首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The lipid-linked oligosaccharide synthesized in vitro, in the presence of 1.0 microM UDP-[3H]Glc, GDP-[14C]Man, and UDP-GlcNAc has been isolated and the structure of the oligosaccharide has been analyzed. The oligosaccharide contains 2 N-acetylglucosamine, 9 mannose, and 3 glucose residues. The N-acetylglucosamine residues are located at the reducing terminus. The 3 glucose residues are arranged in a linear order at one of the nonreducing termini in the sequence Glc 1,2--Glc 1,3--Glc--(Man)9 (GlcNAc)2. The structural analysis was made possible largely by the availability of glucosidase preparations of fungal anad microsomal origin which remove glucose residues from the oligosaccharide without releasing mannose residues.  相似文献   

2.
Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. We have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with [3H]dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified approximately 100-kDa steroid-binding subunit was eluted from gel slices and subjected to enzymatic digestion. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single [3H]dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the [3H]dexamethasone 21-mesylate was located at position 5 from the amino terminus. Dual-isotope labeling studies with [3H]dexamethasone 21-mesylate and [35S]methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of [3H]dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, our data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
[3H]Mannose- and [3H]glucosamine-labeled lactosamine-type glycopeptides of Semliki Forest virus membrane proteins were stripped of their fucose, sialic acid, galactose and distal N-acetylglucosamine residues and subsequently digested with endo-beta-D-N-acetylglucosaminidase D from Diplococcus pneumoniae. Two products were obtained, a neutral tetrasaccharide and a residual glycopeptide fraction. The tetrasaccharide appeared to consist of two alpha-mannose residues, one beta-mannose residue and one N-acetylglucosamine residue located at the reducing terminus of the molecule. Results of Smith degradation, beta-elimination and acetolysis were compatible with four structures; (1) Man alpha-1-3[Man alpha 1-6]Man beta 1-4GlcNAc; (2) Man alpha 1-3Man beta 1-4[Man alpha 1-6] GlcNAc; (3) Man alpha 1-3Man alpha 1-4[Man beta 1-6]GlcNAc, or (4) Man alpha 1-6Man alpha 1-3Man beta-1-4GlcNAc. The reactivity of the viral glycopeptides with endo-beta-D-N-acetylglucosaminidase D and the chromatographic properties of the liberated core tetrasaccharide suggest that its most likely structure was Man alpha 1-3[Man alpha-1-6]Man beta 1-4GlcNAc. The core tetrasaccharide of glycans of membrane protein E3, one of the viral membrane proteins obtained from infected cell, was similar to that of the virion glycans.  相似文献   

4.
The mechanism of hyaluronan biosynthesis in vertebrates had been proposed to occur at the reducing end of growing chains. This mechanism was questioned because a recombinant synthase appeared to add new monosaccharides to the non-reducing end. I reinvestigated this problem with membranes from the eukaryotic B6 cell line. The membranes were incubated with UDP-[3H]GlcNAc and UDP-[14C]GlcA to yield differentially labelled reducing terminal and non-reducing terminal domains. Digestion of the product with a mixture of the exoglycosidases beta-glucuronidase and beta-N-acetylglucosaminidase truncated the hyaluronan chain strictly from the non-reducing end. The change in 3H/14C ratio of the remaining hyaluronan fraction, during the course of exoglycosidase digestion, confirmed the original results that the native eukaryotic synthase extended hyaluronan at the reducing end. This mechanism demands that the UDP-hyaluronan terminus is bound to the active site within the synthase and should compete with the substrates for binding. Accordingly, increasing substrate concentrations enhanced hyaluronan release from the synthase. A model is proposed that explains the direction of chain elongation at the reducing end by the native synthase and at the non-reducing end by the recombinant synthase based on a loss of binding affinity of the synthase towards the growing UDP-hyaluronan chain.  相似文献   

5.
Aspirin (acetylsalicylic acid) inhibits prostaglandin synthesis by acetylating an active site portion of the enzyme, prostaglandin synthetase. In the current study, the site of acetylation has been demonstrated to be a seryl residue at the NH2 terminus of the enzyme. Purified [3H]acetyl enzyme was prepared from seminal vesicle homogenates treated with [acetyl-3H]aspirin. The [3H]acetate to protein bond was stable to hydroxylamine, indicating an N-acetyl linkage. The [3H]acetyl enzyme was fragmented sequentially with cyanogen bromide, trypsin, and pronase. The 3H material isolated from the pronase digest was identified as N-acetylserine. This finding indicates that the oxygenase portion of prostaglandin synthetase has an NH2-terminal serine which is involved in enzymatic activity and is susceptible to acetylation by aspirin.  相似文献   

6.
Internal radiolabelling procedures were used to radiolabel the oligosaccharide determinant of the glycopeptidolipids (GPL) from serovars 4 and 20 of the Mycobacterium avium complex. Mycobacteria were cultured in the presence of [6-3H]fucose, [2-3H]mannose or [methyl-3H]methionine, after which radiolabelled native lipid was extracted and distribution of radioactivity in native and deacetylated lipid was determined by thin-layer chromatographic methods. Incorporation of radiolabel was confirmed by examining acid hydrolysates of purified GPL for 3H-labelled sugars on cellulose thin-layer plates. Least incorporation of radiolabel into GPL was observed with [6-3H]fucose, whereas better incorporation was obtained with [2-3H]mannose and [methyl-3H]methionine. Use of [methyl-3H]methionine resulted in the radiolabelling of the methylated sugars in both the oligosaccharide determinant and the 3,4-di-O-methylrhamnose located at the terminus of the peptide core. Use of [2-3H]mannose resulted in the incorporation of radioactivity into the oligosaccharide determinant as 2-O-methylfucose, found in the GPL of both serovars 4 and 20. GPL radiolabelled with [2-3H]mannose were subsequently examined in macrophage cultures and found to be relatively inert to degradation by those phagocytic cells. These results substantiate earlier findings with the GPL of serovar 20 and indicate that these mycobacterial components may play a role in pathogenesis.  相似文献   

7.
Hyaluronate could be labelled in vivo with [32P]phosphate. [32P]UDP in an alpha-glycosidic linkage constituted the reducing end of membrane-bound hyaluronate. The UDP is liberated during further chain elongation, indicating that chain growth occurs at the reducing end. [3H]Uridine could be incorporated into hyaluronate during synthesis on the isolated membraneous fraction from [3H]UDP-GlcNAc and [3H]UDP-GlcA, confirming the identification of UDP as a constituent of membrane-bound hyaluronate. These results led to a model of hyaluronate chain elongation at the reducing end by alternate addition of the chains to the substrates. Membrane-bound pyrophosphatases or 5'-nucleotidase are suggested as modulators of hyaluronate synthesis.  相似文献   

8.
Isolated intermediate lobe cells from 40 rat pituitaries were incubated for 3 h with [35S]methionine + [3H]-phenylalanine, [35S]methionine, [3H]valine, and [3H]leucine. The cell extracts were purified by carboxymethyl-cellulose chromatography (CMC) and the fraction eluting with ovine adrenocorticotropic hormone (ACTH) was further purified either by another CMC under the same conditions or by high performance liquid chromatography (HPLC). Microsequencing of the product from the second CMC allowed the identification of a peptide containing methionine 4 and phenylalanine 7, as expected for the NH2 terminus of ACTH. Purification by HPLC of a similar peptide obtained from the three other incubations gave three main raoactive peaks which were further characterized by their migration rates on polyacrylamide gels, molecular weight, and microsequencing. Results indicated that intact ACTH (residues 1-39) is present in extracts of rat intermediate lobe, but in very small quantities (less than 1% of the beta-endorphin content). ACTH is probably broken down into smaller fragments, e.g. alpha-melanocyte-stimulating hormone (alpha-MSH) (ACTH, 1-13) and corticotropin-like intermediate lobe peptide (CLIP) (ACTH, 18-39). These studies also revealed with existence of a peptide having identical sequence with the (N-1) terminus of the ACTH/lipotropin (LPH) precursor.  相似文献   

9.
The 3''-terminal sequence of mitochondrial 13S ribosomal RNA.   总被引:2,自引:2,他引:0       下载免费PDF全文
We have examined the 3'-terminal sequence of the "small" structural ribosomal RNA ("13S") of hamster cell mitochondria, using a procedure involving [3H]isoniazide labeling of samples subjected to sequential periodate oxidation and beta-elimination. The terminus was found to be PyUAUUAOH, which is similar, but not identical, to the corresponding terminus of eukaryotic cytoplasmic 18S rRNA.  相似文献   

10.
Muscarinic acetylcholine receptors purified from porcine cerebra or atria were covalently labeled with [3H]propylbenzilylcholine mustard ([3H]PrBCM), and then the labeled receptors were subjected to limited hydrolysis with trypsin, V8 protease, and lysyl endopeptidase, followed by analysis involving sodium dodecyl sulfate-polyacrylamide gel electrophoresis, fluorography, autoradiography, or immunostaining. The labeled peptides were located on the basis of their reactivity with antibodies raised against three synthetic peptides with partial sequences of the m1 or m2 receptor, and of their sensitivity to endoglycosidase F, which was taken as evidence that they contain glycosylation sites near the N terminus. The [3H]PrBCM-binding site in both cerebral and atrial receptors was found to be located between the N terminus and the second intracellular loop, because the size of the smallest deglycosylated peptide that contained both the [3H]PrBCM-binding and glycosylation sites was approximately 16 kDa. Cerebral receptors were 32P-phosphorylated with protein kinase C, and the major phosphorylation sites in cerebral muscarinic receptors were found to be located in a C-terminal segment including a part of the third intracellular loop, because a 32P-labeled peptide of 12-14 kDa reacted with anti-(m1 C-terminal peptide) antiserum. The presence of an intramolecular disulfide bond, probably between Cys 98 and Cys 178 in the first and second extracellular loops, respectively, was suggested by the finding that a peptide of approximately 17 kDa containing the [3H]PrBCM-binding site, but not the glycosylation sites, was partly converted to a peptide of approximately 12 kDa on treatment with beta-mercaptoethanol.  相似文献   

11.
Initiation and termination of chromosome replication in an Escherichia coli auxotroph subjected to amino acid starvation were examined by following the incorporation of [3H]thymidine into the EcoRI restriction fragments of the chromosome. The pattern of incorporation observed upon restoration of the amino acid showed that starvation blocks the process of initiation prior to deoxyribonucleic acid synthesis within any significant portion of the EcoRI fragment which contains the origin of replication, oriC. In this experiment, no incorporation of [3H]thymidine into EcoRI fragments from the terminus of replication was observed, nor was it found when a dnaC initiation mutant was used to prevent incorporation at the origin which might have obscured labeling of terminus fragments. Thus amino acid starvation does not appear to block replication forks shortly before termination of replication. Attempted synchronization of replication initiation by including a period of thymine starvation subsequent to the amino acid starvation led to simultaneous incorporation of [3H]-thymidine into all EcoRI fragments within the 240-kilobase region that surrounds oriC. It is shown that the thymine starvation step allowed initiation and a variable, but limited, amount of replication to occur.  相似文献   

12.
The origin of replication of Bacillus subtilis 168 trp thy dna-1 (temperature-sensitive initiation mutant) was labeled with [3H]thymidine. Analysis of labeled cells by autoradiography revealed that most of the radioactivity was associated with cell pole areas. To label the terminus, cells that had initiated were treated with chloramphenicol to inhibit cell growth and division but to allow continued DNA synthesis. These cells were then labeled with [3H]thymidine at a time when chromosome replication was nearly complete. The distribution of radioactivity was similar to that observed in origin-labeled cells. In contrast, exponentially growing cells that were labeled for a brief time at the permissive temperature showed a random distribution of radioactivity. These data indicate that the origin and terminus of replication are located at cell poles.  相似文献   

13.
Hyaluronan (HA), a functionally essential glycosaminoglycan in vertebrate tissues and a putative virulence factor in certain pathogenic bacteria, is an extended linear polymer composed of alternating units of glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc). Uncertainty regarding the mechanism of HA biosynthesis has included the directionality of chain elongation, i.e. whether addition of monosaccharide units occurs at the reducing or non-reducing terminus of nascent chains. We have investigated this problem using yeast-derived recombinant HA synthases from Xenopus laevis (xlHAS1) and from Streptococcus pyogenes (spHAS). The enzymes were incubated with UDP-[3H]GlcUA and UDP-[14C]GlcNAc, under experimental conditions designed to yield HA chains with differentially labeled reducing-terminal and non-reducing terminal domains. Digestion of the products with a mixture of beta-glucuronidase and beta-N-acetylglucosaminidase exoenzymes resulted in truncation of the HA chain strictly from the non-reducing end and release of labeled monosaccharides. The change in 3H/14C ratio of the monosaccharide fraction, during the course of exoglycosidase digestion, was interpreted to indicate whether sugar units had been added at the reducing or non-reducing end. The results demonstrate that the vertebrate xlHAS1 and the bacterial spHAS extend HA in opposite directions. Chain elongation catalyzed by xlHAS1 occurs at the non-reducing end of the HA chain, whereas elongation catalyzed by spHAS occurs at the reducing end. The spHAS is the first glycosyltransferase that has been unanimously demonstrated to function at the reducing end of a growing glycosaminoglycan chain.  相似文献   

14.
The NaCl-insoluble (2.5 M, 0 degrees C) fraction of wheat embryo RNA (iRNA) can be labelled when wheat embryos are subjected to either short-term (0.5 h) or long-term (24 h) imbibition in a medium that contains tritium-labelled adenosine, guanosine, cytidine and uridine. Electrophoretic analyses reveal that, after short-term labelling, there is a broadly heterodisperse distribution of radioactivity in 'rapidly labelled' i[3H]RNA, but after long-term labelling, there is an essentially trimodal distribution of radioactivity in i[3H]RNA. End-group analyses reveal that, after short-term labelling, adenosine is the principal 3'-hydroxyl terminus in all centrifugal subfractions of 'rapidly labelled' i[3H]RNA, whereas cytidine (in 5.8S rRNA), guanosine (in 18S rRNA) and uridine (in 26S rRNA) are the principal 3'-hydroxyl termini in centrifugal subfractions of wheat embryo i[3H]RNA. Guanosine is also the principal 3'-hydroxyl terminus in the 18S rRNA of differentiating embryos excized from both monocotyledonous (wheat, barley, corn) and dicotyledonous (pea) seedlings. The implications that the end-group measurements may have for current views about the possible biochemical involvements of 3'-hydroxyl terminal sequences in both mRNA and 18SrRNA are subjects of discussion. Incidental to the principal investigation, an existing technique for analyzing the RNA contents of cellular materials has been appropriately modified to circumvent interference from uv-absorbing pigments, which, when present, prevent application of the method to plant materials.  相似文献   

15.
Radioactive maltose with label in the reducing glucose moiety was prepared using a glucosyltransferase enzyme to catalyze exchange of [6-3H]glucose into unlabeled maltose. The enzyme was isolated from spinach by ammonium sulfate precipitation followed by DEAE column chromatography. A 77% yield of [6-3H]maltose was obtained after a reaction of 100 nmol of maltose with 0.0147 nmol of [6-3H]glucose was catalyzed by the most active column peak. The product was exclusively labeled in the reducing glucose moiety as indicated by the label occurring only in sorbitol following sodium borohydride reduction and sulfuric acid hydrolysis. Between 88.3 and 96.0% of the tritium in the synthesized preparation was present as [6-3H]maltose by Dowex 1-X4 chromatography. This column separates [6-3H]maltose-[U-14C]maltose mixtures and [6-3H]glucose-[U-14C]glucose mixtures apparently as a result of an isotope effect.  相似文献   

16.
A novel radioactive thiol reagent, 1-S-[3H]carboxymethyl-dithiothreitol (DTT-S-C[3H(2)]CO(2)H, [3H]CM-DTT), was designed and synthesized at the micromole level by reaction of dithiothreitol with tritiated iodoacetic acid (I-C[3H(2)].CO(2)H). The reaction progress was followed by reverse-phase high-performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The usefulness of the synthesized reagent was evaluated in a series of experimental approaches. (i) The synthetic phosphopeptide, NSVS(P)EEGRGDSV, was derivatized by [3H]CM-DTT separated from excess reagent by RP-HPLC. The extent of derivatization was quantitated in terms of the mol of P-Ser/mol of peptide by 3H counting, and the location of the phosphoserine was defined by the N-terminal Edman degradation sequence analysis as being the fourth amino acid residue from the N terminus. (ii) A sample of trypsin-digested alpha-casein was derivatized with [3H]CM-DTT, peptides were separated by RP-HPLC, and aliquots of each fraction were counted for 3H label within the peptide map which rapidly pinpointed the original four phosphoserine-containing peptides. This demonstrated the utility of the synthesized radioactive thiol agent in rapid purification and identification of phosphopeptides from HPLC peptide mapping of proteolytic digests of phosphoproteins. (iii) The [3H]CM-DTT was also used to determine the extent of phosphorylation of phosphoproteins both qualitatively by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography and quantitatively by 3H counting. The synthesized radioactive thiol reagent [3H]CM-DTT proved to be very efficient and sensitive and should be adaptable to a wide range of routinely utilized laboratory approaches in many fields of the biological sciences.  相似文献   

17.
By making use of the sporulation process, the terminus region of the Bacillus subtilis chromosome has been labeled with [3H]thymine in a highly specific manner. The result achieved supports the view that B. subtilis spores contain only completed chromosomes.  相似文献   

18.
[3H]rRNA labeled at the 5′ terminus with 32P and [3H]rRNA labeled at the 3′ end with [14C] (pA)n have been degraded at 0° with a highly purified exoribonuclease from Saccharomyces cerevisiae. The results show that with the [32P, 3H] substrate, the 32P label is rendered acid-soluble at a much faster rate than the 3H label. Both acid-soluble labels are found in 5′ mononucleotide. With the [14C, 3H]rRNA, the 3H label is hydrolyzed at a faster rate than the 14C label. The exoribonuclease hydrolyzes in the 5′ → 3′ direction.  相似文献   

19.
Wei Q  Zhou DH  Shen QX  Chen J  Chen LW  Wang TL  Pei G  Chi ZQ 《Cell research》2000,10(2):93-102
Human mu-opioid receptor (HmuOR) with a tag of six consecutive histidines at its carboxyl terminus had been expressed in recombinant baculovirus infected Sf9 insect cells. The maximal binding capacity for the [3H] diprenorphine and [3H]ohmefentanyl (Ohm) were 9.1 +/- 0.7 and 6.52 +/- 0.23 nmol/g protein, respectively. The [3H] diprenorphine or [3H] Ohm binding to the receptor expressed in Sf9 cells was strongly inhibited by mu-selective agonists [D-Ala2, N-methyl-Phe4, glyol5]enkephalin (DAGO), Ohm, and morphine, but neither by delta nor by kappa selective agonist. Na+ (100 mM) and GTP (50 microM) could reduce HmuOR agonists etorphine and Ohm affinity binding to the overexpressed HmuOR. mu-selective agonists DAGO and Ohm effectively stimulated [35S]GTP-gammaS binding (EC50 = 2.7 nM and 6.9 nM) and inhibited forskolin- stimulated cAMP accumulation (IC50 = 0.9 nM and 0.3 nM). The agonist-dependent effects could be blocked by opioid antagonist naloxone or by pretreatment of cells with pertussis toxin (PTX). These results demonstrated that HmuOR overexpressed in Sf9 insect cells functionally coupled to endogenous G(i/o) proteins.  相似文献   

20.
[3H]Pyridoxal-P can be covalently incorporated into Escherichia coli B mutant strain AC70R1 ADP-glucose synthase by reduction with NaBH4. Two distinct lysine residues can be modified by the allosteric activator pyridoxal-P. Incorporation of [3H]pyridoxal-P in the presence of substrate ADP-glucose + MgCl2 prevents pyridoxylation of an ADP-glucose-protected site and allows modification of the allosteric activator site. Incorporation of [3H]pyridoxal-P in the presence of the allosteric effector, 1,6-hexanediol-P2, protects against pyridoxylation of the allosteric activator site and allows modification of the ADP-glucose-protected site. The activator site CNBr [3H]pyridoxyl-P peptide was purified to homogeneity in the presence of urea by Sephadex G-50 and CM-cellulose chromatography. The peptide consists of 59 residues, with a molecular weight of 6750. The NH2-terminal of the peptide has a 16-residue sequence overlap with the previously determined NH2-terminal sequence of the native enzyme. The activator site pyridoxyl-P lysine is identified as residue 38 of the native enzyme's NH2 terminus. The ADP-glucose-protected site CNBr [3H]pyridoxyl peptide was purified to homogeneity by Sephadex G-50 and DEAE-cellulose chromatography. The peptide consists of 21 residues, with a molecular weight of 2460. The sequence of this peptide has been elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号