首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of weaning on the level of glycogen and the activities of glycogen synthase and phosphorylase were determined in rat liver. Glycogen levels in rat liver increased at the start of the weaning period and reached a plateau on postnatal day 20. The active form of glycogen synthase increased until postnatal day 19 and then declined. Total glycogen synthase (active + inactive) remained high during the suckling period and declined to a new low level during the weaning period. The activity ratio (active/total) increased from day 16 to days 18-22 and then decreased to the same level as found during the suckling period. At the onset of weaning the active form of phosphorylase decreased, whereas total phosphorylase initially increased and then decreased after postnatal day 20. Both forms of phosphorylase increased again at the end of the weaning period. The activity ratio decreased at the start of weaning and remained low throughout the rest of the weaning period. The effects of premature weaning were similar to those observed in normally weaned animals, but the changes occurred sooner and were more pronounced.  相似文献   

2.
Changes in hepatic lipogenesis during development of the rat   总被引:6,自引:6,他引:0       下载免费PDF全文
1. Changes in the activities of ATP citrate lyase, ;malic' enzyme, glucose 6-phosphate dehydrogenase, pyruvate kinase and fructose 1,6-diphosphatase, and in the ability to incorporate [1-(14)C]acetate into lipid have been measured in the livers of developing rats between late foetal life and maturity. 2. In male rats the activities of those systems directly or indirectly concerned in lipogenesis (acetate incorporation into lipid, ATP citrate lyase and glucose 6-phosphate dehydrogenase) fall after birth and are maintained at a low value until weaning. After weaning these activities rise to a maximum between 30 and 40 days and then decline, reaching adult values at about 60 days. ;Malic' enzyme activity follows a similar course, except that none could be detected in the foetal liver. Pyruvate kinase activity is lower in foetal than in adult livers and rises to slightly higher than the adult value in the post-weaning period. Fructose 1,6-diphosphatase activity rises from a very low foetal value to reach a maximum at about 10 days but falls rapidly after weaning to reach adult values at about 30 days. 3. Weaning rats on to a high-fat diet caused the low activities of acetate incorporation, ATP citrate lyase, glucose 6-phosphate dehydrogenase and pyruvate kinase, characteristic of the suckling period, to persist. ;Malic' enzyme and fructose 1,6-diphosphatase activities were not altered appreciably. 4. No differences could be detected in hepatic enzyme activities between males and females up to 35 days, but after this time female rats gave higher values for acetate incorporation, glucose 6-phosphate dehydrogenase activity and ;malic' enzyme activity. 5. The results are discussed in relation to changes in alimentation and hormonal influences.  相似文献   

3.
W T Hron  L A Menahan 《Enzyme》1983,30(2):83-88
The activities of phosphofructokinase, pyruvate kinase and pyruvate dehydrogenase were examined in liver as a function of age in Swiss albino mice. The hepatic activity of phosphofructokinase and total pyruvate dehydrogenase peaked in mice between 8 and 12 weeks of age and then decreased to a value that remained stable in mature animals older than 24 weeks of age. Yet, the activity of pyruvate kinase and pyruvate dehydrogenase in the active form in liver remained unchanged in mice up to 12 weeks of age. As mice matured, a progressive increase in the activity of both pyruvate kinase and the active form of pyruvate dehydrogenase in liver was observed while phosphofructokinase was unaltered. The pyruvate dehydrogenase complex, both total activity and the proportion of the enzyme in the active form, in the epididymal fat pad of the mouse showed no consistent age trend. The observed increase in the activity of both pyruvate kinase and the active form of pyruvate dehydrogenase should provide an augmented capacity for the generation of acetyl-CoA units for de novo fatty acid synthesis in livers of mature mice.  相似文献   

4.
We have investigated fatty acid oxidation and development profiles of palmitoyl-CoA synthetase and carnitine palmitoyltransferase in homogenates of developing rat brain. Palmitate showed a peak rate of oxidation between 10 days and the time of weaning, after which activity declined to adult levels. Acetate oxidation increased until Day 10, plateaued until Day 18 when it increased sharply and remained elevated through Day 25 before declining to the adult level. Leucine oxidation also showed a late peak as compared with palmitate. Palmitoyl-CoA synthetase activity was highest in late fetal development and in the newborn after which activity declined gradually to adult levels. Carnitine palmitoyltransferase activity peaked at 10–15 days of age similar to the profile obtained for long chain fatty acid oxidation. During the period of peak fatty acid oxidation, cytochrome oxidase activity increased twofold but the developmental increase in fatty acid oxidation and enzyme levels was much greater than the increase in mitochondrial number. These data suggest that during periods of high fat intake in the suckling rat the brain has an increased capacity for long chain fatty acid oxidation and that in addition to ketone bodies and leucine, fatty acids may be utilized as an alternative substrate in developing brain.  相似文献   

5.
This study was designed to monitor the developmental changes in insulinemia and lipogenic enzyme activities in both inguinal adipose tissue and liver during suckling (7, 9, 14, and 17 days of age) and weaning (22 and 30 days of age) on to either a low-fat or a high-fat diet in lean (Fa/fa) and obese (fa/fa) rats. Tissues were removed through surgery and genotypes were retrospectively determined. During suckling, there was no difference in liver enzyme activities between the two groups. In contrast, adipose tissue fatty acid synthetase was increased by 50% and citrate cleavage enzyme and malic enzyme by 30% by 9 days of age. By 17 days of age, there was a threefold elevation in these enzyme activities and 6-phosphogluconic dehydrogenase and a twofold increase in glucose-6-phosphate dehydrogenase per inguinal fat pad in fa/fa versus Fa/fa. Consistent with these results, fat pad weight was increased by 20%, 50%, and 100% at 9, 14, and 17 days of age, respectively, in obese as compared to lean pups. However only by 17 days of age could a slight but significant increase in insulin level be detected in obese pups. Enlargement of inguinal fat pad accelerated after weaning on to a low-fat diet and still more after weaning on to a high-fat diet. Weaning on to a low-fat diet elicited an induction of hepatic lipogenic enzymes two or three times greater in fa/fa than in lean pups, while weaning on to a high-fat diet blunted the differences between genotypes. The lipogenic enzyme activities displayed per total inguinal fat were three to ten times greater in obese than in lean pups, regardless of the diet. However, adipose tissue lipogenic enzyme activities were much lower after weaning on to a high-fat than on to a low-fat diet in obese pups. The high-fat diet was as effective as the low-fat diet in triggering hyperinsulinemia in obese pups. The increased adipose tissue capacity for lipogenesis, starting during the suckling period, could play an important etiologic role in the development and maintenance of obesity in the Zucker rat.-Bazin, R., and M. Lavau. Development of hepatic and adipose tissue lipogenic enzymes and insulinemia during suckling and weaning on to a high-fat diet in Zucker rats.  相似文献   

6.
The total activity of pyruvate dehydrogenase in mitochondria isolated from rat brain and liver was 53.5 and 14.2nmol/min per mg of protein respectively. Pyruvate dehydrogenase in liver mitochondria incubated for 4 min at 37 degrees C with no additions was 30% in the active form and this activity increased with longer incubations until it was completely in the active form after 20 min. Brain mitochondrial pyruvate dehydrogenase activity was initially high and did not increase with addition of Mg2+ plus Ca2+ or partially purified pyruvate dehydrogenase phosphatase or with longer incubations. The proportion of pyruvate dehydrogenase in the active form in both brain and liver mitochondria changed inversely with changes in mitochondrial energy charge, whereas total pyruvate dehydrogenase did not change. The chelators citrate, isocitrate, EDTA, ethanedioxybis(ethylamine)tetra-acetic acid and Ruthenium Red each lowered pyruvate dehydrogenase activity in brain mitochondria, but only citrate and isocitrate did so in liver mitochondria. These chelators did not affect the energy charge of the mitochondria. Mg2+ plus Ca2+ reversed the pyruvate dehydrogenase inactivation in liver, but not brain, mitochondria. The regulation of the activation-inactivation of pyruvate dehydrogenase in mitochondria from rat brain and liver with respect to energy charge is similar and may be at least partially regulated by this parameter, and the effects of chelators differ in the two types of mitochondria.  相似文献   

7.
8.
The work investigated the effects of surgical stress on the activities of cardiac and hepatic pyruvate dehydrogenase complex (active form, PDHa) in fed rats. PDHa activities in heart and liver were decreased within 4h of surgery with maximum inhibition at 24h after surgery. PDHa activities remained low until the fourth (liver) and eighth (heart) post-operative days. The decreased activities found at 4h and 24h after surgery were associated with increased plasma fatty acid concentrations, and inhibition of lipolysis resulted in reactivation of the enzyme complex. The results are discussed with reference to the control of pyruvate dehydrogenase activities by the oxidation of fat fuels and multisite phosphorylation in stress states, and its possible importance in glucose conservation after surgery and trauma.  相似文献   

9.
Total pyruvate dehydrogenase activities in hamster intestine increase from 40 nmol/min (munits) per g of intestine in the foetal animals to 460 munits/g in the adult, whereas the fraction of the enzyme in the active form increases from 34 to 42% of the total activity over the same period. However, a complete conversion of the enzyme into the active form is observed in the neonatal animal immediately after birth. Results from experiments in vitro suggested that the activation of pyruvate dehydrogenase is controlled, in part, by the [NAD+]/[NADH] ratio. This proposal was tested in vivo by examining the proportion of the enzyme in the active form during conditions when the [NAD+]/[NADH] ratio was markedly altered, and the data show a direct relationship between the mitochondrial redox state and activity of the active form.  相似文献   

10.
1. The activities of some enzymes involved in both the utilization of glucose (pyruvate kinase, ATP citrate lyase, NADP-specific malate dehydrogenase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and NADP-specific isocitrate dehydrogenase, all present in the supernatant fraction of liver homogenates) and the formation of glucose by gluconeogenesis (glucose 6-phosphatase in the whole homogenate and fructose 1,6-diphosphatase, phosphopyruvate carboxylase, NAD-specific malate dehydrogenase and fumarase in the supernatant fraction) have been determined in rat liver around birth and in the postnatal period until the end of weaning. 2. The activities of those enzymes involved in the conversion of glucose into lipid are low during the neonatal period and increase with weaning. NADP-specific malate dehydrogenase first appears and develops at the beginning of the weaning period. 3. The marked increase in cytoplasmic phosphopyruvate carboxylase activity at birth is probably the major factor initiating gluconeogenesis at that time. 4. The results are discussed against the known changes in dietary supplies and the known metabolic patterns during the period of development.  相似文献   

11.
1. Starting from the spectrophotometric method of Ballard optimal reaction conditions for measurements of galactokinase in piglet liver were systematically studied. These are (final conc. in the test): 100 mM triethanolamine-HCl buffer, 33 mM KCl, 16.5 mM NaF (inhibiting ATPase), 5 mM cysteine hydrochloride, 0.33 mM NADH2, 1 U pyruvate kinase and lactic dehydrogenase, 0.5 mM phosphoenolpyruvate, 1.5 mM galactose, 0.5 mM ATP and 1 mM MgCl2, final pH 7.5. 2. An optimal substrate concentration, a Mg: ATP-ratio of 2:1, pH-stability and addition of activators are important for the determination of galactokinase activity in the supernatant fraction of pig liver. 3. Using the optimized method galactokinase activity of pig liver in dependence on age, with particular reference to the perinatal period, was determined. 4. Galactokinase activity of liver of newborn piglets is 7 times that of adult pigs. In the suckling period the activity remains relatively constant at this high level and decreases remarkably immediately after weaning. 5. Galactokinase of liver of newborn piglets differs in kinetic properties (lower Km of ATP, higher maximal reaction velocity) from the enzyme of adult pigs, which is still insufficient to make sure the existence of two different forms of the enzyme.  相似文献   

12.
The ;8+16' feeding schedule (8h feeding and 16h without food in each 24h cycle) was applied to nursing mother rats to study enzyme development in neonatal rats in the absence of solid food. A ;16+8' suckling schedule (16h with the mother and 8h while the mother is fed in a separate cage) was used to show that the increases in pyruvate kinase, glucokinase and aldolase B activities that occur in the late suckling period of liver development do not require the intake of solid food at this time. Their activities may, however, be modulated by the composition of the diet at the time of weaning. Adaptation to the composition of the diet can occur within one feeding period, and to the periodicity of food provision in one or two feeding periods. In the early neonatal period, diurnal rhythms of tyrosine aminotransferase, liver glycogen and glucokinase are either greatly suppressed or absent, but develop rapidly after weaning. Food-dependent rhythms of glycogen and tyrosine aminotransferase were included in the late suckling period (day 14).  相似文献   

13.
THE REGULATION OF PYRUVATE DEHYDROGENASE IN BRAIN IN VIVO   总被引:9,自引:9,他引:0  
—The activity of pyruvate dehydrogenase in the brains of mice frozen in liquid nitrogen was 14·0 nmol/min per mg protein. It rose to 23·8 nmol/min per mg protein after incubation of the brain homogenate with 10mm -MgCl2 to activate (dephosphorylate) the enzyme, indicating that approx 60% of the enzyme was originally in the active form. Treatment with amobarbital or pentobarbital halved the proportion of pyruvate dehydrogenase in the active form. The proportion of pyruvate dehydrogenase in the active form increased during ischemia, activation being complete within one min. Anesthesia with amobarbital slowed the activation during ischemia but did not alter the total amount of pyruvate dehydrogenase activity. The concentration of ATP, the ATP/ADP ratio and the adenylate energy charge increased as the proportion of pyruvate dehydrogenase in the active form decreased during barbiturate anesthesia, and they decreased as the proportion of pyruvate dehydrogenase in the active form increased during ischemia. After treatment with insulin, the proportion of pyruvate dehydrogenase in the active form increased by 30%. but the energy charge did not change. Treatment of mice with ether, morphine, ethanol, or diazepam did not change the proportion of pyruvate dehydrogenase in the active form although these treatments have been reported to alter pyruvate oxidation in brain in vivo. Treatments which altered pyruvate oxidation in the brain did not consistently alter the proportion of pyruvate dehydrogenase in the active form, unless they also altered energy charge.  相似文献   

14.
The regulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression was studied during the onset of obesity in the genetically obese (fa/fa) rat by determination of GAPDH activity and hybridizable mRNA amounts in adipose tissue and liver from suckling and weanling rats. GADPH activity remained low throughout the suckling period, and a burst of activity occurred after weaning in both lean and obese pups. As early as 7 days of age, adipose tissue from pre-obese rats displayed a significant increase in enzyme activity, whereas no difference could be detected in the liver. In both suckling (16 days of age) and weanling (30 days of age) obese rats a proportionate increase in GAPDH activity and mRNA amounts was observed in adipose tissue, but not in liver. It is concluded that the obese genotype influences GAPDH gene expression at a pretranslational level and in a tissue-specific manner. This phenomenon could partly contribute to the hyperactive fat accretion in the obese rat, since glycolysis is the major metabolic pathway for lipogenic substrates in adipose tissue.  相似文献   

15.
To gain better insight into the insulin secretory activity of fetal beta cells in response to glucose, the expression of glucose transporter 2 (GLUT-2), glucokinase and mitochondrial glycerol phosphate dehydrogenase (mGDH) were studied. Expression of GLUT-2 mRNA and protein in pancreatic islets and liver was significantly lower in fetal and suckling rats than in adult rats. The glucokinase content of fetal islets was significantly higher than of suckling and adult rats, and in liver the enzyme appeared for the first time on about day 20 of extrauterine life. The highest content of hexokinase I was found in fetal islets, after which it decreased progressively to the adult values. Glucokinase mRNA was abundantly expressed in the islets of all the experimental groups, whereas in liver it was only present in adults and 20-day-old suckling rats. In fetal islets, GLUT-2 and glucokinase protein and their mRNA increased as a function of increasing glucose concentration, whereas reduced mitochondrial citrate synthase, succinate dehydrogenase and cytochrome c oxidase activities and mGDH expression were observed. These findings, together with those reported by others, may help to explain the decreased insulin secretory activity of fetal beta cells in response to glucose.  相似文献   

16.
The percentages of pyruvate dehydrogenase complex (PDH) in the active form (PDHa) in two lipogenic tissues (liver and brown adipose tissue) in the fed state were 12.0% and 13.4% respectively. After acute (0.5 h) insulin treatment, PDHa activities had increased by 77% in liver and by 234% in brown fat. Significant decreases in PDHa activities were observed in both tissues by 5 h after the removal of food. The patterns of decline in PDHa activities in the two lipogenic tissues were similar in that the major decreases in activities were observed within the first 7 h of starvation. The significant decreases in PDHa activities observed after starvation for 6 h were accompanied by decreased rates of lipogenesis. Hepatic and brown-fat PDHa activities after acute (30 min) exposure to exogenous insulin were less in 6 h-starved than in fed rats, but the absolute increases in PDHa activities over the 30 min exposure period were similar in fed and 6 h-starved rats. Increases in PDHa activities were paralleled by increases in lipid synthesis in both tissues. Re-activation of PDH in response to insulin treatment or chow re-feeding after 48 h starvation occurred more rapidly in brown adipose tissue than in liver. The results are discussed in relation to the importance of the activity of the PDH complex as a determinant of the total rate of lipogenesis during the fed-to-starved transition and after insulin challenge or re-feeding.  相似文献   

17.
Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of immunoprecipitates of liver cytosol with anti-(L-type pyruvate kinase) serum revealed proteins of mol.wt. 56 000 and 42 000 in addition to the heavy and light chains. The ratio of the 56 000 mol.wt. to the 42 000 mol.wt. protein increased under dietary conditions that resulted in an increase in the apparent specific activity of hepatic pyruvate kinase. The 42 000 mol.wt. protein was removed from immunoprecipitates if the liver cytosol was partially purified by pH precipitation and (NH4)2SO4 fractionation before addition of the antiserum. This technique may be used to analyse the formation of pure L-type pyruvate kinase in liver. By using H14CO3-labelling, the t1/2 of L-type pyruvate kinase was estimated as 75 +/- 1.7 h in post-weaned high-carbohydrate-diet-fed rats. Before weaning there was little immunoreactive pyruvate kinase in rat liver cytosol. Induction began between 6 and 24 h after weaning and reached a maximum value 120 h after weaning. When clearly enhanced total pyruvate kinase activity was first observed at 24 h post-weaning, the apparent specific activity of hepatic pyruvate kinase was considerably lower than the specific activity of the pure isolated enzyme. When the induction of L-type pyruvate kinase was monitored by the incorporation of L-[4,5-3H]leucine, the maximum rate of synthesis occurred 24--48 h after weaning. After this period synthesis declined, indicating a relatively slow turnover of the enzyme once the enzyme concentration was established in the liver.  相似文献   

18.
Y B Lombardo  L A Menahan 《Life sciences》1978,22(12):1033-1042
The active form (PDHa) and total activity of pyruvate dehydrogenase (PDH) were measured in homogenates from heart muscle, epididymal fat pads and liver of genetically obese hyperglycemic mice and compared with similar data derived from lean controls or Swiss albino mice. Both PDHa and total PDH activities were similar in heart muscle from all mice with a precipitous decrease in the PDHa upon fasting. Adipose tissue and liver of obese mice had a PDHa level that was almost two-fold higher than either lean control or Swiss albino mice. Fasting for 24 hours decreased the elevated activity of PDHa in adipose tissue and liver in obese mice to a value that was comparable to lean control or Swiss albino mice, fasted similarly. The elevation in both the active form and total activity of pyruvate dehydrogenase in livers from obese mice could explain the increased provision of acetyl-CoA units necessary for the accelerated hepatic lipogenesis observed with this mouse, a model for human obesity and insulin resistance.  相似文献   

19.
Oxygen consumption (VO2) and beta-hydroxyacyl-CoA dehydrogenase (beta OAC) activity were measured in isolated mitochondria of developing rat kidney from late fetal to adult age. In the presence of palmitoyl-L-carnitine, VO2 consumption was higher in suckling than in adult rats while beta OAC activity rose during the postnatal period and declined after weaning. During postnatal development, the high level of mitochondrial fatty acid oxidation was linked to the high level of fatty acid supply and any change in lipid diet altered mitochondrial fatty acid oxidation. By contrast at adult age, a high fat diet did not change either mitochondrial fatty acid oxidation or beta OAC activity measured in two nephron structures (PCT and mTAL). Dietary lipids seem to play an important role in the evolution of mitochondrial fatty acid oxidation in developing rat kidney.  相似文献   

20.
Thin-layer polyacrylamide gel electrophoresis of various rat tissues revealed three major isozymes (types L, M1 and M2) and various intermediate forms of pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40). In vitro dissociation and reassociation of purified enzymes showed that the three major isozymes had homotetrameric structures. L.M2 hybrids and M1.M2 hybrids closely resembled some naturally occurring intermediates; the subunit structure of intermediates isolated from the small intestine (form 3 or form 4) were estimated to be (L)2(M2)2 and (L)(M2)3, respectively. Pyruvate kinase activity after electrophoresis could be estimated quantitatively from densitometric measurements of the electrophoretic pattern. Type L activity in fetal liver was separated from type R activity derived from intrahepatic erythropoietic cells. It changes in three distinct steps during development: it increased during the late fetal period, remained steady during the neonatal period and increased again after weaning. Some of the intermediates found in extracts of early fetal iver were shown to cross-react with both anti-L and anti-M1 serum, suggesting that they might be L.M2 or R.M2 hybrids. These hybrid enzymes were shown to appear only during early fetal and neonatal periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号