首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X Gu  D P Verma 《The Plant cell》1997,9(2):157-169
The cell plate is formed by the fusion of Golgi apparatus-derived vesicles in the center of the phragmoplast during cytokinesis in plant cells. A dynamin-like protein, phragmoplastin, has been isolated and shown to be associated with cell plate formation in soybean by using immunocytochemistry. In this article, we demonstrate that similar to dynamin, phragmoplastin polymerizes to form oligomers. We fused soybean phragmoplastin with the green fluorescence protein (GFP) and introduced it into tobacco BY-2 cells to monitor the dynamics of early events in cell plate formation. We demonstrate that the chimeric protein is functional and targeted to the cell plate during cytokinesis in transgenic cells. GFP-phragmoplastin was found to appear first in the center of the forming cell plate, and as the cell plate grew outward, it redistributed to the growing margins of the cell plate. The redistribution of phragmoplastin may require microtubule reorganization because the microtubule-stabilizing drug taxol inhibited phragmoplastin redistribution. Our data show that throughout the entire process of cytokinesis, phragmoplastin is concentrated in the area in which membrane fusion is active, suggesting that phragmoplastin participates in an early membrane fusion event during cell plate formation. Based on the dynamics of GFP-phragmoplastin, it appears that the process of cell plate formation is completed in two phases. The first phase is confined to the cylinder of the phragmoplast proper and is followed by a second phase that deposits phragmoplast vesicles in a concentric fashion, resulting in a ring of fluorescence, with the concentration of vesicles being higher at the periphery. In addition, overexpression of GFP-phragmoplastin appears to act as a dominant negative, slowing down the completion of cell plate formation, and often results in an oblique cell plate. The latter appears to uncouple cell elongation from the plane of cell division, forming twisted and elongated cells with longitudinal cell divisions.  相似文献   

2.
We have investigated the process of somatic-type cytokinesis in Arabidopsis (Arabidopsis thaliana) meristem cells with a three-dimensional resolution of approximately 7 nm by electron tomography of high-pressure frozen/freeze-substituted samples. Our data demonstrate that this process can be divided into four phases: phragmoplast initials, solid phragmoplast, transitional phragmoplast, and ring-shaped phragmoplast. Phragmoplast initials arise from clusters of polar microtubules (MTs) during late anaphase. At their equatorial planes, cell plate assembly sites are formed, consisting of a filamentous ribosome-excluding cell plate assembly matrix (CPAM) and Golgi-derived vesicles. The CPAM, which is found only around growing cell plate regions, is suggested to be responsible for regulating cell plate growth. Virtually all phragmoplast MTs terminate inside the CPAM. This association directs vesicles to the CPAM and thereby to the growing cell plate. Cell plate formation within the CPAM appears to be initiated by the tethering of vesicles by exocyst-like complexes. After vesicle fusion, hourglass-shaped vesicle intermediates are stretched to dumbbells by a mechanism that appears to involve the expansion of dynamin-like springs. This stretching process reduces vesicle volume by approximately 50%. At the same time, the lateral expansion of the phragmoplast initials and their CPAMs gives rise to the solid phragmoplast. Later arriving vesicles begin to fuse to the bulbous ends of the dumbbells, giving rise to the tubulo-vesicular membrane network (TVN). During the transitional phragmoplast stage, the CPAM and MTs disassemble and then reform in a peripheral ring phragmoplast configuration. This creates the centrifugally expanding peripheral cell plate growth zone, which leads to cell plate fusion with the cell wall. Simultaneously, the central TVN begins to mature into a tubular network, and ultimately into a planar fenestrated sheet (PFS), through the removal of membrane via clathrin-coated vesicles and by callose synthesis. Small secondary CPAMs with attached MTs arise de novo over remaining large fenestrae to focus local growth to these regions. When all of the fenestrae are closed, the new cell wall is complete. Few endoplasmic reticulum (ER) membranes are seen associated with the phragmoplast initials and with the TVN cell plate that is formed within the solid phragmoplast. ER progressively accumulates thereafter, reaching a maximum during the late PFS stage, when most cell plate growth is completed.  相似文献   

3.
Dynamin and dynamin-like proteins are GTP-binding proteins involved in vesicle trafficking. In soybean, a 68-kD dynamin-like protein called phragmoplastin has been shown to be associated with the cell plate in dividing cells (Gu and Verma, 1996). Five ADL1 genes encoding dynamin-like proteins related to phragmoplastin have been identified in the completed Arabidopsis genome. Here we report that ADL1Ap is associated with punctate subcellular structures and with the cell plate in dividing cells. To assess the function of ADL1Ap we utilized a reverse genetic approach to isolate three separate Arabidopsis mutant lines containing T-DNA insertions in ADL1A. Homozygous adl1A seeds were shriveled and mutant seedlings arrested soon after germination, producing only two leaf primordia and severely stunted roots. Immunoblotting revealed that ADL1Ap expression was not detectable in the mutants. Despite the loss of ADL1Ap, the mutants did not display any defects in cytokinesis, and growth of the mutant seedlings could be rescued in tissue culture by the addition of sucrose. Although these sucrose-rescued plants displayed normal vegetative growth and flowered, they set very few seeds. Thus, ADL1Ap is critical for several stages of plant development, including embryogenesis, seedling development, and reproduction. We discuss the putative role of ADL1Ap in vesicular trafficking, cytokinesis, and other aspects of plant growth.  相似文献   

4.
Plant cytokinesis involves the formation of a cell plate. This is accomplished with the help of the phragmoplast, a plant-specific cytokinetic apparatus that consists of microtubules and microfilaments. During centrifugal growth of the cell plate, the phragmoplast expands to keep its microtubules at the leading edge of the cell plate. Recent studies have revealed potential regulators of phragmoplast microtubule dynamics and the involvement of a mitogen-activated protein kinase cascade in the control of phragmoplast expansion. These studies provide new insights into the molecular mechanisms of plant cytokinesis.  相似文献   

5.
Cytokinesis in higher plants involves the phragmoplast, a complex cytoplasmic structure that consists of microtubules (MTs), microfilaments (MFs) and membrane elements. Both MTs and MFs are essential for cell plate formation, although it is not clear which motor proteins are involved. Some candidate processes for motor proteins include transport of Golgi vesicles to the plane of the cell plate and the spatiotemporal organization of the cytoskeletal elements in order to achieve proper deposition and alignment of the cell plate. We have focused on the kinesin-like calmodulin binding protein (KCBP) and, more broadly, on myosins. Using an antibody that constitutively activates KCBP, we find that this MT motor, which is minus-end directed, contributes to the organization of the spindle and phragmoplast MTs. It does not participate in vesicle transport; rather, because of the orientation of the phragmoplast MTs, it is supposed that plus-end kinesins fill this role. Myosins, on the other hand, based on their inhibition with 2,3-butanedione monoxime and 1-(5-iodonaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine (ML-7), are associated with the process of post-mitotic spindle/phragmoplast alignment and with late lateral expansion of the cell plate. They are also not the principal motors involved in vesicle transport.  相似文献   

6.
Kinesins are versatile nano‐machines that utilize variable non‐motor domains to tune specific motor microtubule encounters. During plant cytokinesis, the kinesin‐12 orthologs, PHRAGMOPLAST ORIENTING KINESIN (POK)1 and POK2, are essential for rapid centrifugal expansion of the cytokinetic apparatus, the phragmoplast, toward a pre‐selected cell plate fusion site at the cell cortex. Here, we report on the spatio‐temporal localization pattern of POK2, mediated by distinct protein domains. Functional dissection of POK2 domains revealed the association of POK2 with the site of the future cell division plane and with the phragmoplast during cytokinesis. Accumulation of POK2 at the phragmoplast midzone depends on its functional POK2 motor domain and is fine‐tuned by its carboxy‐terminal region that also directs POK2 to the division site. Furthermore, POK2 likely stabilizes the phragmoplast midzone via interaction with the conserved microtubule‐associated protein MAP65‐3/PLEIADE, a well‐established microtubule cross‐linker. Collectively, our results suggest that dual localized POK2 plays multiple roles during plant cell division.  相似文献   

7.
Y.-R. Julie Lee  Hoa M. Giang    Bo Liu 《The Plant cell》2001,13(11):2427-2440
In higher plants, the formation of the cell plate during cytokinesis requires coordinated microtubule (MT) reorganization and vesicle transport in the phragmoplast. MT-based kinesin motors are important players in both processes. To understand the mechanisms underlying plant cytokinesis, we have identified AtPAKRP2 (for Arabidopsis thaliana phragmoplast-associated kinesin-related protein 2). AtPAKRP2 is an ungrouped N-terminal motor kinesin. It first appeared in a punctate pattern among interzonal MTs during late anaphase. When the phragmoplast MT array appeared in a mirror pair, AtPAKRP2 became more concentrated near the division site, and additional signal could be detected elsewhere in the phragmoplast. In contrast, the previously identified AtPAKRP1 protein is associated specifically with bundles of MTs in the phragmoplast at or near their plus ends. Localization of the tobacco homolog(s) of AtPAKRP2 was altered by treatment of brefeldin A in BY-2 cells. We discuss the possibility that AtPAKRP1 plays a role in establishing and/or maintaining the phragmoplast MT array, and AtPAKRP2 may contribute to the transport of Golgi-derived vesicles in the phragmoplast.  相似文献   

8.
Summary Centrin and calmodulin are members of the EF-hand calcium-binding superfamily of proteins. In this study we compared localisation and immunoblotting of centrin with calmodulin in several monocot (onion and wheat) and dicot (mung bean andArabidopsis) plants. We confirmed that an anti-calmodulin antibody recognised a 17 kDa protein in all species tested and localises to the cytoplasm, mitotic matrix and with microtubules of the preprophase band and phragmoplast. In contrast, immunoblotting using anti-centrin antibodies shows that plant centrins vary from 17 to 20 kDa. Immunofluorescence microscopy with anti-centrin antibodies revealed only weak centrin immunoreactivity in the cytoplasm, nucleus, nuclear envelope, phragmoplast and mitotic matrix in meristematic cells. There was a slightly more intense perinuclear labelling in large differentiating onion cells and between separating anaphase chromosomes. While centrin is known to localise to the mitotic spindle poles in animal and algal cells, there was no appreciable immunoreactivity at the spindle poles in higher plants. In contrast, there was an intense immunofluorescence signal with anti-centrin antibodies in the developing cell plate. Further characterisation of the cell plate labelling by immunogold electron microscopy shows centrin immunoreactivity was closely associated with vesicles in the cell plate. Our observations suggest that centrin may play a role in cell plate formation.Abbreviations BSA bovine serum albumin - MTs microtubules - MTOCs microtubule organising centres - PBS phosphate buffered saline - PBST phosphate buffered saline with Tween-20  相似文献   

9.
In plant cytokinesis, actin is thought to be crucial in cell plate guidance to the cortical division zone (CDZ), but its organization and function are not fully understood. To elucidate actin organization during cytokinesis, we employed an experimental system, in which the mitotic apparatus is displaced and separated from the CDZ by centrifugation and observed using a global–local live imaging microscope that enabled us to record behavior of actin filaments in the CDZ and the whole cell division process in parallel. In this system, returning movement of the cytokinetic apparatus in cultured-tobacco BY-2 cells occurs, and there is an advantage to observe actin organization clearly during the cytokinetic phase because more space was available between the CDZ and the distantly formed phragmoplast. Actin cables were clearly observed between the CDZ and the phragmoplast in BY-2 cells expressing GFP-fimbrin after centrifugation. Both the CDZ and the edge of the expanding phragmoplast had actin bulges. Using live-cell imaging including the global–local live imaging microscopy, we found actin filaments started to accumulate at the actin-depleted zone when cell plate expansion started even in the cell whose cell plate failed to reach the CDZ. These results suggest that specific accumulation of actin filaments at the CDZ and the appearance of actin cables between the CDZ and the phragmoplast during cell plate formation play important roles in the guidance of cell plate edges to the CDZ.  相似文献   

10.
In eukaryotes, mitogen-activated protein kinases (MAPKs) are part of signaling modules that transmit diverse stimuli, such as mitogens, developmental cues, or various stresses. Here, we report a novel alfalfa MAPK, Medicago MAP kinase 3 (MMK3). Using an MMK3-specific antibody, we detected the MMK3 protein and its associated activity only in dividing cells. The MMK3 protein could be found during all stages of the cell cycle, but its protein kinase activity was transient in mitosis and correlated with the timing of phragmoplast formation. Depolymerization of microtubules by short treatments with the drug amiprophosmethyl during anaphase and telophase abolished MMK3 activity, indicating that intact microtubules are required for MMK3 activation. During anaphase, MMK3 was found to be concentrated in between the segregating chromosomes; later, it localized at the midplane of cell division in the phragmoplast. As the phragmoplast microtubules were redistributed from the center to the periphery during telophase, MMK3 still localized to the whole plane of division; thus, phragmoplast microtubules are not required to keep MMK3 at this location. Together, these data strongly support a role for MMK3 in the regulation of plant cytokinesis.  相似文献   

11.
Kinesins are a class of microtubule-associated proteins that possess a motor domain for binding to microtubules and, in general, allows movement along microtubules. In animal mitosis, they function in spindle formation, chromosome movement and in cytokinesis. In addition to the spindle, plants develop a preprophase band and a phragmoplast that might require multiple kinesins for construction and functioning. Indeed, several kinesins play a role in phragmoplast and cell plate dynamics. Surprisingly few kinesins have been associated with the spindle and the preprophase band. Analysis of expression datasets from synchronized cell cultures indicate that at least 23 kinesins are in some way implicated in mitosis-related processes. In this review, the function of kinesins in animal and plant mitoses are compared, and the divergence that originates from plant-specific aspects is highlighted.  相似文献   

12.
The tobacco mitogen-activated protein kinase kinase kinase NPK1 regulates lateral expansion of the cell plate at cytokinesis. Here, we show that the kinesin-like proteins NACK1 and NACK2 act as activators of NPK1. Biochemical analysis suggests that direct binding of NACK1 to NPK1 stimulates kinase activity. NACK1 is accumulated specifically in M phase and colocalized with NPK1 at the phragmoplast equator. Overexpression of a truncated NACK1 protein that lacks the motor domain disrupts NPK1 concentration at the phragmoplast equator and cell plate formation. Incomplete cytokinesis is also observed when expression of NACK1 and NACK2 is repressed by virus-induced gene silencing and in embryonic cells from Arabidopsis mutants in which a NACK1 ortholog is disrupted. Thus, we conclude that expansion of the cell plate requires NACK1/2 to regulate the activity and localization of NPK1.  相似文献   

13.
A. H. Valster  P. K. Hepler 《Protoplasma》1997,196(3-4):155-166
Summary The distribution of microtubules and actin microfilaments during caffeine-induced inhibition of cell plate formation has been studied in livingTradescantia stamen hair cells. Previous studies have shown that caffeine allows cell plate initiation but prevents its completion, resulting in binucleate cells. In the present study, confocal microscopy of cells microinjected with fluorescent brain tubulin or phalloidin, and cultured in the presence 5 mM caffeine, revealed that the initiation and early lateral expansion phase of the phragmoplast occur normally. However, caffeine completely inhibits the formation of the cytoskeletal torus which occurs in untreated cells during the late stages of cell plate and phragmoplast expansion. Caffeine further causes the disintegration of the incomplete cell plate. The results allow us to distinguish two phases in cell plate and phragmoplast growth: the initiation and early expansion phase, which is not affected by caffeine, and the late lateral expansion phase, which is completely inhibited in the presence of caffeine. Also in this study, the use of a high phalloidin concentration has revealed structural detail about the actin microfilaments involved in cell plate formation: microfilaments are observed that link the expanding edge of the phragmoplast with the cortical division site. In addition, cortical actin patches are observed within the actin depleted zone that might play a role in guidance of phragmoplast and cell plate expansion.  相似文献   

14.
Lee YR  Li Y  Liu B 《The Plant cell》2007,19(8):2595-2605
In plant cells, cytokinesis is brought about by the phragmoplast. The phragmoplast has a dynamic microtubule array of two mirrored sets of microtubules, which are aligned perpendicularly to the division plane with their plus ends located at the division site. It is not well understood how the phragmoplast microtubule array is organized. In Arabidopsis thaliana, two homologous microtubule motor kinesins, PAKRP1/Kinesin-12A and PAKRP1L/Kinesin-12B, localize exclusively at the juxtaposing plus ends of the antiparallel microtubules in the middle region of the phragmoplast. When either kinesin was knocked out by T-DNA insertions, mutant plants did not show a noticeable defect. However, in the absence of both kinesins, postmeiotic development of the male gametophyte was severely inhibited. In dividing microspores of the double mutant, microtubules often became disorganized following chromatid segregation and failed to form an antiparallel microtubule array between reforming nuclei. Consequently, the first postmeiotic cytokinesis was abolished without the formation of a cell plate, which led to failures in the birth of the generative cell and, subsequently, the sperm. Thus, our results indicate that Kinesin-12A and Kinesin-12B jointly play a critical role in the organization of phragmoplast microtubules during cytokinesis in the microspore that is essential for cell plate formation. Furthermore, we conclude that Kinesin-12 members serve as dynamic linkers of the plus ends of antiparallel microtubules in the phragmoplast.  相似文献   

15.
Plant cytokinesis starts in the center of the division plane, with vesicle fusion generating a new membrane compartment, the cell plate, that subsequently expands laterally by continuous fusion of newly arriving vesicles to its margin. Targeted delivery of vesicles is assisted by the dynamic reorganization of a plant-specific cytoskeletal array, the phragmoplast, from a solid cylinder into an expanding ring-shaped structure. This lateral translocation is brought about by depolymerization of microtubules in the center, giving way to the expanding cell plate, and polymerization of microtubules along the edge. Whereas several components are known to mediate cytokinetic vesicle fusion [8-10], no gene function involved in phragmoplast dynamics has been identified by mutation. Mutations in the Arabidopsis HINKEL gene cause cytokinesis defects, such as enlarged cells with incomplete cell walls and multiple nuclei. Proper targeting of the cytokinesis-specific syntaxin KNOLLE [8] and lateral expansion of the phragmoplast are not affected. However, the phragmoplast microtubules appear to persist in the center, where vesicle fusion should result in cell plate formation. Molecular analysis reveals that the HINKEL gene encodes a plant-specific kinesin-related protein with a putative N-terminal motor domain and is expressed in a cell cycle-dependent manner similar to the KNOLLE gene. Our results suggest that HINKEL plays a role in the reorganization of phragmoplast microtubules during cell plate formation.  相似文献   

16.
The phragmoplast, a structure crucial for the completion of cytokinesis in plant cells, is composed of antiparallel microtubules (MTs) and actin filaments (AFs). However, how the parallel structure of phragmoplast MTs and AFs is maintained, especially during centrifugal phragmoplast expansion, remains elusive. Here, we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein (AtMAC). When AtMAC was deleted, the phragmoplast showed disintegrity during centrifugal expansion, and the resulting phragmoplast fragmentation led to incomplete cell plates. Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis. Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro, and the truncated AtMAC protein, N-CC1, was the key domain controlling the ability of AtMAC. Further analysis showed that N-CC1(51–154) is the key domain for binding MTs, and N-CC1(51–125) for binding AFs. In conclusion, AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion, which is required for complete cytokinesis.  相似文献   

17.
Song K  Jang M  Kim SY  Lee G  Lee GJ  Kim DH  Lee Y  Cho W  Hwang I 《Plant physiology》2012,159(3):1013-1025
Cytokinesis is the process of partitioning the cytoplasm of a dividing cell, thereby completing mitosis. Cytokinesis in the plant cell is achieved by the formation of a new cell wall between daughter nuclei using components carried in Golgi-derived vesicles that accumulate at the midplane of the phragmoplast and fuse to form the cell plate. Proteins that play major roles in the development of the cell plate in plant cells are not well defined. Here, we report that an AP180 amino-terminal homology/epsin amino-terminal homology domain-containing protein from Arabidopsis (Arabidopsis thaliana) is involved in clathrin-coated vesicle formation from the cell plate. Arabidopsis Epsin-like Clathrin Adaptor1 (AtECA1; At2g01600) and its homologous proteins AtECA2 and AtECA4 localize to the growing cell plate in cells undergoing cytokinesis and also to the plasma membrane and endosomes in nondividing cells. AtECA1 (At2g01600) does not localize to nascent cell plates but localizes at higher levels to expanding cell plates even after the cell plate fuses with the parental plasma membrane. The temporal and spatial localization patterns of AtECA1 overlap most closely with those of the clathrin light chain. In vitro protein interaction assays revealed that AtECA1 binds to the clathrin H chain via its carboxyl-terminal domain. These results suggest that these AP180 amino-terminal homology/epsin amino-terminal homology domain-containing proteins, AtECA1, AtECA2, and AtECA4, may function as adaptors of clathrin-coated vesicles budding from the cell plate.  相似文献   

18.
《The Journal of cell biology》1995,130(6):1345-1357
Cell plate formation in tobacco root tips and synchronized dividing suspension cultured tobacco BY-2 cells was examined using cryofixation and immunocytochemical methods. Due to the much improved preservation of the cells, many new structural intermediates have been resolved, which has led to a new model of cell plate formation in higher plants. Our electron micrographs demonstrate that cell plate formation consists of the following stages: (1) the arrival of Golgi-derived vesicles in the equatorial plane, (2) the formation of thin (20 +/- 6 nm) tubes that grow out of individual vesicles and fuse with others giving rise to a continuous, interwoven, tubulo-vesicular network, (3) the consolidation of the tubulo-vesicular network into an interwoven smooth tubular network rich in callose and then into a fenestrated plate-like structure, (4) the formation of hundreds of finger-like projections at the margins of the cell plate that fuse with the parent cell membrane, and (5) cell plate maturation that includes closing of the plate fenestrae and cellulose synthesis. Although this is a temporal chain of events, a developing cell plate may be simultaneously involved in all of these stages because cell plate formation starts in the cell center and then progresses centrifugally towards the cell periphery. The "leading edge" of the expanding cell plate is associated with the phragmoplast microtubule domain that becomes concentrically displaced during this process. Thus, cell plate formation can be summarized into two phases: first the formation of a membrane network in association with the phragmoplast microtubule domain; second, cell wall assembly within this network after displacement of the microtubules. The phragmoplast microtubules end in a filamentous matrix that encompasses the delicate tubulo-vesicular networks but not the tubular networks and fenestrated plates. Clathrin-coated buds/vesicles and multivesicular bodies are also typical features of the network stages of cell plate formation, suggesting that excess membrane material may be recycled in a selective manner. Immunolabeling data indicate that callose is the predominant lumenal component of forming cell plates and that it forms a coat-like structure on the membrane surface. We postulate that callose both helps to mechanically stabilize the early delicate membrane networks of forming cell plates, and to create a spreading force that widens the tubules and converts them into plate-like structures. Cellulose is first detected in the late smooth tubular network stage and its appearance seems to coincide with the flattening and stiffening of the cell plate.  相似文献   

19.
The inability of phragmoplast to stop its centrifugal movement after reaching the mother cell membrane is described in abnormal meiosis with the arrest of cell plate formation. The excess of phragmoplast expansion leads to rotation of the whole telophase figure (phragmoplast with daughter nuclei) within the cell through 90 degrees. It has been suggested that this phenomenon may occur because of a the lack of signal stopping cytokinesis. Such a signal arises due to formation of daughter cell membranes.  相似文献   

20.
Detailed correlation of in vitro observations with the arrangement of microtubules (MTs) during anaphase-telophase were made on endosperm of Haemanthus katherinae. It is stressed that the general course of events leading to the formation of the phragmoplast is the same in all cells, but considerable variation of details may be found in different objects and even in various cells of the same tissue. The changes of MT arrangement in the interzonal region responsible for formation of the phragmoplast already occur in anaphase. During this stage continuous fibers (composed of numerous MTs) lengthen, become thinner (the number of MTs on a cross-section decreases), and often seem to break. After mid-anaphase, thin fibers begin to oscillate transversely to the axis of the phragmoplast and often are considerably laterally displaced (lateral movements). The longest MTs in the phragmoplast are present during oscillations and lateral movements. The new MTs arise in the phragmoplast regions depleted of MTs as a result of lateral movements (usually geometric central region of the phragmoplast). Clusters of vesicles, which accumulate in relation to MTs which move, fuse and form the cell plate. After the fusion, the number and the length of MTs decrease. Several processes are superimposed and occur simultaneously. Also the cell plate is, as a rule, in different stages of development in various regions of the phragmoplast. The movements of MTs and fusion of the vesicles is complex and the details of these processes are not entirely clear. The data supplied here modify some generally accepted concepts of phragmoplast formation and development. This concerns the center of origin of new MTs, the moment when they arise, and the way they subsequently behave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号