首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural origins of the specificity of the neurophysin hormone-binding site for an aromatic residue in peptide position 2 were explored by analyzing the binding of a series of peptides in the context of the crystal structure of liganded neurophysin. A new modeling method for describing the van der Waals surface of binding sites assisted in the analysis. Particular attention was paid to the unusually large (5 kcal/mol) difference in binding free energy between Phe and Leu in position 2, a value representing more than three times the maximum expected based on hydrophobicity alone, and additionally remarkable since modeling indicated that the Leu side chain was readily accommodated by the binding pocket. Although evidence was obtained of a weak thermodynamic linkage between the binding interactions of the residue 2 side chain and of the peptide alpha-amino group, two factors are considered central. (1) The bound Leu side chain can establish only one-third of the van der Waals contacts available to a Phe side chain. (2) The bound Phe side chain appears to be additionally stabilized relative to Leu by more favorable dipole and induced dipole interactions with nonaromatic polar and sulfur ligands in the binding pocket, as evidenced by examination of its interactions in the pocket, analysis of the detailed energetics of transfer of Phe and Leu side chains from water to other phases, and comparison with thermodynamic and structural data for the binding of residue 1 side chains in this system. While such polar interactions of aromatic rings have been previously observed, the present results suggest their potential for significant thermodynamic contributions to protein structure and ligand recognition.  相似文献   

2.
Binding of peptide epitopes to major histocompatibility complex proteins involves multiple hydrogen bond interactions between the peptide main chain and major histocompatibility complex residues. The crystal structure of HLA-DQ2 complexed with the alphaI-gliadin epitope (LQPFPQPELPY) revealed four hydrogen bonds between DQ2 and peptide main chain amides. This is remarkable, given that four of the nine core residues in this peptide are proline residues that cannot engage in amide hydrogen bonding. Preserving main chain hydrogen bond interactions despite the presence of multiple proline residues in gluten peptides is a key element for the HLA-DQ2 association of celiac disease. We have investigated the relative contribution of each main chain hydrogen bond interaction by preparing a series of N-methylated alphaI epitope analogues and measuring their binding affinity and off-rate constants to DQ2. Additionally, we measured the binding of alphaI-gliadin peptide analogues in which norvaline, which contains a backbone amide hydrogen bond donor, was substituted for each proline. Our results demonstrate that hydrogen bonds at P4 and P2 positions are most important for binding, whereas the hydrogen bonds at P9 and P6 make smaller contributions to the overall binding affinity. There is no evidence for a hydrogen bond between DQ2 and the P1 amide nitrogen in peptides without proline at this position. This is a unique feature of DQ2 and is likely a key parameter for preferential binding of proline-rich gluten peptides and development of celiac disease.  相似文献   

3.
The interaction of the second and third AT-hooks of HMGA1 (formerly HMGI/Y), which bind selectively in the minor groove of an AT-rich DNA sequence, was studied at different temperatures and ionic strengths by spectropolarimetry, spectrofluorimetry, isothermal titration calorimetry and differential scanning calorimetry. The data show that binding of the ten amino acid core element of the two AT-hooks, which penetrates deep into the minor groove, is entropically driven: both the entropy and enthalpy of association of the peptides to the target DNA are positive up to 50 degrees C. The seven amino acid extension of the core in the second AT-hook, which extends out from the minor groove and loops over the phosphodiester backbone, adds a substantial negative enthalpic component into the binding of the 17 residue DBD2 peptide to DNA that corresponds in magnitude to the enthalpy of formation of two hydrogen bonds. The ionic strength dependence of the association constant allowed an estimation of the electrostatic component of binding and, by subtraction, the contribution of the non-electrostatic component, which results from dehydration of the contacting surfaces and makes up almost 70% of the total energy of complex formation. The exceptionally large positive entropy and enthalpy of association of the core AT-hook peptides with target DNA suggest that the water, which is removed from the minor groove of DNA upon binding, is in a highly ordered state. Acetylation of the lysine residue in the second AT-hook, which corresponds to Lys65 of HMGA1, has little effect on the DNA binding; so it appears that repression of the hIFNbeta gene, which follows this modification, is not a direct result of the abrogation of DNA binding.  相似文献   

4.
The binding of Ca2+ to calmodulin and its two tryptic fragments has been studied using microcalorimetry. The binding process is accompanied by the uptake or release of protons, depending on the ionic strength. With no added salt, the total enthalpy change for the binding of four calcium ions to calmodulin is -41 kJ mol-1 but in the presence of 0.15 mM KCl delta Htot is +17 kJ mol-1. The mode of binding of Ca2+ is also completely different with and without added salt. It is also shown that for the C-terminal fragment of calmodulin, TR2C, the drastic reduction in delta Gtot for the binding process on increasing the ionic strength is largely an enthalpic effect. Domain interactions in calmodulin are indicated by the fact that the sum of the enthalpies of calcium binding to the two tryptic fragments is not the same as the total binding enthalpy to calmodulin itself. The binding of Ca2+ to calmodulin has also been studied calorimetrically at different temperatures in the range 21-37 degrees C. delta Cp is large and negative in this interval.  相似文献   

5.
Current evidence indicates that the ligand-facilitated dimerization of neurophysin is mediated in part by dimerization-induced changes at the hormone binding site of the unliganded state that increase ligand affinity. To elucidate other contributory factors, we investigated the potential role of neurophysin's short interdomain loop (residues 55-59), particularly the effects of loop residue mutation and of deleting amino-terminal residues 1-6, which interact with the loop and adjacent residues 53-54. The neurophysin studied was bovine neurophysin-I, necessitating determination of the crystal structures of des 1-6 bovine neurophysin-I in unliganded and liganded dimeric states, as well as the structure of its liganded Q58V mutant, in which peptide was bound with unexpectedly increased affinity. Increases in dimerization constant associated with selected loop residue mutations and with deletion of residues 1-6, together with structural data, provided evidence that dimerization of unliganded neurophysin-I is constrained by hydrogen bonding of the side chains of Gln58, Ser56, and Gln55 and by amino terminus interactions, loss or alteration of these hydrogen bonds, and probable loss of amino terminus interactions, contributing to the increased dimerization of the liganded state. An additional intersubunit hydrogen bond from residue 81, present only in the liganded state, was demonstrated as the largest single effect of ligand binding directly on the subunit interface. Comparison of bovine neurophysins I and II indicates broadly similar mechanisms for both, with the exception in neurophysin II of the absence of Gln55 side chain hydrogen bonds in the unliganded state and a more firmly established loss of amino terminus interactions in the liganded state. Evidence is presented that loop status modulates dimerization via long-range effects on neurophysin conformation involving neighboring Phe22 as a key intermediary.  相似文献   

6.
Carbonell T  Freire E 《Biochemistry》2005,44(35):11741-11748
The statins are powerful inhibitors of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMG-CoA reductase), the key enzyme in the cholesterol biosynthetic pathway, and are among the most widely prescribed drugs in the world. Despite their clinical importance, little is known about the binding thermodynamics of statins to HMG-CoA reductase. In this paper, we report the results of inhibition kinetics and microcalorimetric analysis of a representative type I statin (pravastatin) and four type II statins (fluvastatin, cerivastatin, atorvastatin, and rosuvastatin). Inhibition constants (K(i)) range from 2 to 250 nM for the different statins. Isothermal titration calorimetry (ITC) experiments yield binding enthalpies (DeltaH(binding)) ranging between zero and -9.3 kcal/mol at 25 degrees C. There is a clear correlation between binding affinity and binding enthalpy: the most powerful statins bind with the strongest enthalpies. The proportion by which the binding enthalpy contributes to the binding affinity is not the same for all statins, indicating that the balance among hydrogen bonding, van der Waals, and hydrophobic interactions is not the same for all of them. At 25 degrees C, the dominant contribution to the binding affinity of fluvastatin, pravastatin, cerivastatin, and atorvastatin is the entropy change. Only for rosuvastatin does the enthalpy change contribute more than 50% of the total binding energy (76%). Since the enthalpic and entropic contributions to binding originate from different types of interactions, the thermodynamic dissection presented here provides a way to identify interactions that are critical for affinity and specificity.  相似文献   

7.
The major histocompatibility complex (MHC) class II binding requirements for solvent-exposed peptide residues were systematically studied using amino acid and peptoid substitutions. In a peptoid residue, the side chain is present on the backbone nitrogen atom as opposed to the alpha-carbon atom in an amino acid residue. To investigate the effect of this side chain shifting on MHC binding, three amino acids in the central part of the peptide sticking out of the binding groove were replaced by corresponding peptoid residues. Two peptoid-peptide hybrids showed large affinity decreases in the MHC-peptide binding assay. To investigate this affinity loss, the individual contributions to MHC binding affinity of the side chain (position), the putative hydrogen bond, and the flexibility were dissected. We conclude that the side chain position as well as the backbone nitrogen atom hydrogen bonding features of solvent-exposed residues in the peptide can be important for MHC binding affinity.  相似文献   

8.
RNA-binding proteins are an important class of mediators that regulate cell function and differentiation. Methylation of arginine, a post-translational modification (PTM) found in these proteins, can modulate their function. Arginine can be monomethylated or dimethylated, depending on the type of methyl transferases involved. This paper describes a comparative study of the thermodynamics of unmodified and modified Tat peptide interaction with TAR RNA, where the peptide is methylated at epsilon (?) and eta (η) nitrogen atoms of guanidinium group of arginine side chain at position 52 or 53. The results indicate that monomethylation of arginine at epsilon (?) nitrogen atom enhances binding affinity, owing to a more favourable enthalpy component which overrides the less favourable entropy change. In contrast, monomethylation of arginine residue at η nitrogen results in reduced binding affinity originating exclusively from a less favourable enthalpy change leaving entropic component unaffected. However, in case of simultaneous methylation at ? and η positions, the binding parameters remain almost unaffected, when compared to the unmodified peptide. In case of symmetric dimethylation at η position the observed enthalpy change of the binding was found to be smaller than the values obtained for the unmodified peptide. Asymmetric dimethylation at η position showed the most reduced binding affinities owing to less favourable enthalpy changes. These results provide insights that enable elucidation of the biological outcome of arginine methylation as PTMs that regulate protein function, and will contribute to our understanding of how these PTMs are established in vitro and in vivo.  相似文献   

9.
The mechanism of peptide-enhanced neurophysin self-association was investigated to address questions raised by the crystal structure of a neurophysin-dipeptide complex. The dependence on protein concentration of the binding of a broad range of peptides to the principal hormone-binding site confirmed that occupancy of this site alone, and not a site that bridges the monomer-monomer interface, is the trigger for enhanced dimerization. For the binding of most peptides to the principal hormone-binding site on bovine neurophysin I, the affinity of each dimer site was at least 10 times that of monomer under the conditions used. No interactions between the two sites of the dimer were evident. Fluorescence polarization studies of pressure-induced dimer dissociation indicated that the volume change for this reaction was almost 4 times greater in the liganded than in the unliganded state, pointing to a significant alteration of the monomer-monomer interface upon peptide binding. Novel conformational changes in the vicinity of the single neurophysin tyrosine, Tyr-49, induced by pressures lower than required for subunit dissociation, were also observed. The bovine neurophysin I dimer therefore appears to represent an allosteric system in which there is thermodynamic and functional communication between each binding site and the monomer-monomer interface, but no communication across the interface to the binding site of the other subunit. A model for the peptide-enhanced dimerization is proposed in which intersubunit contacts between monomers reduce the large unfavorable free energy associated with binding-induced intrasubunit conformational change. Structural origins of the lack of communication across the interface are suggested on the basis of the low volume change associated with dimerization in the unliganded state and monomer-monomer contacts in the crystal structure. Potential roles for the peptide alpha-amino group and position 2 phenyl ring in triggering conformational change are discussed.  相似文献   

10.
One of the most serious side effects associated with the therapy of HIV-1 infection is the appearance of viral strains that exhibit resistance to protease inhibitors. The active site mutant V82F/I84V has been shown to lower the binding affinity of protease inhibitors in clinical use. To identify the origin of this effect, we have investigated the binding thermodynamics of the protease inhibitors indinavir, ritonavir, saquinavir, and nelfinavir to the wild-type HIV-1 protease and to the V82F/I84V resistant mutant. The main driving force for the binding of all four inhibitors is a large positive entropy change originating from the burial of a significant hydrophobic surface upon binding. At 25 degrees C, the binding enthalpy is unfavorable for all inhibitors except ritonavir, for which it is slightly favorable (-2.3 kcal/mol). Since the inhibitors are preshaped to the geometry of the binding site, their conformational entropy loss upon binding is small, a property that contributes to their high binding affinity. The V82F/I84V active site mutation lowers the affinity of the inhibitors by making the binding enthalpy more positive and making the entropy change slightly less favorable. The effect on the enthalpy change is, however, the major one. The predominantly enthalpic effect of the V82F/I84V mutation is consistent with the idea that the introduction of the bulkier Phe side chain at position 82 and the Val side chain at position 84 distort the binding site and weaken van der Waals and other favorable interactions with inhibitors preshaped to the wild-type binding site. Another contribution of the V82F/I84V to binding affinity originates from an increase in the energy penalty associated with the conformational change of the protease upon binding. The V82F/I84V mutant is structurally more stable than the wild-type protease by about 1.4 kcal/mol. This effect, however, affects equally the binding affinity of substrate and inhibitors.  相似文献   

11.
The binding of several phosphonodifluoromethyl phenylalanine (F(2)Pmp)-containing peptides to protein-tyrosine phosphatase 1B (PTP1B) and its substrate-trapping mutants (C215S and D181A) has been studied using isothermal titration calorimetry. The binding of a high affinity ligand, Ac-Asp-Ala-Asp-Glu-F(2)Pmp-Leu-NH(2), to PTP1B (K(d) = 0.24 microm) is favored by both enthalpic and entropic contributions. Disruption of ionic interactions between the side chain of Arg-47 and the N-terminal acidic residues reduces the binding affinity primarily through the reduction of the TDeltaS term. The role of Arg-47 may be to maximize surface contact between PTP1B and the peptide, which contributes to high affinity binding. The active site Cys-215 --> Ser mutant PTP1B binds ligands with the same affinity as the wild-type enzyme. However, unlike wild-type PTP1B, peptide binding to C215S is predominantly driven by enthalpy change, which likely results from the elimination of the electrostatic repulsion between the thiolate anion and the phosphonate group. The increased enthalpic contribution is offset by reduction in the binding entropy, which may be the result of increased entropy of the unbound protein caused by this mutation. The general acid-deficient mutant D181A binds the peptide 5-fold tighter than the C215S mutant, consistent with the observation that the Asp to Ala mutant is a better "substrate-trapping" reagent than C215S. The increased binding affinity for D181A as compared with the wild-type PTP1B results primarily from an increase in the DeltaH of binding in the mutant, which may be related to decreased electrostatic repulsion between the phosphate moiety and PTP1B. These results have important implications for the design of high affinity PTP1B inhibitors.  相似文献   

12.
The binding of three competitive glutathione analogue inhibitors (S-alkylglutathione derivatives) to glutathione S-transferase from Schistosoma japonicum, SjGST, has been investigated by isothermal titration microcalorimetry at pH 6.5 over a temperature range of 15--30 degrees C. Calorimetric measurements in various buffer systems with different ionization heats suggest that no protons are exchanged during the binding of S-alkylglutathione derivatives. Thus, at pH 6.5, the protons released during the binding of substrate may be from its thiol group. Calorimetric analyses show that S-methyl-, S-butyl-, and S-octylglutathione bind to two equal and independent sites in the dimer of SjGST. The affinity of these inhibitors to SjGST is greater as the number of methylene groups in the hydrocarbon side chain increases. In all cases studied, Delta G(0) remains invariant as a function of temperature, while Delta H(b) and Delta S(0) both decrease as the temperature increases. The binding of three S-alkylglutathione derivatives to the enzyme is enthalpically favourable at all temperatures studied. The temperature dependence of the enthalpy change yields negative heat capacity changes, which become less negative as the length of the side chain increases.  相似文献   

13.
Solid model compounds and the thermodynamics of protein unfolding.   总被引:7,自引:0,他引:7  
Analysis of thermodynamic data on the dissolution of solid cyclic dipeptides into water in terms of group additivity provides a rationale for the enthalpy and entropy convergence temperatures observed for small globular protein denaturation and the dissolution of model compounds into water. Convergence temperatures are temperatures at which the extrapolated enthalpy or entropy changes for a series of related compounds take on a common value. At these temperatures (TH* and TS*) the apolar contributions to the corresponding thermodynamic values (delta H degrees and delta S degrees) are shown to be zero. Other contributions such as hydrogen bonding and configurational effects can then be evaluated and their quantitative effects on the stability of globular proteins assessed. It is shown that the denaturational heat capacity is composed of a large positive contribution from the exposure of apolar groups and a significant negative contribution from the exposure of polar groups in agreement with previous results. The large apolar contribution suggests that a liquid hydrocarbon model of the hydrophobic effect does not accurately represent the apolar contribution to delta H degrees of denaturation. Rather, significant enthalpic stabilizing contributions are found to arise from peptide groups (hydrogen bonding). Combining the average structural features of globular proteins (i.e. number of residues, fraction of buried apolar groups and fraction of hydrogen bonds) with their specific group contributions permits a first-order prediction of the thermodynamic properties of proteins. The predicted values compare well with literature values for cytochrome c, myoglobin, ribonuclease A and lysozyme. The major thermodynamic features are described by the number of peptide and apolar groups in a given protein.  相似文献   

14.
The neu proto-oncogene may be converted into a dominantly transforming oncogene by a single point mutation. Substitution of a valine residue at position 664 in the transmembrane region with glutamic acid activates the tyrosine kinase of the molecule and is associated with increased receptor dimerization. Previously we have proposed a model in which the glutamic acid side chain stabilizes receptor dimerization by hydrogen bonding. Other models have been proposed in which the mutation leads to a conformational change in the transmembrane region mimicking that assumed to occur following binding of a natural ligand. Synthetic peptides representing part of the transmembrane region were prepared. Some residues were replaced with serine in order to improve peptide solubility to allow purification and analysis. Both the peptides containing valine and glutamic acid dissolved in water and in an artificial lipid monolayer. The structures of the peptides were determined by NMR spectroscopy to be alpha-helical. No significant difference in conformation was observed between the two peptides. This result does not support the model proposing a conformational change. The receptor structures determined experimentally do allow alternative models involving receptor transmembrane region packing.  相似文献   

15.
Peptide binding to MHC class II (MHCII) molecules is stabilized by hydrophobic anchoring and hydrogen bond formation. We view peptide binding as a process in which the peptide folds into the binding groove and to some extent the groove folds around the peptide. Our previous observation of cooperativity when analyzing binding properties of peptides modified at side chains with medium to high solvent accessibility is compatible with such a view. However, a large component of peptide binding is mediated by residues with strong hydrophobic interactions that bind to their respective pockets. If these reflect initial nucleation events they may be upstream of the folding process and not show cooperativity. To test whether the folding hypothesis extends to these anchor interactions, we measured dissociation and affinity to HLA-DR1 of an influenza hemagglutinin-derived peptide with multiple substitutions at major anchor residues. Our results show both negative and positive cooperative effects between hydrophobic pocket interactions. Cooperativity was also observed between hydrophobic pockets and positions with intermediate solvent accessibility, indicating that hydrophobic interactions participate in the overall folding process. These findings point out that predicting the binding potential of epitopes cannot assume additive and independent contributions of the interactions between major MHCII pockets and corresponding peptide side chains.  相似文献   

16.
Site-specific, truncated, and sequence-simplified analogs of the hormone [Arg8]vasopressin were investigated for the relationship between their abilities to recognize immobilized bovine neurophysin and to promote neurophysin self-association. Peptide binding to neurophysin was measured quantitatively by analytical high performance affinity chromatography on immobilized bovine neurophysin II. Neurophysin self-association, measured as binding of soluble to immobilized neurophysin, was promoted (made higher affinity) by soluble peptide hormone and its analogs, with the effect of particular peptides being proportional to their binding affinities for neurophysin. Sequence-redesigned peptides able to recognize neurophysin, including dipeptide amides, were able to potentiate the self-association to the same extent as the natural hormone when tested at concentrations adjusted to effect equal degrees of saturation of neurophysin. The relationship between peptide affinity to neurophysin and the potentiation of self-association suggests that the latter is directly dependent on the former and can occur even with limited segments of hormone sequence. The data fit best to a model in which hormone binding and self-association surfaces of neurophysin are separate and linked through the neurophysin molecule to produce cooperativity (hormone-promoted self-association). Given that only limited structural elements of hormone are required for promoting self-association, the results fit less well with models in which cooperativity requires that hormone make dimer-stabilizing contacts with both self-associating subunits of neurophysin simultaneously.  相似文献   

17.
Two tiny hairpin DNAs, CORE (dAGGCTTCGGCCT) and AP2 (dAGGCTXCGGCCT; X: abasic nucleotide), fold into almost the same tetraloop hairpin structure with one exception, that is, the sixth thymine (T6) of CORE is exposed to the solvent water (Kawakami, J. et al., Chem. Lett. 2001, 258-259). In the present study, we selected small peptides that bind to CORE or AP2 from a combinatorial pentapeptide library with 2.5 x 10(6) variants. On the basis of the structural information, the selected peptide sequences should indicate the essential qualifications for recognition of the hairpin loop DNA with and without a flipped base. In the selected DNA binding peptides, aromatic amino acids such as histidine for CORE and glutamine/aspartic acid for AP2 were found to be abundant amino acids. This amino acid preference suggests that CORE-binding peptides use pi-pi stacking to recognize the target while hydrogen bonding is dominant for AP2-binding peptides. To investigate the binding properties of the selected peptide to the target, surface plasmon resonance was used. The binding constant of the interaction between CORE and a CORE-binding peptide (HWHHE) was about 1.1 x 10(6) M(-1) at 25 degrees C and the resulting binding free energy change at 25 degrees C (DeltaG degrees (25)) was -8.2 kcal mol(-1). The binding of the peptide to AP2 was also analyzed and the resulting binding constant and DeltaG degrees (25) were about 4.2 x 10(4) M(-1) and -6.3 kcal mol(-1), respectively. The difference in the binding free energy changes (DeltaDeltaG degrees (25)) of 1.9 kcal mol(-1) was comparable to the values reported in other systems and was considered a consequence of the loss of pi-pi stacking. Moreover, the stabilization effect by stacking affected the dissociation step as well as the association step. Our results suggest that the existence of an aromatic ring (T6 base) produces new dominant interactions between peptides and nucleic acids, although hydrogen bonding is the preferable mode of interaction in the absence of the flipping base. These findings regarding CORE and AP2 recognition are expected to give useful information in the design of novel artificial DNA binding peptides.  相似文献   

18.
In order to develop a novel molecule that recognizes a specific structure of RNA, we have attempted to design peptides having L-alpha-amino acids with a nucleobase at the side chain (nucleobase amino acid (NBA)), expecting that the function of a nucleobase which can specifically recognize a base in RNA is regulated in a peptide conformation. In this study, to demonstrate the applicability of the NBA units in the peptide to RNA recognition, we designed and synthesized a variety of NBA-conjugated peptides, derived from HIV-1 Rev. Circular dichroism study revealed that the conjugation of the Rev peptide with an NBA unit did not disturb the peptide conformation. RNA-binding affinities of the designed peptides with RRE IIB RNA were dependent on the structure of the nucleobase moieties in the peptides. The peptide having the cytosine NBA at the position of the Asn40 site in the Rev showed a higher binding ability for RRE IIB RNA, despite the diminishing the Asn40 function. Furthermore, the peptide having the guanine NBA at the position of the Arg44 site, which is the most important residue for the RNA binding in the Rev, bound to RRE IIB RNA in an ability similar to Rev34-50 with native sequence. These results demonstrate that an appropriate NBA unit in the peptide plays an important role in the RNA binding with a specific contact such as hydrogen bonding, and the interaction between the nucleobase in the peptide and the base in the RNA can enhance the RNA-binding affinity and specificity.  相似文献   

19.
M Iqbal  P Balaram 《Biochemistry》1981,20(25):7278-7284
270-MHz 1H NMR studies of the 11-21 suzukacillin fragment Boc-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (11-G) and its analogue Boc-Ala-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (11-A) have been carried out in CDCl3 and (CD3)2SO. The NH chemical shifts and their temperature coefficients have been measured as a function of peptide concentration in both solvents. It is established that replacement of Gln by Ala is without effect on backbone conformation. Both peptides adopt highly folded 310 helical conformations stabilized by seven intramolecular 4 leads to hydrogen bonds. Nonlinear temperature dependences are demonstrated for free NH groups in the Gln(1) peptide. Aggregation is mediated by intermolecular hydrogen bonds formed by solvent-exposed NH groups. A major role for the Gln side chain in peptide association is suggested by differences in the NMR behavior of the Gln(1) and Ala(1) peptides. For the Gln(1) peptide in CDCl3, the carboxamide side chain carbonyl group forms an intramolecular hydrogen bond to the peptide backbone, while the trans side chain NH shows evidence for intermolecular interactions. In (CD3)2SO, the cis carboxamide NH is involved in intermolecular hydrogen bonding. The possible role of the central Gln residue in stabilizing aggregates of peptide channel formers is discussed, and a model for hexameric association is postulated.  相似文献   

20.
The thermal melting of a dicyclic 29-residue peptide, having helix-stabilizing side-chain to side-chain covalent links at each terminal, has been studied by circular dichroism spectropolarimetry (CD) and differential scanning calorimetry (DSC). The CD spectra for this dicyclic peptide indicate that it is monomeric, almost fully alpha-helical at -10 degrees C, and undergoes a reversible transition from the folded to the disordered state with increasing temperature. The temperature dependencies of the ellipticity at 222 nm and the excess heat capacity measured calorimetrically are well fit by a two-state model, which indicates a cooperative melting transition that is complete within the temperature ranges of these experiments (from -10 degrees C to 100 degrees C). This allows a complete analysis of the thermodynamics of helix formation. The helix unfolding is found to proceed with a small positive heat-capacity increment, consistent with the solvation of some non-polar groups upon helix unfolding. It follows that the hydrogen bonds are not the only factors responsible for the formation of the alpha-helix, and that hydrophobic interactions are also playing a role in its stabilization. At 30 degrees C, the calorimetric enthalpy and entropy values are estimated to be 650(+/-50) cal mol(-1)and 2.0(+/-0.2) cal K(-1)mole(-1), respectively, per residue of this peptide. Comparison with the thermodynamic characteristics obtained for the unfolding of double-stranded alpha-helical coiled-coils shows that at that temperature the enthalpic contribution of non-polar groups to the stabilization of the alpha-helix is insignificant and the estimated transition enthalpy can be assigned to the hydrogen bonds. With increasing temperature, the increasing magnitude of the negative enthalpy of hydration of the exposed polar groups should decrease the helix-stabilizing enthalpy of the backbone hydrogen bonds. However, the helix-stabilizing negative entropy of hydration of these groups should also increase in magnitude with increasing temperature, offsetting this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号