首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
MacDonald, Maureen, Preben K. Pedersen, and Richard L. Hughson. Acceleration ofO2 kinetics in heavysubmaximal exercise by hyperoxia and prior high-intensity exercise.J. Appl. Physiol. 83(4):1318-1325, 1997.We examined the hypothesis thatO2 uptake (O2) wouldchange more rapidly at the onset of step work rate transitions inexercise with hyperoxic gas breathing and after prior high-intensityexercise. The kinetics ofO2 were determined from themean response time (MRT; time to 63% of total change inO2) andcalculations of O2 deficit andslow component during normoxic and hyperoxic gas breathing in one groupof seven subjects during exercise below and above ventilatory threshold(VT) and in another group of seven subjects during exercise above VTwith and without prior high-intensity exercise. In exercise transitions below VT, hyperoxic gas breathing did not affect the kinetic response of O2 at theonset or end of exercise. At work rates above VT, hyperoxic gasbreathing accelerated both the on- and off-transient MRT, reduced theO2 deficit, and decreased theO2 slow component fromminute 3 to minute6 of exercise, compared with normoxia. Prior exerciseabove VT accelerated the on-transient MRT and reduced theO2 slow component fromminute 3 to minute6 of exercise in a second bout of exercise with bothnormoxic and hyperoxic gas breathing. However, the summatedO2 deficit in the second normoxicand hyperoxic steps was not different from that of the first steps inthe same gas condition. Faster on-transient responses in exerciseabove, but not below, VT with hyperoxia and, to a lesser degree, afterprior high-intensity exercise above VT support the theory of anO2 transport limitation at theonset of exercise for workloads >VT.

  相似文献   

2.
Chilibeck, P. D., D. H. Paterson, D. A. Cunningham, A. W. Taylor, and E. G. Noble. Muscle capillarization,O2 diffusion distance, andO2 kinetics in old andyoung individuals. J. Appl. Physiol.82(1): 63-69, 1997.The relationships between muscle capillarization, estimated O2diffusion distance from capillary to mitochondria, andO2 uptake(O2) kineticswere studied in 11 young (mean age, 25.9 yr) and 9 old (mean age, 66.0 yr) adults. O2kinetics were determined by calculating the time constants () forthe phase 2 O2 adjustment to andrecovery from the average of 12 repeats of a 6-min, moderate-intensityplantar flexion exercise. Muscle capillarization was determined fromcross sections of biopsy material taken from lateral gastrocnemius.Young and old groups had similarO2 kinetics(O2-on = 44 vs. 48 s;O2-off = 33 vs. 44 s, for young and old, respectively), muscle capillarization, andestimated O2 diffusion distances.Muscle capillarization, expressed as capillary density or averagenumber of capillary contacts per fiber/average fiber area, and theestimates of diffusion distance were significantly correlated toO2-off kinetics in theyoung (r = 0.68 to 0.83;P < 0.05). We conclude that1) capillarization andO2 kinetics during exerciseof a muscle group accustomed to everyday activity (e.g., walking) arewell maintained in old individuals, and2) in the young, recovery of O2 after exercise isfaster, with a greater capillary supply over a given muscle fiber areaor shorter O2 diffusion distances.

  相似文献   

3.
The purpose ofthis study was to examine the influence of the type of exercise(running vs. cycling) on the O2uptake (O2) slow component.Ten triathletes performed exhaustive exercise on a treadmill and on acycloergometer at a work rate corresponding to 90% of maximalO2 (90% work rate maximalO2). The duration of thetests before exhaustion was superimposable for both type of exercises(10 min 37 s ± 4 min 11 s vs. 10 min 54 s ± 4 min 47 s forrunning and cycling, respectively). TheO2 slow component (difference between O2 atthe last minute and minute 3 ofexercise) was significantly lower during running compared with cycling(20.9 ± 2 vs. 268.8 ± 24 ml/min). Consequently, there was norelationship between the magnitude of theO2 slow component and thetime to fatigue. Finally, because blood lactate levels at the end of the tests were similar for both running (7.2 ± 1.9 mmol/l) and cycling (7.3 ± 2.4 mmol/l), there was a clear dissociation between blood lactate and the O2slow component during running. These data demonstrate that1) theO2 slow component dependson the type of exercise in a group of triathletes and2) the time to fatigue isindependent of the magnitude of theO2 slow component and bloodlactate concentration. It is speculated that the difference in muscularcontraction regimen between running and cycling could account for thedifference in theO2 slow component.

  相似文献   

4.
Respiratory muscle work compromises leg blood flow during maximal exercise   总被引:10,自引:0,他引:10  
Harms, Craig A., Mark A. Babcock, Steven R. McClaran, DavidF. Pegelow, Glenn A. Nickele, William B. Nelson, and Jerome A. Dempsey.Respiratory muscle work compromises leg blood flow during maximalexercise. J. Appl. Physiol.82(5): 1573-1583, 1997.We hypothesized that duringexercise at maximal O2 consumption (O2 max),high demand for respiratory muscle blood flow() would elicit locomotor muscle vasoconstrictionand compromise limb . Seven male cyclists(O2 max 64 ± 6 ml · kg1 · min1)each completed 14 exercise bouts of 2.5-min duration atO2 max on a cycleergometer during two testing sessions. Inspiratory muscle work waseither 1) reduced via aproportional-assist ventilator, 2)increased via graded resistive loads, or3) was not manipulated (control).Arterial (brachial) and venous (femoral) blood samples, arterial bloodpressure, leg (legs;thermodilution), esophageal pressure, andO2 consumption(O2) weremeasured. Within each subject and across all subjects, at constantmaximal work rate, significant correlations existed(r = 0.74-0.90;P < 0.05) between work of breathing(Wb) and legs (inverse), leg vascular resistance (LVR), and leg O2(O2 legs;inverse), and between LVR and norepinephrine spillover. Mean arterialpressure did not change with changes in Wb nor did tidal volume orminute ventilation. For a ±50% change from control in Wb,legs changed 2 l/min or 11% of control, LVRchanged 13% of control, and O2extraction did not change; thusO2 legschanged 0.4 l/min or 10% of control. TotalO2 max was unchangedwith loading but fell 9.3% with unloading; thusO2 legsas a percentage of totalO2 max was 81% incontrol, increased to 89% with respiratory muscle unloading, anddecreased to 71% with respiratory muscle loading. We conclude that Wbnormally incurred during maximal exercise causes vasoconstriction inlocomotor muscles and compromises locomotor muscle perfusion andO2.

  相似文献   

5.
Moon, Jon K., and Nancy F. Butte. Combined heart rateand activity improve estimates of oxygen consumption and carbon dioxideproduction rates. J. Appl. Physiol.81(4): 1754-1761, 1996.Oxygen consumption(O2) andcarbon dioxide production (CO2) rates were measuredby electronically recording heart rate (HR) and physical activity (PA).Mean daily O2 andCO2 measurements by HR andPA were validated in adults (n = 10 women and 10 men) with room calorimeters. Thirteen linear and nonlinear functions of HR alone and HR combined with PA were tested as models of24-h O2 andCO2. Mean sleepO2 andCO2 were similar to basalmetabolic rates and were accurately estimated from HR alone[respective mean errors were 0.2 ± 0.8 (SD) and0.4 ± 0.6%]. The range of prediction errorsfor 24-h O2 andCO2 was smallestfor a model that used PA to assign HR for each minute to separateactive and inactive curves(O2, 3.3 ± 3.5%; CO2, 4.6 ± 3%). There were no significant correlations betweenO2 orCO2 errors and subject age,weight, fat mass, ratio of daily to basal energy expenditure rate, orfitness. O2,CO2, and energy expenditurerecorded for 3 free-living days were 5.6 ± 0.9 ml · min1 · kg1,4.7 ± 0.8 ml · min1 · kg1,and 7.8 ± 1.6 kJ/min, respectively. Combined HR and PA measured 24-h O2 andCO2 with a precisionsimilar to alternative methods.

  相似文献   

6.
Barstow, Thomas J., Andrew M. Jones, Paul H. Nguyen, andRichard Casaburi. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.J. Appl. Physiol. 81(4):1642-1650, 1996.We tested the hypothesis that the amplitude ofthe additional slow component ofO2 uptake(O2) during heavy exerciseis correlated with the percentage of type II (fast-twitch) fibers inthe contracting muscles. Ten subjects performed transitions to a workrate calculated to require aO2 equal to 50% betweenthe estimated lactate (Lac) threshold and maximalO2 (50%).Nine subjects consented to a muscle biopsy of the vastus lateralis. Toenhance the influence of differences in fiber type among subjects,transitions were made while subjects were pedaling at 45, 60, 75, and90 rpm in different trials. Baseline O2 was designed to besimilar at the different pedal rates by adjusting baseline work ratewhile the absolute increase in work rate above the baseline was thesame. The O2 response after the onset of exercise was described by a three-exponential model. Therelative magnitude of the slow component at the end of 8-min exercisewas significantly negatively correlated with %type I fibers at everypedal rate (r = 0.64 to 0.83, P < 0.05-0.01). Furthermore,the gain of the fast component forO2 (asml · min1 · W1)was positively correlated with the %type I fibers across pedal rates(r = 0.69-0.83). Increase inpedal rate was associated with decreased relative stress of theexercise but did not affect the relationships between%fiber type and O2parameters. The relative contribution of the slow component was alsosignificantly negatively correlated with maximalO2(r = 0.65), whereas the gainfor the fast component was positively associated(r = 0.68-0.71 across rpm). Theamplitude of the slow component was significantly correlated with netend-exercise Lac at all four pedal rates(r = 0.64-0.84), but Lac was notcorrelated with %type I (P > 0.05).We conclude that fiber type distribution significantly affects both thefast and slow components ofO2 during heavy exerciseand that fiber type and fitness may have both codependent andindependent influences on the metabolic and gas-exchange responses toheavy exercise.

  相似文献   

7.
Grassi, Bruno, Claudio Marconi, Michael Meyer, Michel Rieu,and Paolo Cerretelli. Gas exchange and cardiovascular kinetics with different exercise protocols in heart transplant recipients. J. Appl. Physiol. 82(6): 1952-1962, 1997.Metabolicand cardiovascular adjustments to various submaximal exercises wereevaluated in 82 heart transplant recipients (HTR) and in 35 controlsubjects (C). HTR were tested 21.5 ± 25.3 (SD) mo (range1.0-137.1 mo) posttransplantation. Three protocols were used:protocol A consisted of 5 min of rectangular 50-W load repeatedtwice, 5 min apart [5 min rest, 5 min 50 W (Ex 1), 5 minrecovery, 5 min 50 W (Ex 2)]; protocol B consistedof 5 min of rectangular load at 25, 50, or 75 W; protocol Cconsisted of 15 min of rectangular load at 25 W. Breath-by-breathpulmonary ventilation (E),O2 uptake (O2),and CO2 output(CO2) were determined.During protocol A, beat-by-beat cardiacoutput () was estimated by impedance cardiography. The half times (t1/2) of the on- andoff-kinetics of the variables were calculated. In all protocols,t1/2 values forO2 on-,E on-, andCO2 on-kinetics were higher(i.e., the kinetics were slower) in HTR than in C, independently ofworkload and of the time posttransplantation. Also,t1/2 on- was higher in HTRthan in C. In protocol A, no significant difference of t1/2 O2on- was observed in HTR between Ex 1 (48 ± 9 s) and Ex2 (46 ± 8 s), whereas t1/2 on- was higher during Ex 1 (55 ± 24 s)than during Ex 2 (47 ± 15 s). In all protocols and for all variables, the t1/2 off-values were higher in HTRthan in C. In protocol C, no differences of steady-stateE,O2, andCO2 were observed in bothgroups between 5, 10, and 15 min of exercise. We conclude that1) in HTR, a "priming" exercise, while effective inspeeding up the adjustment of convective O2 flow to muscle fibers during a second on-transition, did not affect theO2 on-kinetics, suggestingthat the slower O2 on- inHTR was attributable to peripheral (muscular) factors; 2) thedissociation between on- andO2 on-kinetics in HTRindicates that an inertia of muscle metabolic machinery is the mainfactor dictating theO2 on-kinetics; and 3) theO2 off-kinetics was slowerin HTR than in C, indicating a greater alactic O2 deficitin HTR and, therefore, a sluggish muscleO2 adjustment.

  相似文献   

8.
Smaller lungs in women affect exercise hyperpnea   总被引:2,自引:0,他引:2  
We subjected 29 healthy young women (age: 27 ± 1 yr) with a wide range of fitness levels [maximal oxygenuptake (O2 max): 57 ± 6 ml · kg1 · min1;35-70ml · kg1 · min1]to a progressive treadmill running test. Our subjects had significantly smaller lung volumes and lower maximal expiratory flow rates, irrespective of fitness level, compared with predicted values for age-and height-matched men. The higher maximal workload in highly fit(O2 max > 57 ml · kg1 · min1,n = 14) vs. less-fit(O2 max < 56 ml · kg1 · min1,n = 15) women caused a higher maximalventilation (E) with increased tidal volume (VT)and breathing frequency (fb) atcomparable maximal VT/vitalcapacity (VC). More expiratory flow limitation (EFL; 22 ± 4% ofVT) was also observed duringheavy exercise in highly fit vs. less-fit women, causing higherend-expiratory and end-inspiratory lung volumes and greater usage oftheir maximum available ventilatory reserves.HeO2 (79% He-21%O2) vs. room air exercise trialswere compared (with screens added to equalize external apparatusresistance). HeO2 increasedmaximal expiratory flow rates (20-38%) throughout the range ofVC, which significantly reduced EFL during heavy exercise. When EFL wasreduced with HeO2, VT,fb, andE (+16 ± 2 l/min) weresignificantly increased during maximal exercise. However, in theabsence of EFL (during room air exercise),HeO2 had no effect onE. We conclude that smaller lungvolumes and maximal flow rates for women in general, and especiallyhighly fit women, caused increased prevalence of EFL during heavyexercise, a relative hyperinflation, an increased reliance onfb, and a greater encroachment onthe ventilatory "reserve." Consequently,VT andE are mechanically constrained duringmaximal exercise in many fit women because the demand for highexpiratory flow rates encroaches on the airways' maximum flow-volumeenvelope.

  相似文献   

9.
Persons with type II diabetes mellitus(DM), even without cardiovascular complications have a decreasedmaximal oxygen consumption (O2 max) andsubmaximal oxygen consumption(O2) duringgraded exercise compared with healthy controls. Weevaluated the hypothesis that change in the rate ofO2 in response to the onsetof constant-load exercise (measured byO2-uptakekinetics) was slowed in persons with type II DM. Ten premenopausalwomen with uncomplicated type II DM, 10 overweight, nondiabeticwomen, and 10 lean, nondiabetic women had aO2 max test. On twoseparate occasions, subjects performed 7-min bouts of constant-loadbicycle exercise at workloads below and above the lactate threshold toenable measurements of O2kinetics and heart rate kinetics (measuring rate of heart rate rise).O2 maxwas reduced in subjects with type II DM compared with both lean andoverweight controls (P < 0.05).Subjects with type II DM had slowerO2 and heart rate kineticsthan did controls at constant workloads below the lactate threshold.The data suggest a notable abnormality in the cardiopulmonary responseat the onset of exercise in people with type II DM. The findings mayreflect impaired cardiac responses to exercise, although an additional defect in skeletal muscle oxygen diffusion or mitochondrial oxygen utilization is also possible.

  相似文献   

10.
Chirpaz-Oddou, M. F., A. Favre-Juvin, P. Flore, J. Eterradossi, M. Delaire, F. Grimbert, and A. Therminarias. Nitric oxide response in exhaled air during an incremental exhaustive exercise. J. Appl. Physiol. 82(4):1311-1318, 1997.This study examines the response of the exhalednitric oxide (NO) concentration (CNO) and the exhaled NOoutput(NO)during incremental exercise and during recovery in six sedentary women,seven sedentary men, and eight trained men. The protocolconsisted of increasing the exercise intensity by 30 W every 3 minuntil exhaustion, followed by 5 min of recovery. Minute ventilation(E), oxygen consumption (O2), carbon dioxideproduction, heart rate, CNO, andNOwere measured continuously. TheCNO in exhaled air decreasedsignificantly provided that the exercise intensity exceeded 65% of thepeak O2. It reached similarvalues, at exhaustion, in all three groups. TheNO increasedproportionally with exercise intensity up to exhaustion and decreasedrapidly during recovery. At exhaustion, the mean values weresignificantly higher for trained men than for sedentary men andsedentary women. During exercise,NOcorrelates well with O2,carbon dioxide production, E, and heartrate. For the same submaximal intensity, and thus a givenO2 and probably a similarcardiac output,NO appearedto be similar in all three groups, even if theE was different. These results suggestthat, during exercise,NO is mainlyrelated to the magnitude of aerobic metabolism and that thisrelationship is not affected by gender differences or by noticeabledifferences in the level of physical training.

  相似文献   

11.
We have recently demonstrated that changes inthe work of breathing during maximal exercise affect leg blood flow andleg vascular conductance (C. A. Harms, M. A. Babcock, S. R. McClaran, D. F. Pegelow, G. A. Nickele, W. B. Nelson, and J. A. Dempsey. J. Appl. Physiol. 82: 1573-1583,1997). Our present study examined the effects of changesin the work of breathing on cardiac output (CO) during maximalexercise. Eight male cyclists [maximalO2 consumption(O2 max):62 ± 5 ml · kg1 · min1]performed repeated 2.5-min bouts of cycle exercise atO2 max. Inspiratorymuscle work was either 1) at controllevels [inspiratory esophageal pressure (Pes): 27.8 ± 0.6 cmH2O],2) reduced via a proportional-assistventilator (Pes: 16.3 ± 0.5 cmH2O), or 3) increased via resistive loads(Pes: 35.6 ± 0.8 cmH2O).O2 contents measured in arterialand mixed venous blood were used to calculate CO via the direct Fickmethod. Stroke volume, CO, and pulmonaryO2 consumption(O2) were not different(P > 0.05) between control andloaded trials atO2 max but were lower(8, 9, and 7%, respectively) than control withinspiratory muscle unloading atO2 max. Thearterial-mixed venous O2difference was unchanged with unloading or loading. We combined thesefindings with our recent study to show that the respiratory muscle work normally expended during maximal exercise has two significant effectson the cardiovascular system: 1) upto 14-16% of the CO is directed to the respiratory muscles; and2) local reflex vasoconstriction significantly compromises blood flow to leg locomotor muscles.

  相似文献   

12.
We evaluated the hypotheses that endurance training increasesrelative lipid oxidation over a wide range of relative exercise intensities in fed and fasted states and that carbohydrate nutrition causes carbohydrate-derived fuels to predominate as energy sources during exercise. Pulmonary respiratory gas-exchange ratios [(RER) = CO2production/O2 consumption(O2)] were determinedduring four relative, graded exercise intensities in both fed andfasted states. Seven untrained (UT) men and seven category 2 and 3 US Cycling Federation cyclists (T) exercised in the morning in random order, with target power outputs of 20 and 40% peakO2(O2 peak) for 2 h,60% O2 peak for 1.5 h, and 80%O2 peak fora minimum of 30 min after either a 12-h overnight fast or 3 h after astandardized breakfast. Actual metabolic responses were 22 ± 0.33, 40 ± 0.31, 59 ± 0.32, and 75 ± 0.39%O2 peak. T subjectsshowed significantly (P < 0.05)decreased RER compared with UT subjects at absolute workloads when fedand fasted. Fasting significantly decreased RER values compared withthe fed state at 22, 40, and 59%O2 peak inT and at 40 and 59%O2 peak in UTsubjects. Training decreased (P < 0.05) mean RER values compared with UT subjects at 22%O2 peak when theyfasted, and at 40%O2 peak when fed orfasted, but not at higher relative exercise intensities in eithernutritional state. Our results support the hypothesis that endurancetraining enhances lipid oxidation in men after a 12-h overnight fast at low relative exercise intensities (22 and 40%O2 peak). However, atraining effect on RER was not apparent at high relative exercise intensities (59 and 75%O2 peak). Becausemost athletes train and compete at exercise intensities >40% maximalO2, they will not oxidize agreater proportion of lipids compared with untrained subjects,regardless of nutritional state.  相似文献   

13.
Human ventilatory response to 8h of euoxic hypercapnia   总被引:1,自引:0,他引:1  
Tansley, John G., Michala E. F. Pedersen, Christine Clar,and Peter A. Robbins. Human ventilatory response to 8 h of euoxic hypercapnia. J. Appl.Physiol. 84(2): 431-434, 1998.Ventilation (E) risesthroughout 40 min of constant elevated end-tidalPCO2 without reaching steady state(S. Khamnei and P. A. Robbins. Respir. Physiol. 81: 117-134, 1990). The present studyinvestigates 8 h of euoxic hypercapnia to determine whetherE reachessteady state within this time. Two protocols were employed:1) 8-h euoxic hypercapnia (end-tidalPCO2 = 6.5 Torr above prestudy value,end-tidal PO2 = 100 Torr) followed by 8-h poikilocapnic euoxia; and2) control, where the inspired gaswas air. Ewas measured over a 5-min period before the experiment and then hourly over a 16-h period. In the hypercapnia protocol,E had notreached a steady state by the first hour(P < 0.001, analysis of variance), but there were no further significant differences inEover hours 2-8 (analysis ofvariance). Efell promptly on return to eucapnic conditions. We conclude that,whereas there is a component of theE responseto hypercapnia that is slow, there is no progressive rise inE throughoutthe 8-h period.

  相似文献   

14.
Tantucci, C., P. Bottini, M. L. Dottorini, E. Puxeddu, G. Casucci, L. Scionti, and C. A. Sorbini. Ventilatory response toexercise in diabetic subjects with autonomic neuropathy.J. Appl. Physiol. 81(5):1978-1986, 1996.We have used diabetic autonomic neuropathy as amodel of chronic pulmonary denervation to study the ventilatoryresponse to incremental exercise in 20 diabetic subjects, 10 with(Dan+) and 10 without (Dan) autonomic dysfunction, and in 10 normal control subjects. Although both Dan+ and Dan subjectsachieved lower O2 consumption andCO2 production(CO2) thancontrol subjects at peak of exercise, they attained similar values ofeither minute ventilation(E) oradjusted ventilation (E/maximalvoluntary ventilation). The increment of respiratory rate withincreasing adjusted ventilation was much higher in Dan+ than inDan and control subjects (P < 0.05). The slope of the linearE/CO2relationship was 0.032 ± 0.002, 0.027 ± 0.001 (P < 0.05), and 0.025 ± 0.001 (P < 0.001) ml/min inDan+, Dan, and control subjects, respectively. Bothneuromuscular and ventilatory outputs in relation to increasingCO2 were progressivelyhigher in Dan+ than in Dan and control subjects. At peak ofexercise, end-tidal PCO2 was muchlower in Dan+ (35.9 ± 1.6 Torr) than in Dan (42.1 ± 1.7 Torr; P < 0.02) and control (42.1 ± 0.9 Torr; P < 0.005) subjects.We conclude that pulmonary autonomic denervation affects ventilatoryresponse to stressful exercise by excessively increasing respiratoryrate and alveolar ventilation. Reduced neural inhibitory modulationfrom sympathetic pulmonary afferents and/or increasedchemosensitivity may be responsible for the higher inspiratoryoutput.

  相似文献   

15.
Inhibition of carbonic anhydrase (CA) isassociated with a lower plasma lactate concentration([La]pl)during fatiguing exercise. We hypothesized that a lower[La]plmay be associated with faster O2uptake (O2) kinetics during constant-load exercise. Seven men performed cycle ergometer exercise during control (Con) and acute CA inhibition with acetazolamide (Acz,10 mg/kg body wt iv). On 6 separate days, each subject performed 6-minstep transitions in work rate from 0 to 100 W (below ventilatory threshold,<ET)or to a O2 corresponding to~50% of the difference between the work rate atET and peakO2(>ET).Gas exchange was measured breath by breath. Trials were interpolated at1-s intervals and ensemble averaged to yield a single response. The mean response time (MRT, i.e., time to 63% of total exponential increase) for on- and off-transients was determined using a two- (<ET) or athree-component exponential model(>ET).Arterialized venous blood was sampled from a dorsal hand vein andanalyzed for[La]pl.MRT was similar during Con (31.2 ± 2.6 and 32.7 ± 1.2 s for onand off, respectively) and Acz (30.9 ± 3.0 and 31.4 ± 1.5 s for on and off, respectively) for work rates<ET. Atwork rates >ET, MRTwas similar between Con (69.1 ± 6.1 and 50.4 ± 3.5 s for on andoff, respectively) and Acz (69.7 ± 5.9 and 53.8 ± 3.8 s for on and off, respectively). On- and off-MRTs were slower for>ET thanfor <ETexercise.[La]plincreased above 0-W cycling values during<ET and>ET exercise but was lower at the end of the transition during Acz (1.4 ± 0.2 and 7.1 ± 0.5 mmol/l for<ET and>ET,respectively) than during Con (2.0 ± 0.2 and 9.8 ± 0.9 mmol/lfor <ETand >ET,respectively). CA inhibition does not affectO2 utilization at the onset of<ET or>ETexercise, suggesting that the contribution of oxidative phosphorylationto the energy demand is not affected by acute CA inhibition with Acz.

  相似文献   

16.
Proctor, David N., and Kenneth C. Beck. Delay timeadjustments to minimize errors in breath-by-breath measurement of O2 during exercise.J. Appl. Physiol. 81(6):2495-2499, 1996.If the delay time between gas concentration andflow signals is not adequately corrected during breath-by-breathanalysis of expired gas, an error in calculation of oxygen consumption(O2) will result. Toexamine the frequency and delay time dependences of errors inO2 measurement, six healthymen exercised at 100, 200, and 250 W on a cycle ergometer whilebreath-by-breath assessment ofO2 was made simultaneouslywith collection of expired air. Subjects breathed first at normal rates(15-30 breaths/min) and then at 70 breaths/min. Each subjectperformed each level of exercise twice by using erroneous values forthe delay time between gas concentration and flow signals. At normalbreathing frequencies, errors inO2 measurement were±10% over the full range of delay times used, and the errors werenot tightly correlated with variations in delay times from optimum.However, at 70 breaths/min, errors approached ±30% as thevariations in delay times deviated ±0.1 s from the optimal, and theerrors were highly correlated with the variations in delay times. Weconclude that there is greater potential for errors inO2 measurement withincorrect delay time at higher breathing frequencies. These findingssuggest that the optimal delay time for breath-by-breath systems shouldbe adjusted by using high breathing frequencies.

  相似文献   

17.
Li, M. H., J. Hildebrandt, and M. P. Hlastala.Quantitative analysis of transpleural flux in the isolated lung.J. Appl. Physiol. 82(2): 545-551, 1997.In this study, the loss of inert gas through the pleura of anisolated ventilated and perfused rabbit lung was assessed theoreticallyand experimentally. A mathematical model was used to represent an idealhomogeneous lung placed within a box with gas flow(box) surrounding the lung. Thealveoli are assumed to be ventilated with room air(A) andperfused at constant flow () containinginert gases (x) with various perfusate-air partition coefficients(p,x).The ratio of transpleural flux of gas(plx)to its total delivery to the lung via pulmonary artery( ),representing fractional losses across the pleura, can be shown todepend on four dimensionless ratios:1)p,x,2) the ratio of alveolar ventilation to perfusion(A/), 3) the ratioof the pleural diffusing capacity(Dplx) to the conductance ofthe alveolar ventilation (Dplx /Ag,where g is the capacitancecoefficient of gas), and 4) theratio of extrapleural (box) ventilation to alveolar ventilation(box/A).Experiments were performed in isolated perfused and ventilated rabbitlungs. The perfusate was a buffer solution containing six dissolvedinert gases covering the entire 105-fold range ofp,x usedin the multiple inert gas elimination technique. Steady-state inert gasconcentrations were measured in the pulmonary arterial perfusate,pulmonary venous effluent, exhaled gas, and box effluent gas. Theexperimental data could be described satisfactorily by thesingle-compartment model. It is concluded that a simple theoreticalmodel is a useful tool for predicting transpleural flux from isolatedlung preparations, with known ventilation and perfusion, for inertgases within a wide range of .

  相似文献   

18.
Engelen, Marielle, Janos Porszasz, Marshall Riley, KarlmanWasserman, Kazuhira Maehara, and Thomas J. Barstow. Effects ofhypoxic hypoxia on O2 uptake andheart rate kinetics during heavy exercise. J. Appl.Physiol. 81(6): 2500-2508, 1996.It is unclearwhether hypoxia alters the kinetics ofO2 uptake(O2) during heavy exercise[above the lactic acidosis threshold (LAT)] and how thesealterations might be linked to the rise in blood lactate. Eight healthyvolunteers performed transitions from unloaded cycling to the sameabsolute heavy work rate for 8 min while breathing one of threeinspired O2 concentrations: 21%(room air), 15% (mild hypoxia), and 12% (moderate hypoxia). Breathing12% O2 slowed the time constantbut did not affect the amplitude of the primary rise inO2 (period of first2-3 min of exercise) and had no significant effect on either thetime constant or the amplitude of the slowO2 component (beginning2-3 min into exercise). Baseline heart rate was elevated inproportion to the severity of the hypoxia, but the amplitude andkinetics of increase during exercise and in recovery were unaffected bylevel of inspired O2.We conclude that the predominant effect of hypoxia during heavyexercise is on the early energetics as a slowed time constant forO2 and an additionalanaerobic contribution. However, the sum total of the processesrepresenting the slow component of O2 is unaffected.

  相似文献   

19.
Effect of prolonged, heavy exercise on pulmonary gas exchange in athletes   总被引:1,自引:0,他引:1  
During maximalexercise, ventilation-perfusion inequality increases, especially inathletes. The mechanism remains speculative. Wehypothesized that, if interstitial pulmonary edema is involved, prolonged exercise would result in increasing ventilation-perfusion inequality over time by exposing the pulmonary vascular bed to highpressures for a long duration. The response to short-term exercise wasfirst characterized in six male athletes [maximal O2 uptake(O2 max) = 63 ml · kg1 · min1] by using 5 minof cycling exercise at 30, 65, and 90%O2 max. Multiple inert-gas, blood-gas, hemodynamic, metabolic rate, and ventilatory data were obtained. Resting log SD of the perfusion distribution (logSD) was normal [0.50 ± 0.03 (SE)] and increased with exercise (logSD = 0.65 ± 0.04, P < 0.005), alveolar-arterialO2 difference increased (to 24 ± 3 Torr), and end-capillary pulmonary diffusion limitation occurred at 90%O2 max. The subjectsrecovered for 30 min, then, after resting measurements were taken,exercised for 60 min at ~65%O2 max.O2 uptake, ventilation, cardiacoutput, and alveolar-arterial O2difference were unchanged after the first 5 min of this test, but logSD increased from0.59 ± 0.03 at 5 min to 0.66 ± 0.05 at 60 min(P < 0.05), without pulmonary diffusion limitation. LogSD was negativelyrelated to total lung capacity normalized for body surface area(r = 0.97,P < 0.005 at 60 min). These data are compatible with interstitial edema as a mechanism and suggest that lungsize is an important determinant of the efficiency of gas exchangeduring exercise.

  相似文献   

20.
To test thehypothesis that muscle O2 uptake(O2) on-kinetics islimited, at least in part, by peripheralO2 diffusion, we determined theO2 on-kinetics in1) normoxia (Control);2) hyperoxic gas breathing(Hyperoxia); and 3) hyperoxia andthe administration of a drug (RSR-13, Allos Therapeutics), whichright-shifts the Hb-O2dissociation curve (Hyperoxia+RSR-13). The study was conducted inisolated canine gastrocnemius muscles(n = 5) during transitions from restto 3 min of electrically stimulated isometric tetanic contractions(200-ms trains, 50 Hz; 1 contraction/2 s; 60-70% peakO2). In all conditions,before and during contractions, muscle was pump perfused withconstantly elevated blood flow (), at a levelmeasured at steady state during contractions in preliminary trials withspontaneous . Adenosine was infusedintra-arterially to prevent inordinate pressure increases with theelevated . was measuredcontinuously, arterial and popliteal venousO2 concentrations were determinedat rest and at 5- to 7-s intervals during contractions, andO2 was calculated as · arteriovenous O2 content difference.PO2 at 50%HbO2saturation (P50) was calculated.Mean capillary PO2(cO2)was estimated by numerical integration.P50 was higher in Hyperoxia+RSR-13[40 ± 1 (SE) Torr] than in Control and in Hyperoxia (31 ± 1 Torr). After 15 s of contractions,cO2was higher in Hyperoxia (97 ± 9 Torr) vs. Control (53 ± 3 Torr) and in Hyperoxia+RSR-13 (197 ± 39 Torr) vs. Hyperoxia. Thetime to reach 63% of the difference between baseline and steady-stateO2 during contractions was 24.7 ± 2.7 s in Control, 26.3 ± 0.8 s in Hyperoxia, and 24.7 ± 1.1 s in Hyperoxia+RSR-13 (not significant). Enhancement ofperipheral O2 diffusion (obtainedby increasedcO2at constant O2 delivery) duringthe rest-to-contraction (60-70% of peakO2) transition did notaffect muscle O2on-kinetics.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号