首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We investigated the effects of local disturbance history and several biotic and abiotic habitat parameters on the microdistribution of benthic invertebrates after an experimental disturbance in a flood‐prone German stream. 2. Bed movement patterns during a moderate flood were simulated by scouring and filling stream bed patches (area 0.49 m2) to a depth of 15–20 cm. Invertebrates were investigated using ceramic tiles as standardized substrata. After 1, 8, 22, 29, 36 and 50 days, we sampled one tile from each of 16 replicates of three bed stability treatments (scour, fill and stable controls). For each tile, we also determined water depth, near‐bed current velocity, the grain size of the substratum beneath the tile, epilithic algal biomass and standing stock of particulate organic matter (POM). 3. Shortly after disturbance, total invertebrate density, taxon richness and density of the common taxa Baetis spp. and Chironomidae were highest in stable patches. Several weeks after disturbance, by contrast, Baetis spp. and Hydropsychidae were most common in fill and Leuctra spp. in scour patches. The black fly Simulium spp. was most abundant in fill patches from the first day onwards. Community evenness was highest in scour patches during the entire study. 4. Local disturbance history also influenced algal biomass and POM standing stock at the beginning of the experiment, and water depth, current velocity and substratum grain size throughout the experiment. Scouring mainly exposed finer substrata and caused local depressions in the stream bed characterized by slower near‐bed current velocity. Algal biomass was higher in stable and scour patches and POM was highest in scour patches. In turn, all five common invertebrate taxa were frequently correlated with one or two of these habitat parameters. 5. Our results suggest that several ‘direct’ initial effects of local disturbance history on the invertebrates were subsequently replaced by ‘indirect’ effects of disturbance history (via disturbance‐induced changes in habitat parameters such as current velocity or food).  相似文献   

2.
1. We investigated the effects of local disturbance history and habitat parameters (abiotic and biotic) on the microdistribution of benthic invertebrates during several floods in two streams, the Schmiedlaine in Germany (four events) and the Kye Burn in New Zealand (two events). 2. Bed movement patterns were quantified using metal‐link scour chains. Before and after each flood, quantitative invertebrate samples were taken from replicate bed patches that had experienced sediment scour, fill or remained stable. 3. Patterns of invertebrate density in the different bed stability types (i.e. scour, fill, stable) varied between floods, sampling dates and streams, but invertebrate density was highest in stable patches in >50% of all the patch type effects detected and lowest in fill patches in 75% of all detected effects. Stable bed patches acted as a refugium for Liponeura spp. and Leuctra spp. in the Schmiedlaine and for Hydracarina and Deleatidium spp. in the Kye Burn. 4. Averaged across both streams, only near‐bed current velocity was correlated with invertebrate distribution on the streambed more often than disturbance history. In the Kye Burn, disturbance history and water depth were the most influential habitat parameters. 5. Our results suggest that a thorough understanding of the microdistribution of benthic invertebrates requires knowledge of disturbance history, as well as more readily measured habitat parameters such as current velocity or water depth.  相似文献   

3.
1. The identification of factors determining the patchy distribution of organisms in space and time is a central concern of ecology. Predation and abiotic disturbance are both well-known drivers of this patchiness, but their interplay is still poorly understood, especially for communities dominated by mobile organisms in frequently disturbed ecosystems. 2. We investigated the separate and interactive influences of bed disturbance by floods and predation by fish on the benthic community in a flood-prone stream. Electric fields excluded fish predators from half of 48 stream bed patches (area 0·49 m(2) ) with contrasting disturbance treatments. Three types of bed disturbance were created by either scouring or filling patches to a depth of 15-20 cm or by leaving the patches undisturbed, thus mimicking the mosaic of scour and fill caused by a moderate flood. Benthic invertebrates and algae were sampled repeatedly until 57 days after the disturbance. 3. Disturbance influenced all ten investigated biological response variables, whereas predation affected four variables. Averaged across time, invertebrate taxon richness and total abundance were highest in stable patches. Algal biomass and densities of five of the seven most common invertebrate taxa (most of which were highly mobile) were higher in fill than in scour patches, whereas two taxa were more abundant in scour and stable than in fill patches. Furthermore, two common invertebrate grazers were more abundant and algal biomass tended to be reduced in fish exclusion patches, suggesting a patch-scale trophic cascade from fish to algae. 4. Our results highlight the importance of patchy physical disturbance for the microdistribution of mobile stream organisms and indicate a notable, but less prevalent, influence of fish predation at the patch scale in this frequently disturbed environment. Disturbance and predation treatments interacted only once, suggesting that the observed predation effects were largely independent of local bed disturbance patterns.  相似文献   

4.
The physical properties of substrata significantly influence benthic algal development. We explored the relationships among substratum surface texture and orientation with epilithic microphytobenthic biomass accumulation at the whole‐substratum and micrometer scales. Unglazed clay tiles set at three orientations (horizontal, vertical, and 45°), and six substrata of varying surface roughness were deployed in a prairie stream for 3 weeks. Substrata were analyzed for loosely attached, adnate, and total benthic algal biomass as chl a, and confocal laser scanning microscopy was used to measure substrata microtopography (i.e., roughness, microscale slope angles, and three‐dimensional surface area). At the whole‐substratum level, vertical substrata collected significantly (P < 0.05) less algal biomass, averaging 34% and 36% less than horizontal and 45° substrata, respectively. Benthic algal biomass was also significantly less on smoother surfaces; glass averaged 29% less biomass than stream rocks. At the microscale level, benthic algal biomass was the greatest at intermediate values, peaking at a mean roughness of approximately 17 μm, a mean microscale slope of 50°, and a projected/areal surface area ratio of 2:1. The proportion of adnate algae increased with surface roughness (26% and 67% for glass and brick, respectively), suggesting that substratum type changes the efficiency of algal removal by brushing. Individual substrata and microsubstrata characteristics can have a strong effect on benthic algae development and potentially affect reach scale algal variability as mediated by geomorphology.  相似文献   

5.
1. Patches of stable substratum in streams may be important refugia for benthic organisms during scouring floods. Streambed stone stability, packing and embeddedness were assessed within and adjacent to beds of the macrophyte Justicia americana in five Alabama streams. 2. The force needed to dislodge stones and embeddedness was about two times lower outside Justicia beds than within them. Significant positive correlations between stone stability and (i) degree of embeddedness, and (ii) the abundance of binding rhizomes and the presence of attached roots indicate that Justicia may physically modify the local streambed, indirectly enhancing substratum stability and reducing flow, thereby increasing sand deposition. 3. Despite higher stability (i.e. physical refugia during bed‐moving spates) within Justicia beds, the abundance of epilithic plants (moss and Podostemum ceratophyllum) and pleurocerid snails (Elimia spp.) was similar both inside and outside the macrophyte beds. Several physical characteristics within macrophyte beds, such as low light, reduced current and increased sand intrusion, may create suboptimal conditions for benthic organisms in these habitats. 4. Additional work is needed to determine if Justicia biogenically enhances substratum stability or if its presence merely reflects patches of stable substratum within the streambed. Regardless of the mechanism, there is an association between Justicia beds and streambed characteristics.  相似文献   

6.
1. Pacific salmon (Oncorhynchus spp.) returning to streams deliver substantial quantities of nutrients (nitrogen and phosphorus) that may stimulate primary production. Salmon can also affect the phytobenthos negatively via physical disturbance during nest excavation, a process that may counteract the positive effects of salmon‐derived nutrients on benthic algae. The ability of salmon to disturb benthic habitats may be a function of substratum particle size, and therefore, the geomorphology of streams could determine the net effect of salmon on benthic communities. 2. Based on surveys of 17 streams in southwest Alaska before the salmon run and during peak salmon density, we identified size thresholds for the disturbance of substratum particles by salmon and classified particles as vulnerable (<60 mm B‐axis), invulnerable (>110 mm) or transitional (61–110 mm). At the scale of individual rocks, algal biomass on vulnerable substrata decreased at peak spawning (relative to values before the run) as a power function of salmon density; transitional and invulnerable substrata showed no quantifiable pattern. However, invulnerable substrata in streams with more than 0.11 salmon m?2 showed net algal accrual, or relatively smaller declines in algal biomass, than vulnerable substrata, indicating that large rocks provide refuge for benthic algae from salmon disturbance. 3. We expected that streams with proportionally larger rocks would respond positively to salmon at the whole‐stream scale, after accounting for the relative abundance of rocks of different sizes within streams. Invulnerable rocks made up only 0–12% of the total substratum particle size distribution in salmon‐bearing streams, however, and algal accrual on invulnerable substrata did not outweigh the strong disturbance effects on the more spatially extensive vulnerable substrata. The change in whole‐stream benthic algal biomass among streams was negatively related to salmon density. 4. Stable isotopes of nitrogen (δ15N) were used to track nutrients from salmon into benthic biota. Periphyton δ15N on rocks of all size classes was higher at peak salmon spawning than before the salmon run, indicating the uptake of salmon‐derived nitrogen. Peak δ15N values were positively related to salmon abundance and followed a two‐isotope mixing relationship. The per cent of N from salmon in periphyton was also related to salmon density and was best explained by a saturating relationship. Spring δ15N was unrelated to salmon returns in the previous year, suggesting little annual carryover of salmon nutrients.  相似文献   

7.
1. Habitat heterogeneity in lotic systems is usually associated with the availability of refuges. Heterogeneous habitats (here, rough substrata) should mediate the effect of high‐flow disturbances by protecting benthic algae, thus increasing the resistance and resilience of the system. Additionally, the ability of algae to resist a disturbance and recover after it should be dependent on biological traits that confer resistance and resilience. 2. We designed a field experiment, simulating a high‐flow event with bed movement, to test the effect of substratum roughness on the resistance (assessed as the similarity between samples collected before and immediately after disturbance) and resilience (the similarity between samples collected before and 7 and 15 days after disturbance) of five algal life forms. We evaluated whether algal resistance and resilience were higher on rough than on smooth substrata, and whether the life forms differed in their ability to resist and recover from a disturbance. 3. Rough substrata had higher species richness than smooth substrata at all sampling periods, even immediately after the disturbance. There was no significant effect of substratum roughness on algal resistance and resilience, for both species richness and density of the total assemblage. Neither did roughness affect the resistance and resilience of the total algal assemblage or of the algal life forms separately, when evaluated using multivariate data sets (presence‐absence and quantitative). 4. Algal life forms differed in resistance and resilience; adnate/prostrate and erect/stalked species were more resistant and resilient than the other life forms (filamentous, motile and metaphytic). Additionally, motile species resisted and recovered better than did species that are only loosely associated with the substratum (metaphytic species). 5. Substratum roughness had no pronounced effect on benthic algal resistance and resilience. The results of this and some other studies suggest that the intensity of disturbance determines the importance of habitat heterogeneity and flow refuges for benthic algae in streams.  相似文献   

8.
Disturbance is integral to the organisation of riverine ecosystems. Fluctuating low flows caused by supra-seasonal drought and water management periodically dewater habitat patches, potentially creating heterogeneity in the taxonomic composition and successional dynamics of benthic communities. The frequency of disturbance induced by low flows is contingent upon the topography of the river bed and thus varies among patches. We investigated whether the frequency of patch dewatering influenced the structure and temporal dynamics of benthic algal communities attached to the upper surfaces of stones in stream mesocosms (4 m2). In a 693-day disturbance experiment, we applied short dewatering disturbances (6 days) at high (33-day cycles) and low frequencies (99-day cycles) and compared algal assemblages with undisturbed controls at 21 endpoints. In the absence of disturbance, epilithic space was dominated by the green encrusting alga Gongrosira incrustans. However, drying disturbances consistently reduced the dominance of the green alga, and crust abundance decreased with increasing disturbance frequency, thereby opening space for a diversity of mat-forming diatoms. The response of mat diatoms to disturbance varied markedly during the experiment, from strong reductions in the abundance of loosely attached mats in mid-late 2000 to the exploitation of open space by closely adhering mats in 2001. Contrary responses were attributed to changes in the species composition of mat diatoms, which influenced the physiognomy and hence stress-resistance and resilience of the assemblage. Our results indicate that patchy dewatering of habitat patches during periods of low flow influences the successional dynamics of algae, thereby creating distinctive mosaics on the stream bed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
  • 1 The physical characteristics of two contrasting streams, and habitat types within these streams, are described in terms of a two-dimensional physical habitat templet in which disturbance frequency and the availability of spatial refugia are the temporal and spatial axes.
  • 2 It is predicted that habitats experiencing a high disturbance frequency and low refuge availability will be characterized by a low invertebrate species diversity, a low biomass of epilithic algae and particulate organic matter and a community made up of mobile, weedy species. Habitats having a low disturbance frequency and high refuge availability will be characterized by a diverse community containing sedentary and specialist species, with high algal and particulate organic matter levels.
  • 3 A lower median substrate particle size and higher shear stress regime in Timber Creek were indicative of a higher disturbance frequency than in the Kyeburn. Substrate diversity was lower in Timber Creek than in the Kyeburn and indicated that the availability of refugia was lower in Timber Creek. In both streams, pools were found to have a higher disturbance frequency and lower availability of refugia than riffles.
  • 4 Invertebrate species diversity, the biomass of epilithic algae and particulate organic matter and the representation of sedentary species, filter feeders and shredders were higher in the more temporally stable and spatially heterogeneous Kyeburn. The community of Timber Creek, frequently disturbed and having low refuge availability, had a high proportion of mobile and weedy species, with the highly mobile, generalist-feeding Deleatidium spp. (Ephemeroptera; Leptophlebiidae) being the most dominant organisms.
  • 5 The predictions made about stream community structure and species characteristics in relation to disturbance frequency and the availability of spatial refugia are generally supported. Now a larger scale investigation is required to test the generality of the predictions. We conclude that the habitat templet approach offers a sound framework within which to pose questions in stream ecology.
  相似文献   

10.
11.
1. Manipulative experiments were carried out in four Hong Kong streams (two shaded, two unshaded) to investigate the impact of grazing by an algivorous fish, Pseudogastromyzon myersi, on benthic algal biomass and assemblage composition. Experiments were conducted and repeated during both the dry and wet seasons to determine whether spate‐induced disturbance modified any grazing effect. Treatments comprised fish exclusion and inclusion via closed and open cages, with a no‐cage treatment used as a control for the cage effect. Treatments were maintained for 4 weeks in each experimental run. 2. Grazing by P. myersi reduced benthic algal biomass and the organic matter content of periphyton in open cages and the no‐cage treatment relative to closed cages. The similarity between open‐cage and no‐cage treatments was evidence that the overall difference among treatments was caused by limiting fish access to closed cages and not merely an artifact of caging. Grazing effects were broadly similar in all streams, but there was a significant statistical interaction between treatments and seasons. 3. Analysis of dry‐season data matched the overall trend in inter‐treatment differences, confirming the effects of grazing by P. myersi on algal biomass and periphyton organic matter. Significant differences in algal assemblage composition between closed‐cage and no‐cage treatments during the dry season reflected reductions in the abundance of erect, stalked diatoms (Gomphonema) and filamentous cyanobacteria (Homeothrix). Removal of these vulnerable overstorey algae by P. myersi resulted in greater abundance of understorey diatoms (Achnanthes and Cocconeis) in the no‐cage treatment in all streams during the dry season. The composition of algal assemblages in open cages was intermediate between the other two treatments. 4. Although fish densities were greater in all streams during the wet season, spate‐induced disturbance obscured grazing effects and there were no significant differences among treatments attributable to fish grazing. Seasonal variation in impacts of P. myersi grazing provides support for the harsh‐benign hypothesis, and confirms that biotic factors are less important controls of stream algal biomass and assemblage structure during periods (i.e. the wet season in Hong Kong) when abiotic disturbances are frequent or intense.  相似文献   

12.
13.
1. The composition and spatiotemporal dynamics of biological communities are influenced by biotic processes, such as predation and competition, but also by physical disturbances, such as floods in running waters. However, the interplay of disturbance with predation is still poorly understood, especially in frequently disturbed streams. Further, different predator species can affect prey communities in different ways depending on their feeding mode and efficiency. 2. We investigated the individual and combined effects of flood‐induced bed disturbance and fish predation on the benthos for 4 weeks in 18 streamside channels fed by a flood‐prone New Zealand river. Bed movements caused by floods were simulated by tumbling the substratum in half the channels. Six channels each were stocked with introduced brown trout (Salmo trutta) or native upland bully (Gobiomorphus breviceps) or had fish excluded. We studied algal biomass and both invertebrate density and daytime activity on surface stones on several dates after the disturbance, invertebrate community composition in the substrata of the entire channels on day 28 and leaf decomposition rates over the 28‐day period. 3. Disturbance affected algal biomass and density, richness and activity of surface stone invertebrates, and overall density and richness of channel invertebrates. Presence or absence of fish, by contrast, did not influence overall invertebrate standing stocks when subsurface substrata were included but did affect invertebrate densities on surface stones in 45% of all analysed cases and invertebrate activity on surface stones in all cases. Leaf decomposition rates were not influenced at all by the experimental manipulations. 4. Native upland bullies featured more often than exotic brown trout in causing invertebrate density changes and equally often in causing changes to grazer behaviour. Overall, our results imply that fish predation can have strong effects on the benthic invertebrate community in frequently disturbed streams, especially via behavioural changes.  相似文献   

14.
Cascading effects of predators can affect ecosystem properties by changing plant biomass, distribution and assemblage composition. Using data from field surveys and whole‐stream experiments we tested the hypothesis that predatory trout change assemblage composition of benthic algae in high‐elevation streams mediated by grazer behavior. Field surveys revealed that the taxonomic composition of algal assemblages differed significantly between streams that contained trout and those that were fishless; but comparisons of palatable versus unpalatable algal taxa between fish and fishless streams were equivocal because of high natural variability. Therefore, we tested for a behavioral (non‐consumptive) trophic cascade experimentally by adding brook trout chemical cues to six naturally fishless streams for 25 days and compared responses of grazers and algae to six reference streams without fish cues added. Algal response variables included rates of change in the abundance of three physiognomic categories, from most palatable (attached erect and prostrate diatoms) to least palatable (non‐diatoms), as determined from food selectivity analyses of the most common grazers (mayflies and caddisflies). Fish cues did not affect the mean densities or changes in densities of total grazers or any individual grazer species. However, in streams where fish cues were added, rates of accrual of attached erect diatoms, which was the preferred algal type for the grazer most vulnerable to trout predation (Baetis), were higher and their densities increased significantly faster with increasing densities of this grazer species than in reference streams. Results of his experiment support the hypothesis that predator induced suppression of grazer foraging behavior, rather than cascading effects of top predators on grazer density, may contribute to variation in the composition of algal assemblages among streams by allowing proliferation of most palatable algal species.  相似文献   

15.
1. The apparent absence of a specialist herbivorous grazer guild from many acid streams suggests that algae-grazer linkages in acid-stream food webs are weak or absent. It has been hypothesized that the absence of herbivores is a consequence of the low quality and/or quantity of biofilms in acid streams.
2. We compared the taxonomic composition, biomass and potential nutritional quality of epilithic biofilms from four acid and four circumneutral streams, and examined whether nymphs of a herbivore–detritivore, the stonefly Nemurella pictetii (Plecoptera: Nemouridae), could grow equally well when fed on eight biofilms from four acid and four circumneutral streams.
3. Biofilms from acid and circumneutral streams differed strongly in algal composition, the former having relatively more coccoid green algae but fewer diatoms and filamentous green algae. Diatom floras differed with stream water pH.
4. The quantity (i.e. area-specific chlorophyll content, algal numbers and AFDM) and quality (biomass-specific protein and soluble carbohydrate content) of biofilms differed significantly, both among sites of similar pH, and overall between the groups of acid and circumneutral streams.
5. Nymphs of N. pictetii grew successfully on biofilms for 8–10 weeks up to emergence. However, no systematic differences in growth rate were found between the two groups of acid and circumneutral streams. Differences in the digestibility of benthic algae from different sources, and the adjustment of nymphal feeding rates, are discussed in the light of a lack of a clear relationship between growth and food quality.  相似文献   

16.
Disturbances such as floods and droughts play a central role in determining the structure of riverine benthic biological assemblages. Extreme disturbances from flash floods are often restricted to part of the river network and the magnitude of the flood disturbance may lessen as floods propagate downstream. The present study aimed to characterize the impact of summer monsoonal floods on the resistance and resilience of the benthic diatom assemblage structure in nine river reaches of increasing drainage size within the Gila River in the southwestern United States. Monsoonal floods had a profound effect on the diatom assemblage in the Gila River, but the effects were not related to drainage size except for the response of algal biomass. During monsoons, algal biomass was effectively reduced in smaller and larger systems, but minor changes were observed in medium systems. Resistance and resilience of the diatom assemblage to floods were related to specific species traits, mainly to growth forms. Tightly adhered, adnate and prostrate species (Achnanthidium spp., Cocconeis spp.) exhibited high resistance to repeated scour disturbance. Loosely attached diatoms, such as Nitzschia spp. and Navicula spp., were most susceptible to drift and scour. However, recovery of the diatom assemblage was very quick indicating a high resilience, especially in terms of biomass and diversity. Regional hydroclimatic models predict greater precipitation variability, which will select for diatoms resilient to bed‐mobilizing disturbances. The results of this study may help anticipate future benthic diatom assemblage patterns in the southwestern United States resulting from a more variable climate.  相似文献   

17.
Efforts to limit plant growth in streams by reducing nutrients would benefit from an understanding of the relative influences of nutrients, streamflow, light, and other potentially important factors. We measured macrophytes, benthic algae, nutrients in water and sediment, discharge, and shading from 30 spring-fed or runoff-influenced streams in the upper Snake River basin, ID, USA. We hypothesized that in hydrologically stable, spring-fed streams with clear water, macrophyte and benthic algae biomass would be a function of bioavailable nutrients in water or sediments, whereas in hydrologically dynamic, runoff-influenced streams, macrophyte and benthic algae biomass would further be constrained by flow disturbance and light. These hypotheses were only partly supported. Nitrogen, both in sediment and water, was positively correlated with macrophyte biomass, as was loosely sorbed phosphorus (P) in sediment. However, P in water was not. Factors other than nutrient enrichment had the strongest influences on macrophyte species composition. Benthic algal biomass was positively correlated with loosely sorbed sediment P, lack of shade, antecedent water temperatures, and bicarbonate. These findings support the measurement of bioavailable P fractions in sediment and flow histories in streams, but caution against relying on macrophyte species composition or P in water in nutrient management strategies for macrophytes in streams.  相似文献   

18.
This is a review on benthic algae from streams situated above the tree line in the Alps. It integrates published and unpublished data from alpine streams in Austria and in the Trento Province (Northern Italy). The main focus is on the structural and taxonomic composition of benthic algae including macro- and micro-algae and their contribution to the epilithic biofilm and the stream food-web. The environmental conditions relevant to algae within the two major stream types, the glacial (glacier-fed) and non-glacial krenal (spring-fed) stream are discussed. The paper considers both the maximum possible structural complexity of transverse algae zonation in cascading alpine/subalpine stream segments, and the effects of glacial water on species richness in the Central Alps in Austria. Autecological data are given for 46 common diatoms from 42 sites in the Central Eastern and Southern Central Alps and for 30 algae in addition to diatoms for 22 streams in the Central Eastern Alps. Since data on responses of benthic algae to the harsh conditions in high altitude Alpine streams are very scarce, results from literature and the author’s experiences from these and other mountain stream types are synthesized to formulate major objectives for future research in benthic high altitude Alpine stream ecology.  相似文献   

19.
Responses of stream algal biomass to nutrient enrichment were studied in two regions where differences in hydrologic variability cause great differences in herbivory. Around northwestern Kentucky (KY) hydrologic variability constrains invertebrate biomass and their effects on algae, but hydrologic stability in Michigan (MI) streams permits accrual of high herbivore densities and herbivory of benthic algae. Multiple indicators of algal biomass and nutrient availability were measured in 104 streams with repeated sampling at each site over a 2−month period. Many measures of algal biomass and nutrient availability were positively correlated in both regions, however the amount of variation explained varied with measures of biomass and nutrient concentration and with region. Indicators of diatom biomass were higher in KY than MI, but were not related to nutrient concentrations in either region. Chl a and % area of substratum covered by Cladophora were positively correlated to nutrient concentrations in both regions. Cladophora responded significantly more to nutrients in MI than KY. Total phosphorus (TP) and total nitrogen (TN) explained similar amounts of variation in algal biomass, and not significantly more variation in biomass than dissolved nutrient concentrations. Low N:P ratios in the benthic algae indicated N as well as P may be limiting their accrual. Most observed responses in benthic algal biomass occurred in nutrient concentrations between 10 and 30 μg TP l−1 and between 400 and 1000 μg TN l−1.  相似文献   

20.
1. Urbanisation is an important cause of eutrophication in waters draining urban areas. We determined whether benthic algal biomass in small streams draining urban areas was explained primarily by small‐scale factors (benthic light, substratum type and nutrient concentrations) within a stream, or by catchment‐scale variables that incorporate the interacting multiple impacts of urbanisation (i.e. variables that describe urban density and the intensity of drainage or septic tank systems). 2. Benthic algal biomass was assessed as chlorophyll a density (chl a) in 16 streams spanning a rural–urban gradient, with both a wide range of urban density and of piped stormwater infrastructure intensity on the eastern fringe of metropolitan Melbourne, Australia. The gradient of urban density among streams was broadly correlated with catchment imperviousness, drainage connection (proportion of impervious areas connected to streams by stormwater pipes), altitude, longitude and median phosphorus concentration. Catchment area, septic tank density, median nitrogen concentration, benthic light (photosynthetically active radiation) and substratum type were not strongly correlated with the urban gradient. 3. Variation in benthic light and substratum type within streams explained a relatively small amount of variation in log chl a (3–11 and 1–13%, respectively) compared with between‐site variation (39–54%). 4. Median chl a was positively correlated with catchment urbanisation, with a large proportion of variance explained jointly (as determined by hierarchical partitioning) by those variables correlated with urban density. Independent of this correlation, the contributions of drainage connection and altitude to the explained variance in chl a were significant. 5. The direct connection of impervious surfaces to streams by stormwater pipes is hypothesised as the main determinant of algal biomass in these streams through its effect on the supply of phosphorus, possibly in interaction with stormwater‐related impacts on grazing fauna. Management of benthic algal biomass in streams of urbanised catchments is likely to be most effective through the application of stormwater management approaches that reduce drainage connection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号