首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiratory syncytial virus (RSV), associated with bronchiolitis and asthma, is resistant to the antiviral effects of type-I interferons (IFN), but not IFN-gamma. However, the antiviral mechanism of IFN-gamma action against RSV infection is unknown. The molecular mechanism of IFN-gamma-induced antiviral activity was examined in this study using human epithelial cell lines HEp-2 and A549. Exposure of these cells to 100-1000 units/ml of IFN-gamma, either before or after RSV infection, results in a significant decrease in RSV infection. After 1 h of exposure, IFN-gamma induces protein expression of IFN regulatory factor-1 (IRF-1) but not IRF-2, double-stranded RNA-activated protein kinase, and inducible nitric-oxide synthase in these cells. The mRNA for IRF-1, p40, and p69 isoforms of 2'-5' oligoadenylate synthetase (2-5 AS) are detectable, respectively, at 1 and 4 h of IFN-gamma exposure. Studies using cycloheximide and antisense oligonucleotides to IRF-1 indicate a direct role of IRF-1 in activating 2-5 AS. Cells transfected with 2-5 AS antisense oligonucleotides inhibit the antiviral effect of IFN-gamma. A stable cell line of HEp-2 overexpressing RNase L inhibitor, RLI-14, which exhibits an IFN-gamma-induced gene expression pattern similar to that of the parent cell line, shows a significant reduction in RNase L activity and IFN-gamma-mediated antiviral effect, compared with HEp-2 cells. These results provide direct evidence of the involvement of 2-5 AS in IFN-gamma-mediated antiviral activity in these cells.  相似文献   

2.
3.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family and a potent inducer of apoptosis. TRAIL has been shown to effectively limit tumor growth in vivo without detectable cytotoxic side-effects. Interferon (IFN)-gamma often modulates the anticancer activities of TNF family members including TRAIL. However, little is known about the mechanism. To explore the mechanism, A549, HeLa, LNCaP, Hep3B and HepG2 cells were pretreated with IFN-gamma, and then exposed to TRAIL. IFN-gamma pretreatment augmented TRAIL-induced apoptosis in all these cell lines. A549 cells were selected and further characterized for IFN-gamma action in TRAIL-induced apoptosis. Western blotting analyses revealed that IFN-gamma dramatically increased the protein levels of interferon regulatory factor (IRF)-1, but not TRAIL receptors (DR4 and DR5) and pro-apoptotic (FADD and Bax) and anti-apoptotic factors (Bcl-2, Bcl-XL, cIAP-1, cIAP-2 and XIAP). To elucidate the functional role of IRF-1 in IFN-gamma-enhanced TRAIL-induced apoptosis, IRF-1 was first overexpressed by using an adenoviral vector AdIRF-1. IRF-1 overexpression minimally increased apoptotic cell death, but significantly enhanced apoptotic cell death induced by TRAIL when infected cells were treated with TRAIL. In further experiments using an antisense oligonucleotide, a specific repression of IRF-1 expression abolished enhancer activity of IFN-gamma for TRAIL-induced apoptosis. Therefore, our data indicate that IFN-gamma enhances TRAIL-induced apoptosis through IRF-1.  相似文献   

4.
5.
6.
Respiratory epithelial cells play a key role in influenza A virus (IAV) pathogenesis and host innate response. Transformed human respiratory cell lines are widely used in the study of IAV−host interactions due to their relative convenience, and inherent difficulties in working with primary cells. Transformed cells, however, may have altered susceptibility to virus infection. Proper characterization of different respiratory cell types in their responses to IAV infection is therefore needed to ensure that the cell line chosen will provide results that are of relevance in vivo. We compared replication kinetics of human H1N1 (A/USSR/77) IAVs in normal primary human bronchial epithelial (NHBE) and two commonly used respiratory epithelial cell lines namely BEAS-2B and A549 cells. We found that IAV replication was distinctly poor in BEAS-2B cells in comparison with NHBE, A549 and Madin-Darby canine kidney (MDCK) cells. IAV resistance in BEAS-2B cells was accompanied by an activated antiviral state with high basal expression of interferon (IFN) regulatory factor-7 (IRF-7), stimulator of IFN genes (STING) and IFN stimulated genes (ISGs). Treatment of BEAS-2B cells with a pan-Janus-activated-kinase (JAK) inhibitor decreased IRF-7 and ISG expression and resulted in increased IAV replication. Therefore, the use of highly resistant BEAS-2B cells in IAV infection may not reflect the cytopathogenicity of IAV in human epithelial cells in vivo.  相似文献   

7.
Vitamin A can significantly decrease measles-associated morbidity and mortality. Vitamin A can inhibit the replication of measles virus (MeV) in vitro through an RARα- and type I interferon (IFN)-dependent mechanism. Retinoid-induced gene I (RIG-I) expression is induced by retinoids, activated by MeV RNA and is important for IFN signaling. We hypothesized that RIG-I is central to retinoid-mediated inhibition of MeV in vitro. We demonstrate that RIG-I expression is increased in cells treated with retinoids and infected with MeV. The central role of RIG-I in the retinoid-anti-MeV effect was demonstrated in the Huh-7/7.5 model; the latter cells having non-functional RIG-I. RAR-dependent retinoid signaling was required for the induction of RIG-I by retinoids and MeV. Retinoid signaling was also found to act in combination with IFN to induce high levels of RIG-I expression. RIG-I promoter activation required both retinoids and MeV, as indicated by markers of active chromatin. IRF-1 is known to be regulated by retinoids and MeV, but we found recruitment of IRF-1 to the RIG-I promoter by retinoids alone. Using luciferase expression constructs, we further demonstrated that the IRF-1 response element of RIG-I was required for RIG-I activation by retinoids or IFN. These results reveal that retinoid treatment and MeV infection induces significant RIG-I. RIG-I is required for the retinoid-MeV antiviral response. The induction is dependent on IFN, retinoids and IRF-1.  相似文献   

8.
9.
Src homology phosphotyrosyl phosphatase 2 (Shp‐2) is a ubiquitously expressed protein that is involved in a variety of cellular processes, including antiviral interferon signalling pathways. In this study, we investigated the role of Shp‐2 in the host cell interactions of human respiratory syncytial virus (RSV). We report significant changes in the expression of Shp‐2 in human pulmonary alveolar epithelial cells (A549) upon RSV infection. We also report that blocking Shp‐2 does not affect viral replication or virus‐induced interferon‐alpha (IFN‐α) production. Interestingly, whereas A549 cells were activated by IFN‐α, the blocking of Shp‐2 resulted in increased viral replication that was associated with the reduced expression of the IFN‐stimulated genes of 2′,5′‐oligoadenylate synthetases and Mx1, and the concomitant inhibition of Stat1 tyrosine phosphorylation. Our findings suggest that Shp‐2 contributes to the control of RSV replication and progeny production in pulmonary alveolar epithelial cells by interfering with IFN‐α‐induced Jak/Stat1 pathway activation rather than by affecting the production of IFN‐α itself.  相似文献   

10.
11.
Measles virus (MeV) infection is characterized by the formation of multinuclear giant cells (MGC). We report that beta interferon (IFN-β) production is amplified in vitro by the formation of virus-induced MGC derived from human epithelial cells or mature conventional dendritic cells. Both fusion and IFN-β response amplification were inhibited in a dose-dependent way by a fusion-inhibitory peptide after MeV infection of epithelial cells. This effect was observed at both low and high multiplicities of infection. While in the absence of virus replication, the cell-cell fusion mediated by MeV H/F glycoproteins did not activate any IFN-α/β production, an amplified IFN-β response was observed when H/F-induced MGC were infected with a nonfusogenic recombinant chimerical virus. Time lapse microscopy studies revealed that MeV-infected MGC from epithelial cells have a highly dynamic behavior and an unexpected long life span. Following cell-cell fusion, both of the RIG-I and IFN-β gene deficiencies were trans complemented to induce IFN-β production. Production of IFN-β and IFN-α was also observed in MeV-infected immature dendritic cells (iDC) and mature dendritic cells (mDC). In contrast to iDC, MeV infection of mDC induced MGC, which produced enhanced amounts of IFN-α/β. The amplification of IFN-β production was associated with a sustained nuclear localization of IFN regulatory factor 3 (IRF-3) in MeV-induced MGC derived from both epithelial cells and mDC, while the IRF-7 up-regulation was poorly sensitive to the fusion process. Therefore, MeV-induced cell-cell fusion amplifies IFN-α/β production in infected cells, and this indicates that MGC contribute to the antiviral immune response.  相似文献   

12.
A human T-lymphoblastoid cell line, TCL-Fuj, produces large amounts of interferon (IFN)-gamma constitutively. A variant cell line, 2M, was derived from it. Both cell lines express similar surface antigen markers, but differ in surface morphology. Compared with the parent TCL-Fuj cell line, 2M produced less IFN-gamma constitutively but more in response to IFN inducers. The IFNs produced constitutively and on stimulation with inducers were analyzed by SDS-polyacrylamide gel electrophoresis. In TCL-Fuj cells, the constitutive and induced IFNs consisted of the same molecular species (22K and 39K). In 2M cells, smaller IFNs were produced constitutively (18K and 32K) and induction resulted in a marked increase of 22K molecules. These two cell lines also differed in sensitivity to the antiviral activity of IFN. Other T-lymphoblastoid cell lines, HPB-ALL and TCL-Fuj 4 cells, which did not produce IFN-gamma were permissive for vesicular stomatitis virus (VSV) replication; its growth was markedly suppressed by IFN-gamma and -alpha. TCL-Fuj cells were also permissive for VSV, but were not susceptible to the antiviral effect of the IFNs. In contrast, in 2M cells the multiplication of VSV was restricted; the viral yield was further reduced by the IFNs and increased by treatment with anti-human IFN-gamma serum. Several clonal cell lines derived from TCL-Fuj and 2M cells had characteristics similar to the respective parent cell lines. The growth of both cell lines was not affected by IFN-gamma or by -alpha. The separation of antiviral and anti-proliferative susceptibilities was peculiar to 2M cells unlike other cell lines.  相似文献   

13.
14.
15.
We have previously shown that IFN-gamma/STAT1 plays an essential role in concanavalin A (ConA)-induced T cell hepatitis via activation of apoptotic signaling pathways. Here we demonstrate that IFN-gamma/STAT1 also plays a crucial role in leukocyte infiltration into the liver in T cell hepatitis. After injection of ConA, leukocytes were significantly infiltrated into the liver, which was suppressed in IFN-gamma(-/-) and STAT1(-/-) mice. Disruption of the IFN regulatory factor-1 (IRF-1) gene, a downstream target of IFN-gamma/STAT1, abolished ConA-induced liver injury and suppressed leukocyte infiltration into the liver. Additionally, ConA injection induced expression of a wide variety of chemokines and adhesion molecules in the liver. Among them, expression of ICAM-1, VCAM-1, monokine induced by IFN-gamma (Mig), CC chemokine ligand-20, epithelial cell-derived neutrophil-activating peptide (ENA)-78, IFN-inducible T cell-alpha chemoattractant (I-TAC), and IFN-inducible protein-10 (IP-10) was markedly attenuated in IFN-gamma(-/-), STAT1(-/-), and IRF-1(-/-) mice. In primary mouse hepatocytes, Kupffer cells, and endothelial cells, in vitro treatment with IFN-gamma activated STAT1, STAT3, and IRF-1, and induced expression of VCAM-1, ICAM-1, Mig, ENA-78, I-TAC, and IP-10 mRNA. Induction of these chemokines and adhesion molecules was markedly diminished in STAT1(-/-) and IRF-1(-/-) hepatic cells compared with wild-type hepatic cells. These findings suggest that in addition to induction of apoptosis, previously well documented, IFN-gamma also stimulated hepatocytes, sinusoidal endothelial cells, and Kupffer cells partly via an STAT1/IRF-1-dependent mechanism to produce multiple chemokines and adhesive molecules responsible for promoting infiltration of leukocytes and, ultimately, resulting in hepatitis.  相似文献   

16.
17.
18.
Mycobacterium tuberculosis strains CDC1551 and Erdman were used to assess cytotoxicity in infected A549 human alveolar epithelial cell monolayers. Strain CDC1551 was found to induce qualitatively greater disruption of A549 monolayers than was strain Erdman, although total intracellular and cell-associated bacterial growth rates over the course of the infections were not significantly different. Cell-free culture supernatants from human monocytic cells infected with either of the 2 M. tuberculosis strains produced a cytotoxic effect on A549 cells, correlating with the amount of tumor necrosis factor alpha (TNF-α) released by the infected monocytes. The addition of TNF-α-neutralizing antibodies to the supernatants from infected monocyte cultures did prevent the induction of a cytotoxic effect on A549 cells overlaid with this mixture but did not prevent the death of epithelial cells when added prior to infection with M. tuberculosis bacilli. Thus, these data agree with previous observations that lung epithelial cells infected with M. tuberculosis bacilli are rapidly killed in vitro. In addition, the data indicate that some of the observed epithelial cell killing may be collateral damage; the result of TNF-α released from M. tuberculosis-infected monocytes.  相似文献   

19.
Melanoma cells commonly express MHC class II molecules constitutively. This is a rare, or possibly unique, phenotype for a nonprofessional antigen-presenting cell, where MHC class II expression ordinarily occurs only after IFN-gamma treatment. Despite the fact that constitutive expression of MHC class II on melanoma cells has been observed for decades and that the regulation of the MHC class II genes is well understood for many different cell types, there is no data regarding the basis for constitutive MHC class II expression in melanoma cells. Here we report that MHC class II expression in melanoma cells can be traced to constitutive expression of the class II transactivator protein (CIITA), which mediates both IFN-gamma-inducible and -constitutive MHC class II expression in all other cell types. In addition, we determined that constitutive CIITA expression is the result of the activation of both the B cell-specific CIITA promoter III and the IFN-gamma-inducible CIITA promoter IV, the latter of which previously has never been known to function as a constitutive promoter in any cell type. The recently described B cell-related ARE-1 activity is important for promoter III activation in the melanoma cells. Constitutive promoter IV activation involves the IFN regulatory factor element (IRF-E), which binds members of the IRF family of proteins, although the major, IFN-gamma inducible member of this family, IRF-1, is not constitutively expressed in these cells. In cells with constitutively active promoter IV, the promoter IV IRF-E is most likely activated by IRF-2. The relevance of these results to the pathway of melanoma development is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号