downy mildew pathogen, Sclerospora graminicola. A time gap in the appearance of cell necrosis among genotypes of pearl millet was related to the degree of resistance to downy mildew. Based on the time required for the development of necrotic spots induced by AA, the pearl millet genotypes were categorised as highly resistant/resistant (HR in 3–6 h), susceptible (HR in 7–12 h) and highly susceptible (HR in 13 h and above). The percentage disease incidence in each genotype was compared with the time required for the development of AA-induced HR. The appearance of hypersensitive cell necrosis was rapid in genotypes having high resistance to downy mildew and was slow in genotypes with high susceptibility. This simple method of screening various pearl millet genotypes in the absence of the pathogen aids in identifying the downy mildew resistant/susceptible host cultivars without the risk of introducing the virulent race of the pathogen.  相似文献   

6.
M Rohe  A Gierlich  H Hermann  M Hahn  B Schmidt  S Rosahl    W Knogge 《The EMBO journal》1995,14(17):4168-4177
NIP1, a small phytotoxic protein secreted by the barley pathogen Rhynchosporium secalis, is a race-specific elicitor of defense responses in barley cultivars carrying the resistance gene, Rrs1. Co-inoculation employing spores from a virulent fungal race together with the NIP1 protein converted the phenotype of the interaction from compatible to incompatible only on Rrs1-containing plants. In addition, transformation of a virulent fungal race with the nip1 gene yielded avirulent transformants. This demonstrated that the protein is the product of a fungal avirulence gene. The fungal genome was found to contain a single copy of the nip1 gene. Sequence analysis of nip1 cDNA and genomic clones revealed that the gene consists of two exons and one intron. The derived amino acid sequence comprised a secretory signal peptide of 22 amino acids and a cysteine-rich mature protein of 60 amino acids. All fungal races that were avirulent on barley cultivars of the Rrs1 resistance genotype carry and express the nip1 gene and secrete an elicitor-active NIP1 polypeptide. In contrast, races lacking this gene were virulent. In addition, single nucleotide exchanges were detected in the coding region of the nip1 alleles in one virulent fungal race and in a race whose interaction with barley is not controlled by the Rrs1 gene. The resulting exchanges of single amino acids render the gene products elicitor-inactive. Thus, the R.secalis-barley interaction provides the first example of a pathosystem conforming to the gene-for-gene hypothesis in which a plant with a particular resistance gene recognizes a pathogen by a virulence factor, i.e. one of its offensive weapons. On the fungal side, in turn, recognition by the host plant is eluded by either deletion of the encoding gene or alteration of the primary structure of the gene product.  相似文献   

7.
Current practices on prevention of aflatoxin contamination of crop species include time consuming, expensive agronomic practices. Of all the methods available to-date, conventional breeding and/or genetic engineering to develop host plant-based resistance to aflatoxin-producing fungi appear to be valuable for several reasons. However, breeding for disease-resistant crops is very time consuming, especially in tree crops, and does not lend itself ready to combat the evolution of new virulent fungal races. Moreover, availability of known genotypes with natural resistance to mycotoxin-producing fungi is a prerequisite for the successful breeding program. While it is possible to identify a few genotypes of corn or peanuts that are naturally resistant toAspergillus we do not know whether these antifungal factors are specific toA. flavus. In crops like cotton, there are no known naturally resistant varieties toAspergillus. Availability of transgenic varieties with antifungal traits is extremely valuable as a breeding tool. Several antifungal proteins and peptides are available for genetic engineering of susceptible crop species, thanks to the availability of efficient modern tools to understand and evaluate protein interactions by proteomics of host, and genomics and field ecology of the fungus. Transgenic approaches are being undertaken in several industry and academic laboratories to prevent invasion byAspergillus fungi or to prevent biosynthesis of aflatoxin. Recent trends in reducing aflatoxin contamination through genetic engineering of cultivated crop species with antifungal proteins are summarized in this report. Presented at the EU-USA Bilateral Workshop on Toxigenic Fungi & Mycotoxins, New Orleans, USA, July 5–7, 2005  相似文献   

8.
The exopolysaccharide (EPS) of avirulentXanthomonas campestris pv.Malvacearum race-32 did not contain the watersoaking (WS)— inducing factor but contained necrotic reaction (NR)-inducing factor and induced NR on resistant cotton (cv. 101-102B) on which the viable cells of the same avirulent race-32 produced hypersensitive reaction (HR). NR and HR were differentiated on the basis of the induction period required, visible reaction on infiltrated areas, bacterial constituents or metabolite responsible, involvement of host constituent during these reactions and its chemical inhibition. Pre and/or challenge inoculation of EPS of avirulent race-32 (3 mg per infiltration or lesion) in susceptible or resistant cotton cultivars, on pre-and/or post-infiltrated (0–8 h) exponential-phase culture of virulent race-32 inhibited the WS and/or HR of the virulent race in susceptible or resistant cotton.  相似文献   

9.
Plant-fungus interactions are highly diverse, either being beneficial to the host plant such as those leading to mycorhizal symbiosis, or very detrimental when leading to severe diseases. Since the beginning of agriculture, improvement of plant resistance to pathogens has remained a major challenge. Breeding for resistance, first conducted empirically in the past centuries, was then performed on a more theoretical basis after the statement of heredity laws by Mendel at the end of the XIXth century. As a result, most cultivated species contain various cultivars whose resistance or susceptibility to a given pathogen species depend on their interaction with various races of that pathogen. Such highly specific race-cultivar systems are particularly suited for understanding the molecular dialogue which underlies compatible (host susceptible/pathogen virulent) or incompatible (host resistant/pathogen avirulent) interactions. During the twentieth century, one of the major events that paved the way for future research was the statement by Flor [1946, 1947] of the gene-for-gene concept. Studying inheritance of the disease phenotype in the interaction between flax and Melampsora lini he showed that resistance in the host and avirulence in the pathogen are dictated by single dominant genes which correspond one to one, i.e. one resistance gene for one avirulence gene. The fact that incompatibility may depend on the presence of only one resistance (R) gene in the host and one avirulence (Avr) gene in the pathogen was fully confirmed about 40 years later. Molecular genetics and complementation experiments have allowed to isolate numerous R and Avr genes from various plant-pathogen systems, and to verify the gene-for-gene concept. These studies have enlightened the elicitor/receptor concept, formerly introduced to account for the specificity of the compatible and incompatible interactions. The present knowledge of R and Avr genes also allows to predict how such genes have evolved and how they could be used to improve disease resistance. At the beginning of the twenty first century, this remains a major challenge in view of the severe losses caused by pests and pathogens to most crops on the earth.  相似文献   

10.
Resistance of tomato plants to the bacterial pathogen Pseudomonas syringae pv. tomato race 0 is controlled by the locus Pto. A bacterial avirulence gene was cloned by constructing a cosmid library from an avirulent P. syringae pv. tomato race, conjugating the recombinants into a strain of P. syringae pv. maculicola virulent on a tomato cultivar containing Pto, and screening for those clones that converted the normally virulent phenotype to avirulence. The cloned gene, designated avrPto, reduced multiplication of P. syringae pv. tomato transconjugants specifically on Pto tomato lines, as demonstrated by bacterial growth curve analyses. Analysis of F2 populations revealed cosegregation of resistance to P. syringae pv. tomato transconjugants carrying avrPto with resistance to P. syringae pv. tomato race 0. Surprisingly, mutation of avrPto in P. syringae pv. tomato race 0 does not eliminate the avirulent phenotype of race 0, suggesting that additional, as yet uncharacterized, avirulence genes and/or resistance genes may contribute to specificity in the avrPto-Pto interaction. Genetic analysis indicates that this resistance gene(s) would be tightly linked to Pto. Interestingly, P. syringae pv. glycinea transconjugants carrying avrPto elicit a typical hypersensitive resistant response in the soybean cultivar Centennial, suggesting conservation of Pto function between two crop plants, tomato and soybean.  相似文献   

11.
The cellular responses induced by Meloidogyne arenaria races 1 and 2 in three soybean genotypes, susceptible CNS, resistant Jackson, and resistant PI 200538, were examined by light microscopy 20 days after inoculation. Differences in giant-cell development were greater between races than among the soybean genotypes. M. arenaria race 1 stimulated small, poorly formed giant-cells in contrast with M. arenaria race 2, which induced well-developed, thick-walled, multinucleate giant-cells. The number of nuclei per giant-celt was variable, but fewer nuclei were usually present in giant-cells induced by race 1 (mean 16 nuclei) than in giant-cells induced by race 2 (mean 41 nuclei). Differences observed in giant-cell development were related to differences in growth and maturation of M. arenaria races 1 and 2 and host suitability of the soybean genotypes.  相似文献   

12.
Pyrenophora tritici‐repentis causes tan spot, an important foliar disease of wheat. The fungus produces multiple host‐specific toxins, including Ptr ToxB, a chlorosis‐inducing protein encoded by the ToxB gene. A homolog of ToxB is also found in avirulent isolates of the fungus. In order to improve understanding of the role of this homolog and evaluate the general pathogenic ability of P. tritici‐repentis, we compared the proteomes of avirulent race 4 and virulent race 5 isolates of the pathogen. Western blotting analysis revealed the presence of Ptr ToxB in spore germination and culture fluids of race 5 but not race 4. A comprehensive proteome‐level comparison by 2‐DE indicated 133 differentially abundant proteins in the secretome (29 proteins) and mycelium (104 proteins) of races 4 and 5, of which 63 were identified by MS/MS. A number of the proteins found to be up‐regulated in race 5 have been implicated in microbial virulence in other pathosystems, and included the secreted enzymes α‐mannosidase and exo‐β‐1,3‐glucanase, heat‐shock and BiP proteins, and various metabolic enzymes. These proteome‐level differences suggest a reduced general pathogenic ability in race 4 of P. tritici‐repentis, irrespective of toxin production. Such differences may reflect an adaptation to a saprophytic habit.  相似文献   

13.
The potential for local adaptation between pathogens and their hosts has generated strong theoretical and empirical interest with evidence both for and against local adaptation reported for a range of systems. We use the Linum marginale-Melampsora lini plant-pathogen system and a hierarchical spatial structure to investigate patterns of local adaptation within a metapopulation characterised by epidemic dynamics and frequent extinction of pathogen populations. Based on large sample sizes and comprehensive cross-inoculation trials, our analyses demonstrate strong local adaptation by Melampsora to its host populations, with this effect being greatest at regional scales, as predicted from the broader spatial scales at which M. lini disperses relative to L. marginale. However, there was no consistent trend for more distant pathogen populations to perform more poorly. Our results further show how the coevolutionary interaction between hosts and pathogens can be influenced by local structure such that resistant hosts select for generally virulent pathogens, while susceptible hosts select for more avirulent pathogens. Empirically, local adaptation has generally been tested in two contrasting ways: (1) pathogen performance on sympatric versus allopatric hosts; and (2) sympatric versus allopatric pathogens on a given host population. In situations where no host population is more resistant or susceptible than others when averaged across pathogen populations (and likewise, no pathogen population is more virulent or avirulent than others), results from these tests should generally be congruent. We argue that this is unlikely to be the case in the metapopulation situations that predominate in natural host-pathogen interactions, thus requiring tests that control simultaneously for variation in plant and pathogen populations.  相似文献   

14.
15.
Variation in damage levels on certain black currant, Ribes nigrum L., genotypes, caused by the black currant leaf midge, Dasineura tetensi (Rübs.) (Diptera: Cecidomyiidae), has been observed in northern Sweden. I investigated whether this variation is due to variation in virulence among midges. From a field population of midges, I successfully selected for virulence and avirulence, respectively, on the resistant black currant genotype cultivar `Storklas' (called resistant genotype). The performance of avirulent and virulent midge larvae on two black currant genotypes were studied in experiments where first or second instar larvae were artificially transferred. There were no differences in larval survival and developmental rate between the two midge types when transferred to the susceptible currant genotype `7801–31' (called susceptible genotype). Larvae of the virulent strain established galls and developed on `Storklas' but development was initially slower there than on the susceptible currant genotype. Larvae of the avirulent strain suffered high mortality or remained in first instar on that same currant genotype when transferred alone, but developed readily if transferred together with virulent larvae. Larvae transferred in second instar to host plants susceptible to the larvae resumed feeding and developed further to maturity. Second instar larvae were also able to establish new galls even though these galls were not as well developed as those caused by first instar larvae. Black currant plantations in northern Sweden were surveyed and local midge populations were found to be composed of either avirulent, virulent or a mixture of both midge types. Virulent midges were not restricted to plantations where resistant currant genotypes were grown. I conclude that, at least, two biotypes of the midge exist, and that those two are distinguished by the ability to gall and survive on `Storklas'.  相似文献   

16.
Bacterial wilt caused by Ralstonia (formerly Pseudomonas) solanacearum is worldwide in distribution. It is one of the most destructive bacterial diseases of economically important crops. The serological assays so far developed for the detection of R. solanacearum were able to provide information as to the presence or absence of the pathogen in soil and plant materials. However, they could not discriminate between virulent and avirulent strains of the pathogen and were not specific to strains and races. In the present investigation, virulent bacterial cells (encapsulated with mucin) from tomato seeds were used as antigen and polyclonal antisera were developed in rabbit using a classical immunization protocol. Antisera thus developed were examined for the antibody titre, sensitivity, specificity, rapidity and the efficacy of the antibody in identifying the virulent and avirulent strains of the pathogen and the potential for application of this assay to the screening of infected plant materials and seeds. Our results indicate that the anti-tomato R. solanacearum: (i) has a good antibody titre of 1:10,000; (ii) can detect as few as 100 bacterial cells/ml; (iii) is tomato-specific (it reacted with tomato R. solanacearum, and not with isolates from chilli or eggplant); (iv) is reactive to all isolates of R. solanacearum from tomato; (v) is not cross-reactive with non-pseudomonads; (vi) is virulent strain-specific as it recognizes the virulent exopolysaccharide component as an antigenic determinant; (vii) reactivity could be correlated well with the degree of infection in tomato seeds and plant materials. The enzyme linked immunosorbent assay developed is sensitive, specific and rapid, therefore suitable for the detection of R. solanacearum isolates from tomato seeds during routine assays.  相似文献   

17.
Two strains of Drosophila melanogaster (resistant and susceptible) were parasitized by a virulent or avirulent strain of the parasitoid wasp Leptopilina boulardi. The success of encapsulation depends on both the genetic status of the host strain and the genetic status of the parasitoid strain: the immune cellular reaction (capsule) is observed only with the resistant strain-avirulent strain combination. The total numbers of host haemocytes increased in all 4 combinations, suggesting that an immune reaction was triggered in all hosts. Resistant host larvae infected with the virulent or avirulent strains of parasitoid wasp had slightly more haemocytes per mm(3) than did susceptible host larvae at the beginning of the reaction (less than 15 h post-parasitization). This difference disappeared later. Only the virulent parasitoid strain caused the production of a high percentage of altered lamellocytes (from a discoid shape to a bipolar shape), half the total number of lamellocytes are altered. This suggests that the alteration of lamellocyte shape alone is not sufficient to explain the lack of capsule formation seen in resistant hosts parasitized by the virulent strain. Lastly, there were very few altered lamellocytes in resistant or susceptible hosts parasitized by the avirulent parasitoid strain, two combinations in which no capsule was formed. As is now established for Drosophila-parasitoid interactions, virus-like particles contained in the long gland of the female wasp affect the morphology of the lamellocytes. The results presented here are further proof of the action (direct or indirect) of virus like particles of the virulent strain on lamellocytes.  相似文献   

18.
Penetration, post-infectional development, reproduction, and fecundity of Meloidogyne arenaria races 1 and 2 were studied on susceptible (CNS), partially resistant (Jackson), and highly resistant (PI 200538 and PI 230977) soybean genotypes in the greenhouse. The ability to locate and invade roots was similar between races, but more juveniles penetrated roots of susceptible CNS than the resistant genotypes. At 10 days after inoculation, 56% and 99% to 100% of race 1 second-stage juveniles were vermiform or sexually undifferentiated in CNS and the resistant genotypes, respectively. In contrast, only 2%, 42%, 44%, and 62% of race 2 juveniles had not initiated development in CNS, Jackson, PI 200538, and PI 230977, respectively. By 20 days after inoculation, 88% to 100% of race 2 nematodes in roots of all genotypes were females, whereas only 25% and 1% of race 1 were females in CNS and the resistant genotypes, respectively. For all four genotypes, race 1 produce 85% to 96% fewer eggs per root system 45 days after inoculation than race 2. At 45 days after inoculation race 2 produced more eggs on CNS than the other genotypes.  相似文献   

19.
Resistance to the southern root-knot nematode, Meloidogyne incognita races 1 and 3, has been identified, incorporated, and deployed into commercial cultivars of tobacco, Nicotiana tabacum. Cultivars with resistance to other economically important root-knot nematode species attacking tobacco, M. arenaria, M. hapla, M. javanica, and other host-specific races of M. incognita, are not available in the United States. Twenty-eight tobacco genotypes of diverse origin and two standard cultivars, NC 2326 (susceptible) and Speight G 28 (resistant to M. incognita races 1 and 3), were screened for resistance to eight root-knot nematode populations of North Carolina origin. Based on root gall indices at 8 to 12 weeks after inoculation, all genotypes except NC 2326 and Okinawa were resistant to M. arenaria race 1, and races 1 and 3 of M. incognita. Except for slight root galling, genotypes resistant to M. arenaria race 1 responded similarly to races 1 and 3 of M. incognita. All genotypes except NC 2326, Okinawa, and Speight G 28 showed resistance to M. javanica. Okinawa, while supporting lower reproduction of M. javanica than NC 2326, was rated as moderately susceptible. Tobacco breeding lines 81-R-617A, 81-RL- 2K, SA 1213, SA 1214, SA 1223, and SA 1224 were resistant to M. arenaria race 2, and thus may be used as sources of resistance to this pathogen. No resistance to M. hapla and only moderate resistance to races 2 and 4 of M. incognita were found in any of the tobacco genotypes. Under natural field infestations of M. arenaria race 2, nematode development on resistant tobacco breeding lines 81-RL-2K, SA 1214, and SA 1215 was similar to a susceptible cultivar with some nematicide treatments; however, quantity and quality of yield were inferior compared to K 326 plus nematicides.  相似文献   

20.
Isofemale lines (IFL) from single egg masses were studied for genetic variation in Meloidogyne incognita isolates avirulent and virulent to the resistance gene Rk in cowpea (Vigna unguiculata). In parental isolates cultured on susceptible and resistant cowpea, the virulent isolate contained 100% and the avirulent isolate 7% virulent lineages. Virulence was selected from the avirulent isolate within eight generations on resistant cowpea (lineage selection). In addition, virulence was selected from avirulent females (individual selection). Virulence differed (P ≤ 0.05) both within and between cohorts of IFL cultured for up to 27 generations on susceptible or resistant cowpea. Distinct virulence profiles were observed among IFL. Some remained avirulent on susceptible plants and became extinct on resistant plants; some remained virulent on resistant and susceptible plants; some changed from avirulent to virulent on resistant plants; and others changed from virulent to avirulent on susceptible plants. Also, some IFL increased in virulence on susceptible plants. Single descent lines from IFL showed similar patterns of virulence for up to six generations. These results revealed considerable genetic variation in virulence in a mitotic parthenogenetic nematode population. The frequencies of lineages with stable or changeable virulence and avirulence phenotypes determined the overall virulence potential of the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号