首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
In this paper a three-dimensional continuum model of a mammalian left ventricle is formulated. The stresses in the model satisfy the conditions of zero stress on the outer (epicardial surface-representing) boundary. The strains of the model are obtained from the actual dynamic geometry measurements (obtained from cineangiocardiography). Since the left ventricular muscle is incompressible, the dilatational strain is zero and hence the (three-dimensional) deviatric stress components are related to the corresponding strain components by Maxwell and Voigt rheological model analogues of one-dimensional systems; the parameters of the model are series and parallel elastic (SE, PE) elements and the contractile element (CE) (representing the sarcomere). The incorporation of the rheological features of the cardiac muscle into the three-dimensional constitutive equations (for the three-dimensional continuum model of the left ventricle) is a feature of this paper. A procedure is presented to determine the parameters of the constitutive equations (i.e., the SE, PE, and the parameters of the force-velocity relation for the CE) for the left ventricle of a subject from data on the dimensions and chamber pressure of the left ventricle. The values of these parameters characterize the rheology of the left ventricular muscle of the subject. In order to demonstrate clinical application of the analyses, in vivo data of the subjects' left ventricular pressure and dimensions are obtained, and the analyses are applied to the data to determine (for each subject) the values and characteristics of the elastic elements and CEs.  相似文献   

2.
We use the concept of a layered wall, where each separate layer is to be homogeneous, isotropic, and incompressible, to derive stress-strain relations for the middle layer muscle ring at the transverse midsection of the left ventricle; a convenient method of formulation is that based on the elastic potential function. The hoop or circumferential stress in all three layers is found using dimensional and mechanical parameters derived earlier. The various parameters are expressed as Fourier series so that their behavior over a complete ventricular cycle is known analytically. The cases of simple elongation and what we termcurvilinear simple elongation are considered for the middle layer muscle ring strain, and the resulting stress-strain relations are derived. The results are compared with an incompressible rubber-like material known as a Mooney material.  相似文献   

3.
This article deals with providing a theoretical explanation for quantitative changes in the geometry, the opening angle and the deformation parameters of the rat ventricular wall during adaptation of the passive left ventricle in diastolic dysfunction. A large deformation theory is applied to analyse transmural stress and strain distribution in the left ventricular wall considering it to be made of homogeneous, incompressible, transversely isotropic, non-linear elastic material. The basic assumptions made for computing stress distributions are that the average circumferential stress and strain for the adaptive ventricle is equal to the average circumferential stress and strain in the normotensive ventricle, respectively.All the relevant parameters, such as opening angle, twist per unit length, axial extension, internal and external radii and others, in the stress-free, unloaded and loaded states of normotensive, hypertensive and adaptive left ventricle are determined. The circumferential stress and strain distribution through the ventricular wall are also computed. Our analysis predicts that during adaptation, wall thickness and wall mass of the ventricle increase. These results are consistent with experimental findings and are the indications of initiation of congestive heart failure.  相似文献   

4.
Wave intensity analysis (WIA) is a powerful technique to study pressure and flow velocity waves in the time domain in vascular networks. The method is based on the analysis of energy transported by the wave through computation of the wave intensity dI = dPdU, where dP and dU denote pressure and flow velocity changes per time interval, respectively. In this study we propose an analytical modification to the WIA so that it can be used to study waves in conditions of time varying elastic properties, such as the left ventricle (LV) during diastole. The approach is first analytically elaborated for a one-dimensional elastic tube-model of the left ventricle with a time-dependent pressure-area relationship. Data obtained with a validated quasi-three dimensional axi-symmetrical model of the left ventricle are employed to demonstrate this new approach. Along the base-apex axis close to the base wave intensity curves are obtained, both using the standard method and the newly proposed modified method. The main difference between the standard and modified wave intensity pattern occurs immediately after the opening of the mitral valve. Where the standard WIA shows a backward expansion wave, the modified analysis shows a forward compression wave. The proposed modification needs to be taken into account when studying left ventricular relaxation, as it affects the wave type.  相似文献   

5.
Mechanical load influences embryonic ventricular growth, morphogenesis, and function. However, little is known about changes in regional passive ventricular properties during the development of altered mechanical loading conditions in the embryo. We tested the hypothesis that regional mechanical loads are a critical determinant of embryonic ventricular passive properties. We measured biaxial passive right and left ventricular (RV and LV, respectively) stress-strain relations in chick embryos at Hamburger-Hamilton stages 21 and 27 after conotruncal banding (CTB) to increase biventricular pressure load or left atrial ligation (LAL) to reduce LV volume load and increase RV volume load. In the RV, wall strains at end-diastolic (ED) pressure normalized whereas ED stresses increased after either CTB or LAL during development. In the left ventricle, both ED strain and stress normalized after CTB, whereas both remained reduced with significantly increased myocardial stiffness after LAL. These results suggest that the embryonic ventricle adapts to chronically altered mechanical loading conditions by changing specific RV and LV passive properties. Thus regional mechanical load has a critical role during cardiogenesis.  相似文献   

6.
A linear incremental finite element model is used to analyze the mechanical behavior of the left ventricle. The ventricle is treated as a heterogeneous, non-linearly elastic, isotropic, thick-walled solid of revolution. A new triaxial constitutive relation for the myocardium is presented which exhibits the observed exponential length-passive tension behavior of left ventricular papillary muscle in the limit of uniaxial tension. This triaxial relation contains three parameters: (a) a “small strain” Young's modulus, (b) a Poisson's ratio, and (c) a parameter which characterizes the nonlinear aspect of the elastic behavior of heart muscle. The inner third and outer two-thirds of the ventricular wall are assumed to have small strain Young's moduli of 30 and 60 g/cm2, respectively. The Poisson's ratio is assumed to be equal to 0.49 throughout the ventricular wall. In general, the results of this study indicate that while a linearly elastic model for the ventricle may be adequate in terms of predicting pressure-volume relationships, a linear model may have serious limitations with regard to predicting fiber elongation within the ventricular wall. For example, volumes and midwall equatorial circumferential strains predicted by the linear and nonlinear models considered in this study differ by approximately 20 and 90%, respectively, at a transmural pressure of 12 cm H2O.  相似文献   

7.
Fetal right ventricular dominance of flow and arterial pressure sensitivity were recently recognized but controversial findings. We investigated ventricular volumes, weights and dimensions in order to understand if there were anatomic differences between the ventricles which might explain these differential functional findings in the fetal sheep. Forty-four near term lambs and their hearts were weighed. Right and left ventricular free wall weights were not different. Volumes were measured by generating in vitro pressure-volume relations and by casting the two ventricles after fixation at equal, physiologic pressures. Right ventricular volume was greater than left ventricular volume by both techniques. Ventricular interaction and a restraining effect of the pericardium were present. Measurements of the fixed ventricles and their casts revealed the following: left ventricular wall thickness was slightly greater than right ventricular wall thickness; lateral ventricular diameters were not different but anteroposterior ventricular diameters were much greater in the right than left ventricle. Because of these findings, the right ventricular circumferential radii of curvature were greater than for the left ventricle as was the radius to wall thickness ratio. Greater right ventricular volume and radius to wall thickness ratio may be important factors in right ventricular flow dominance and greater sensitivity to arterial pressure.  相似文献   

8.

A computationally efficient method is described for simulating the dynamics of the left ventricle (LV) in three dimensions. LV motion is represented as a combination of a limited number of deformation modes, chosen to represent observed cardiac motions while conserving volume in the LV wall. The contribution of each mode to wall motion is determined by a corresponding time-dependent deformation variable. The principle of virtual work is applied to these deformation variables, yielding a system of ordinary differential equations for LV dynamics, including effects of muscle fiber orientations, active and passive stresses, and surface tractions. Passive stress is governed by a transversely isotropic elastic model. Active stress acts in the fiber direction and incorporates length–tension and force–velocity properties of cardiac muscle. Preload and afterload are represented by lumped vascular models. The variational equations and their numerical solutions are verified by comparison to analytic solutions of the strong form equations. Deformation modes are constructed using Fourier series with an arbitrary number of terms. Greater numbers of deformation modes increase deformable model resolution but at increased computational cost. Simulations of normal LV motion throughout the cardiac cycle are presented using models with 8, 23, or 46 deformation modes. Aggregate quantities that describe LV function vary little as the number of deformation modes is increased. Spatial distributions of stress and strain change as more deformation modes are included, but overall patterns are conserved. This approach yields three-dimensional simulations of the cardiac cycle on a clinically relevant time-scale.

  相似文献   

9.
We use the dimensional parameters previously derived (Bull. Math. Biophysics,28, 355–362, 1966), the ventricular pressure expressed as a Fourier series, and several additional assumptions to derive expressions for the mechanical parameters of the ventricle: flow, muscle segment length, surface area, transmural force, wall tension and work. The wall of the ventricle is assumed to consist of three layers of muscle. Each of the mechanical parameters is expressed in terms of Fourier series.  相似文献   

10.
The aim of the study was to investigate the relative contributions of geometrical and material factors to overall left-ventricular cavity stiffness. Left-ventricular cavity shapes were reconstructed using a computer and the variation of myocardial elastic modulus was calculated, by the finite element method, through the passive phase of diastole when rising volume coincided with rising pressure. Geometric data were obtained from biplane cineangiography, with micromanometer pressure measurements, for ten patients with left ventricular disease. Dimensional analysis was applied to the initial and derived data from which the influences of myocardial compliance, wall thickness-to-long dimension ratio, and aspect ratio (long-to-short axes) were determined. The ratio between the volume elasticity and the myocardial modulus of elasticity, the normalized stiffness ratio (NSR), is proposed as a useful index of left ventricular mechanical behaviour in diastole. The volume elasticity of the chamber is dependent not only upon the myocardium elastic modulus and the wall thickness ratio, but also on the shape of the chambe. Changes in the thickness/radius ratio of the ventricle have less effect upon its distention than those in the long dimension/radius ratio. The left ventricle becomes more spherical in shpae through diastole and hence becomes stiffer by this geometric mechanism.  相似文献   

11.
The energy cost of the left ventricle is quantitatively analyzed on the basis of the following assumptions: (1) The left ventricle is assumed to be an isotropic, homogeneous elastic, thick, spherical shell. (2) The ventricular wall is made up of a finite number of thin concentric shells. (3) The energetics of the left ventricle is in accordance with the second law of thermodynamics. An expression for the work done during ventricular contraction is derived according to the definition of physical work. The energy liberation during isovolumic contraction is formulated parallel to the concepts of heat production in skeletal muscle during isometric contraction. This expression gives the total work done per stroke in terms of mean systolic pressure, end diastolic volume, stroke volume and wall thickness during diastolic phase. Supported by a research fellowship and research grant from the Canadian Heart Foundation.  相似文献   

12.
The left ventricle may be described as a time, volume and flow dependent pressure generator. First, isovolumic pressure is measured at various end-diastolic volumes. Next, pressure is adjusted to account for small changes accompanying ejection, denoted the ejection effect. The resulting analytical function can describe pressure generation and ventricular outflow of the ventricle under a wide range of contractile and vascular conditions. This paradigm is unique in separating isovolumic from ejecting ventricular properties, as well as ventricular from vascular conditions.  相似文献   

13.
The ventricular pressure profile is characteristic of the cardiac contraction progress and is useful to evaluate the cardiac performance. In this contribution, a tissue-level electromechanical model of the left ventricle is proposed, to assist the interpretation of left ventricular pressure waveforms. The left ventricle has been modeled as an ellipsoid composed of twelve mechano-hydraulic sub-systems. The asynchronous contraction of these twelve myocardial segments has been represented in order to reproduce a realistic pressure profiles. To take into account the different energy domains involved, the tissue-level scale and to facilitate the building of a modular model, multiple formalisms have been used: Bond Graph formalism for the mechano-hydraulic aspects and cellular automata for the electrical activation. An experimental protocol has been defined to acquire ventricular pressure signals from three pigs, with different afterload conditions. Evolutionary Algorithms have been used to identify the model parameters in order to minimize the error between experimental and simulated ventricular pressure signals. Simulation results show that the model is able to reproduce experimental ventricular pressure. In addition, electro-mechanical activation times have been determined in the identification process. For example, the maximum electrical activation time is reached, respectively, 96.5, 139.3 and 131.5 ms for the first, second, and third pigs. These preliminary results are encouraging for the application of the model on non-invasive data like ECG, arterial pressure or myocardial strain.  相似文献   

14.
A model of left ventricular function is developed based on morphological characteristics of the myocardial tissue. The passive response of the three-dimensional collagen network and the active contribution of the muscle fibers are integrated to yield the overall response of the left ventricle which is considered to be a thick wall cylinder. The deformation field and the distributions of stress and pressure are determined at each point in the cardiac cycle by numerically solving three equations of equilibrium. Simulated results in terms of the ventricular deformation during ejection and isovolumic cycles are shown to be in good qualitative agreement with experimental data. It is shown that the collagen network in the heart has considerable effect on the pressure-volume loops. The particular pattern of spatial orientation of the collagen determines the ventricular recoil properties in early diastole. The material properties (myocardial stiffness and contractility) are shown to affect both the pressure-volume loop and the deformation pattern of the ventricle. The results indicate that microstructural consideration offer a realistic representation of the left ventricle mechanics.  相似文献   

15.
G Pelle  J Ohayon  C Oddou  P Brun 《Biorheology》1984,21(5):709-722
Different rheological concepts and theoretical studies have been recently presented using models of myocardial mechanics. Complex analysis of the mechanical behavior of the left ventricular wall have been developed in order to estimate the local stresses and deformations that occur during the heart cycle as well as the ventricular stroke volume and pressure. Theoretical models have taken into account non-linear and viscoelastic passive properties of the myocardium tissue, when subjected to large deformations, through given strain energy functions or stress-strain relations. Different prolate spheroid geometries have been considered for such thick shell cardiac structure. During the active state of the contraction, the rheological behavior of the fibers has been described using different muscle models and relationships between fiber tension and strain, and activation degree. A forthcoming approach for bridging the gap between the knowledge of the muscle fiber microrheological properties and the study of the mechanical behavior of the entire ventricle, consists in including anisotropic and inhomogeneous effects through fiber direction field.  相似文献   

16.
A versatile method of finite-element analysis is presented for the determination of the stress distributions in the left ventricular myocardial wall. The instantaneous shapes of the left ventricular myocardial wall, measured at 0,5 mm intervals and at a rate 0f 60 images/sec during a cardiac cycle, are approximated by axisymmetric shells following the approach of Gould et al. and analysed by the method of incremental loadings to account for the changing transmural pressure. The ventricular wall is mathematically divided up into coaxial rings of triagular cross sections so that determination of the stresses at any point within the wall can be achieved by assigning increased number of nodes across the wall thickness in the regions of the left ventricular wall where particular attention is needed. Appropriate boundary conditions are defined at the base of the left ventricle so that it can be treated as a shell with an open end. The computer program, which implements all the stress calculations involved, depends on the dimensions of the left ventricular wall measured from an operator-interactive roengen videometry system. It carries out the sequential formation of the nodes and elements and includes a CALCOMP subroutine to plot the finite-element partitioning of the instantaneous shape. Illustrative results of the end-diastolic stress distributions within the myocardial wall of a metabolically-supported, isolated, working canine left ventricle are given. This technique predicts higher endocardial meridional and hoop wall stresses relative to the stresses in the middle and epicardial region than those obtained with previous models.  相似文献   

17.
Simultaneous measurement of left ventricular dimension and wall thickness by M-mode echocardiography, of left ventricular pressure by a tip-transducer manometer, and of the calibrated apexcardiogram with a pixie beam transducer, were made during acute experiments on anaesthetized dogs. Instantaneo us values for chamber dimensions and wall thickness were obtained throughout the heart cycle by digitizing the echo-mechanocardigrams.From these data myocardial stresses, derived from a thick shell theory (meridional and circumferential components) and from Laplace's law, were computed. Laplace stress is shown to be an adequate expression for average wall stress. Its value was correlated with the calibrated apexcardiogram. The present investigation suggests that to a certain extent, the apexcardiogram not only reflects pressure changes but also dimensional changes of the left ventricle.  相似文献   

18.
The purpose of this paper is to formulate from the equations of fluid mechanics an equation which describes the transmitral pressure-flow relationship. According to the linear momentum equation applied to the atrioventricular coupling, the left-atrium-left-ventricle pressure difference (Pa-Pv) can be written as Pa-P v = A delta v/delta t + B v 2 + C v, where v is the transmitral blood velocity and A, B, and C are variables related to the geometry of the atrium, ventricle and mitral orifice, respectively. Based on this theory, Pa-Pv is calculated noninvasively in a patient with a nonobstructive mitral valve. Mitral flow and cardiac dimensions recorded by Doppler echocardiography are digitized and analyzed. Calculation shows that Pa-Pv reaches its peak value at the time of flow peak acceleration and has already considerably decreased at the time of peak velocity. The time course of calculated Pa-Pv is in close agreement with the published experimental catherization data. Numerical computation of early diastolic left atrium and left ventricle pressure curves based on the experimental data of others for the time constant of left ventricular relaxation, left atrial and ventricular chambers stiffness constants, combined with sine-waveform-simulated mitral flow, verifies the time course and the magnitude of Pa-Pv as predicted from flow equations. This paper provides a theoretical method for the noninvasive assessment of the transmitral pressure-flow relationship using ultrasound technique and might help to achieve a better understanding of the diastolic function as assessed by Doppler echocardiography.  相似文献   

19.
Using three intraventricular diameter signals obtained from ultrasonic distance gauges and applying the general ellipsoid model to the left ventricle, it was possible to obtain the left ventricular volume signal Implanting a miniature transducer in the left ventricle the pressure signal was attained. With these two signals the pressure-volume diagrams were constructed on line, and ventricular function during load manoeuvres could be studied from them. Because the whole process was done on line, using a microcomputer, the performance of the left ventricle to load manoeuvres in different conditions could be seen instantly.  相似文献   

20.
Two types of intraventricular pressure differences within the left ventricle of man are described. The first is encountered in cases of muscular (or fibrous) subaortic stenosis, in which the outflow tract pressure distal to the stenosis (and proximal to the aortic valve) is low, whereas all pressures recorded in the left ventricle proximal to the stenosis, including that just inside the mitral valve (the initial inflow tract pressure) are high.The second type of intraventricular pressure difference may be recorded in patients without muscular subaortic stenosis when a heart catheter is advanced to the left ventricular wall in such a manner that it becomes imbedded or entrapped by cardiac muscle in systole. Such an entrapped catheter records a high intraventricular pressure that is believed to reflect intramyocardial tissue pressure, which normally exceeds intracavitary pressure. In such cases the initial inflow tract pressure is not high and is precisely equal to the outflow tract systolic pressure, i.e. both are recording intracavity pressure. This type of intramyocardial to intracavitary pressure difference may also be encountered in the left ventricle of dogs.The recent suggestion that intraventricular pressure differences in the left ventricle of cases of muscular subaortic stenosis are due to catheter entrapment by cardiac muscle is refuted by using the initial inflow tract pressure as the means of differentiation between the two types of intraventricular pressure differences outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号