首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
 The theory of optimal foraging predicts abrupt changes in consumer behavior which lead to discontinuities in the functional response. Therefore population dynamical models with optimal foraging behavior can be appropriately described by differential equations with discontinuous right-hand sides. In this paper we analyze the behavior of three different Lotka–Volterra predator–prey systems with optimal foraging behavior. We examine a predator–prey model with alternative food, a two-patch model with mobile predators and resident prey, and a two-patch model with both predators and prey mobile. We show that in the studied examples, optimal foraging behavior changes the neutral stability intrinsic to Lotka–Volterra systems to the existence of a bounded global attractor. The analysis is based on the construction and use of appropriate Lyapunov functions for models described by discontinuous differential equations. Received: 23 March 1999  相似文献   

2.
Tuckwell HC  Wan FY 《Bio Systems》2004,73(3):157-161
We consider simple mathematical models for the early population dynamics of the human immunodefficiency type 1 virus (HIV-1). Although these systems of differential equations may be solved by numerical methods, few general theoretical results are available due to nonlinearities. We analyze a model whose components are plasma densities of uninfected CD4+ T-cells and infected cells (assumed in this model to be proportional to virion density). In addition to analyzing the nature of the equilibrium points, we show that there are no periodic or limit-cycle solutions. Depending on the values of the parameters, solutions either tend without oscillation to an equilibrium point with zero virion density or to an equilibrium point in which there are a nonzero number of virions. In the latter case the approach to equilibrium may be through damped oscillations or without oscillation.  相似文献   

3.
4.
Global convergence of delayed neural network systems   总被引:14,自引:0,他引:14  
In this paper, without assuming the boundedness, strict monotonicity and differentiability of the activation functions, we utilize a new Lyapunov function to analyze the global convergence of a class of neural networks models with time delays. A new sufficient condition guaranteeing the existence, uniqueness and global exponential stability of the equilibrium point is derived. This stability criterion imposes constraints on the feedback matrices independently of the delay parameters. The result is compared with some previous works. Furthermore, the condition may be less restrictive in the case that the activation functions are hyperbolic tangent.  相似文献   

5.
In order to control plant diseases and eventually maintain the number of infected plants below an economic threshold, a specific management strategy called the threshold policy is proposed, resulting in Filippov systems. These are a class of piecewise smooth systems of differential equations with a discontinuous right-hand side. The aim of this work is to investigate the global dynamic behavior including sliding dynamics of one Filippov plant disease model with cultural control strategy. We examine a Lotka–Volterra Filippov plant disease model with proportional planting rate, which is globally studied in terms of five types of equilibria. For one type of equilibrium, the global structure is discussed by the iterative equations for initial numbers of plants. For the other four types of equilibria, the bounded global attractor of each type is obtained by constructing appropriate Lyapunov functions. The ideas of constructing Lyapunov functions for Filippov systems, the methods of analyzing such systems and the main results presented here provide scientific support for completing control regimens on plant diseases in integrated disease management.  相似文献   

6.
Global Properties of Infectious Disease Models with Nonlinear Incidence   总被引:2,自引:1,他引:1  
We consider global properties for the classical SIR, SIRS and SEIR models of infectious diseases, including the models with the vertical transmission, assuming that the horizontal transmission is governed by an unspecified function f(S,I). We construct Lyapunov functions which enable us to find biologically realistic conditions sufficient to ensure existence and uniqueness of a globally asymptotically stable equilibrium state. This state can be either endemic, or infection-free, depending on the value of the basic reproduction number.  相似文献   

7.
Stochastic simulations on a model of circadian rhythm generation   总被引:1,自引:0,他引:1  
Miura S  Shimokawa T  Nomura T 《Bio Systems》2008,93(1-2):133-140
Biological phenomena are often modeled by differential equations, where states of a model system are described by continuous real values. When we consider concentrations of molecules as dynamical variables for a set of biochemical reactions, we implicitly assume that numbers of the molecules are large enough so that their changes can be regarded as continuous and they are described deterministically. However, for a system with small numbers of molecules, changes in their numbers are apparently discrete and molecular noises become significant. In such cases, models with deterministic differential equations may be inappropriate, and the reactions must be described by stochastic equations. In this study, we focus a clock gene expression for a circadian rhythm generation, which is known as a system involving small numbers of molecules. Thus it is appropriate for the system to be modeled by stochastic equations and analyzed by methodologies of stochastic simulations. The interlocked feedback model proposed by Ueda et al. as a set of deterministic ordinary differential equations provides a basis of our analyses. We apply two stochastic simulation methods, namely Gillespie's direct method and the stochastic differential equation method also by Gillespie, to the interlocked feedback model. To this end, we first reformulated the original differential equations back to elementary chemical reactions. With those reactions, we simulate and analyze the dynamics of the model using two methods in order to compare them with the dynamics obtained from the original deterministic model and to characterize dynamics how they depend on the simulation methodologies.  相似文献   

8.

To celebrate Hans Frauenfelder’s achievements, we examine energy(-like) “landscapes” for complex living systems. Energy landscapes summarize all possible dynamics of some physical systems. Energy(-like) landscapes can explain some biomolecular processes, including gene expression and, as Frauenfelder showed, protein folding. But energy-like landscapes and existing frameworks like statistical mechanics seem impractical for describing many living systems. Difficulties stem from living systems being high dimensional, nonlinear, and governed by many, tightly coupled constituents that are noisy. The predominant modeling approach is devising differential equations that are tailored to each living system. This ad hoc approach faces the notorious “parameter problem”: models have numerous nonlinear, mathematical functions with unknown parameter values, even for describing just a few intracellular processes. One cannot measure many intracellular parameters or can only measure them as snapshots in time. Another modeling approach uses cellular automata to represent living systems as discrete dynamical systems with binary variables. Quantitative (Hamiltonian-based) rules can dictate cellular automata (e.g., Cellular Potts Model). But numerous biological features, in current practice, are qualitatively described rather than quantitatively (e.g., gene is (highly) expressed or not (highly) expressed). Cellular automata governed by verbal rules are useful representations for living systems and can mitigate the parameter problem. However, they can yield complex dynamics that are difficult to understand because the automata-governing rules are not quantitative and much of the existing mathematical tools and theorems apply to continuous but not discrete dynamical systems. Recent studies found ways to overcome this challenge. These studies either discovered or suggest an existence of predictive “landscapes” whose shapes are described by Lyapunov functions and yield “equations of motion” for a “pseudo-particle.” The pseudo-particle represents the entire cellular lattice and moves on the landscape, thereby giving a low-dimensional representation of the cellular automata dynamics. We outline this promising modeling strategy.

  相似文献   

9.
In this paper, based on SIR and SEIR epidemic models with a general nonlinear incidence rate, we incorporate time delays into the ordinary differential equation models. In particular, we consider two delay differential equation models in which delays are caused (i) by the latency of the infection in a vector, and (ii) by the latent period in an infected host. By constructing suitable Lyapunov functionals and using the Lyapunov–LaSalle invariance principle, we prove the global stability of the endemic equilibrium and the disease-free equilibrium for time delays of any length in each model. Our results show that the global properties of equilibria also only depend on the basic reproductive number and that the latent period in a vector does not affect the stability, but the latent period in an infected host plays a positive role to control disease development.  相似文献   

10.
11.
We study the global stability of a class of models for in-vivo virus dynamics that take into account the Cytotoxic T Lymphocyte immune response and display antigenic variation. This class includes a number of models that have been extensively used to model HIV dynamics. We show that models in this class are globally asymptotically stable, under mild hypothesis, by using appropriate Lyapunov functions. We also characterise the stable equilibrium points for the entire biologically relevant parameter range. As a by-product, we are able to determine what is the diversity of the persistent strains.  相似文献   

12.
A program is developed for applying stochastic differential equations to models for chemotaxis. First a few of the experimental and theoretical models for chemotaxis both for swimming bacteria and for cells migrating along a substrate are reviewed. In physical and biological models of deterministic systems, finite difference equations are often replaced by a limiting differential equation in order to take advantage of the ease in the use of calculus. A similar but more intricate methodology is developed here for stochastic models for chemotaxis. This exposition is possible because recent work in probability theory gives ease in the use of the stochastic calculus for diffusions and broad applicability in the convergence of stochastic difference equations to a stochastic differential equation. Stochastic differential equations suggest useful data for the model and provide statistical tests. We begin with phenomenological considerations as we analyze a one-dimensional model proposed by Boyarsky, Noble, and Peterson in their study of human granulocytes. In this context, a theoretical model consists in identifying which diffusion best approximates a model for cell movement based upon theoretical considerations of cell physiology. Such a diffusion approximation theorem is presented along with discussion of the relationship between autocovariance and persistence. Both the stochastic calculus and the diffusion approximation theorem are described in one dimension. Finally, these tools are extended to multidimensional models and applied to a three-dimensional experimental setup of spherical symmetry.  相似文献   

13.
In this paper, we consider the global stability of the models which incorporate humoural immunity or cell-mediated immunity. We consider the effect of loss of a pathogen, which is called the absorption effect when it infects an uninfected cells. We construct Lyapunov functions for these models under some conditions of parameters, and prove the global stability of the interior equilibria. It is impossible to remove the condition of parameters for the model incorporating humoural immunity.  相似文献   

14.
In this paper, we analyze a laissez-faire predator-prey model and a Leslie-type predator-prey model with type I functional responses. We study the stability of the equilibrium where the predator and prey coexist by both performing a linearized stability analysis and by constructing a Lyapunov function. For the Leslie-type model, we use a generalized Jacobian to determine how eigenvalues jump at the corner of the functional response. We show, numerically, that our two models can both possess two limit cycles that surround a stable equilibrium and that these cycles arise through global cyclic-fold bifurcations. The Leslie-type model may also exhibit super-critical and discontinuous Hopf bifurcations. We then present and analyze a new functional response, built around the arctangent, that smoothes the sharp corner in a type I functional response. For this new functional response, both models undergo Hopf, cyclic-fold, and Bautin bifurcations. We use our analyses to characterize predator-prey systems that may exhibit bistability.  相似文献   

15.
16.
提出了一类含分布时滞的流行病模型,利用构造李亚普诺夫泛函的方法,得到了无病平衡点和地方病平衡点全局稳定性的结论,揭示了平均时滞对各类平衡点稳定性的影响。  相似文献   

17.
The present study deals with the analysis of a predator–prey like model consisting of system of differential equations with piecewise constant arguments. A solution of the system with piecewise constant arguments leads to a system of difference equations which is examined to study boundedness, local and global asymptotic behaviour of the positive solutions. Using Schur–Cohn criterion and a Lyapunov function, we derive sufficient conditions under which the positive equilibrium point is local and global asymptotically stable. Moreover, we show numerically that periodic solutions arise as a consequence of Neimark-Sacker bifurcation of a limit cycle.  相似文献   

18.
The well-known neural mass model described by Lopes da Silva et al. (1976) and Zetterberg et al. (1978) is fitted to actual EEG data. This is achieved by reformulating the original set of integral equations as a continuous-discrete state space model. The local linearization approach is then used to discretize the state equation and to construct a nonlinear Kalman filter. On this basis, a maximum likelihood procedure is used for estimating the model parameters for several EEG recordings. The analysis of the noise-free differential equations of the estimated models suggests that there are two different types of alpha rhythms: those with a point attractor and others with a limit cycle attractor. These attractors are also found by means of a nonlinear time series analysis of the EEG recordings. We conclude that the Hopf bifurcation described by Zetterberg et al. (1978) is present in actual brain dynamics. Received: 11 August 1997 / Accepted in revised form: 20 April 1999  相似文献   

19.
Although we and others have developed equations to analyze for some indefinite self-associations that might be encountered, it is felt in some cases that these models, known as the sequential, equal equilibrium constant (SEK) models, might overestimate the size of aggregates encountered at higher solute concentrations. Thus, Garland and Christian proposed two attenuated equilibrium constant (AK) models that might overcome this problem. Their methods were restricted to ideal solutions and to osmometric procedures. We have removed these restrictions, and we have developed equations for analyzing four AK models that might be encountered. Various tests to aid in distinguishing these models are presented. These procedures have been tested with two simulated examples of a Type III AK indefinite self-association.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号