共查询到20条相似文献,搜索用时 10 毫秒
1.
Hong DP Gozu M Hasegawa K Naiki H Goto Y 《The Journal of biological chemistry》2002,277(24):21554-21560
Beta2-microglobulin (beta2-m), a major component of dialysis-related amyloid fibrils, has an intrachain disulfide bond buried inside the native structure. We examined the conformation of beta2-m amyloid fibrils by analyzing the reactivity of the disulfide bond to a reducing reagent, dithiothreitol. Although the disulfide bond in the native structure was highly protected from reduction, the disulfide bonds in the amyloid fibrils prepared at pH 2.5 were progressively reduced at pH 8.5 by 50 mm dithiothreitol. Because beta2-m amyloid fibrils prepared under acidic conditions have been known to depolymerize at a neutral pH, we examined the relation between depolymerization and reduction of the disulfide bond. The results indicate that the disulfide bonds in the amyloid fibrils were protected from reduction, and the reduction occurred during depolymerization. On the other hand, the disulfide bonds of immature filaments, the thin and flexible filaments prepared under conditions of high salt at pH 2.5, were reduced at pH 8.5 more readily than those of amyloid fibrils, suggesting that the disulfide bonds are exposed to the solvent. Taken together, the disulfide bond once exposed to the solvent upon acid denaturation may be progressively buried in the interior of the amyloid fibrils during its formation. 相似文献
2.
Deposition of wild-type beta2-microglobulin (beta2m) into amyloid fibrils is a complication in patients undergoing long-term hemodialysis. The native beta-sandwich fold of beta2m has a highly conserved disulfide bond linking Cys25 and Cys80. Oxidized beta2m forms needle-like amyloid fibrils at pH 2.5 in vitro, whereas reduced beta2m, at acid pH, in which the intra-chain disulfide bond is disrupted, cannot form typical fibrils. Instead, reduced beta2m forms thinner and more flexible filaments. To uncover the difference in molecular mechanisms underlying the aggregation of the oxidized and reduced beta2m, we performed molecular dynamics simulations of beta2m oligomerization under oxidized and reduced conditions. We show that, consistent with experimental observations, the oxidized beta2m forms domain-swapped dimer, in which the two proteins exchange their N-terminal segments complementing each other. In contrast, both dimers and trimers, formed by reduced beta2m, are comprised of parallel beta-sheets between monomers and stabilized by the hydrogen bond network along the backbone. The oligomerized monomers are in extended conformations, capable of further aggregation. We find that both reduced and oxidized dimers are thermodynamically less stable than their corresponding monomers, indicating that beta2m oligomerization is not accompanied by the formation of a thermodynamically stable dimer. Our studies suggest that the different aggregation pathways of oxidized and reduced beta2m are dictated by the formation of distinct precursor oligomeric species that are modulated by Cys25-Cys80 disulfide-bonds. We propose that the propagation of domain swapping is the aggregation mechanism for the oxidized beta2m, while "parallel stacking" of partially unfolded beta2m is the aggregation mechanism for the reduced beta2m. 相似文献
3.
The role of disulfide bond in the amyloidogenic state of beta(2)-microglobulin studied by heteronuclear NMR 下载免费PDF全文
Katou H Kanno T Hoshino M Hagihara Y Tanaka H Kawai T Hasegawa K Naiki H Goto Y 《Protein science : a publication of the Protein Society》2002,11(9):2218-2229
beta(2)-Microglobulin (beta2-m) is a major component of dialysis-related amyloid fibrils. Although recombinant beta2-m forms needle-like fibrils by in vitro extension reaction at pH 2.5, reduced beta2-m, in which the intrachain disulfide bond is reduced, cannot form typical fibrils. Instead, thinner and flexible filaments are formed, as shown by atomic force microscopy images. To clarify the role of the disulfide bond in amyloid fibril formation, we characterized the conformations of the oxidized (intact) and reduced forms of beta2-m in the acid-denatured state at pH 2.5, as well as the native state at pH 6.5, by heteronuclear NMR. [(1)H]-(15)N NOE at the regions between the two cysteine residues (Cys25-Cys80) revealed a marked difference in the pico- and nanosecond time scale dynamics between that the acid-denatured oxidized and reduced states, with the former showing reduced mobility. Intriguingly, the secondary chemical shifts, DeltaCalpha, DeltaCO, and DeltaHalpha, and (3)J(HNHalpha) coupling constants indicated that both the oxidized and reduced beta2-m at pH 2.5 have marginal alpha-helical propensity at regions close to the C-terminal cysteine, although it is a beta-sheet protein in the native state. The results suggest that the reduced mobility of the denatured state is an important factor for the amylodogenic potential of beta2-m, and that the marginal helical propensity at the C-terminal regions might play a role in modifying this potential. 相似文献
4.
Joost Snijder Michiel van de Waterbeemd Matthew S Glover Liuqing Shi David E Clemmer Albert J R Heck 《Protein science : a publication of the Protein Society》2015,24(8):1264-1271
Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions. Residues C3-C31, C5-C20, and C10-C30 form disulfide pairs in the native structure of the peptide. The major tissue in which HD5 is expressed is the crypt of the small intestine, an anaerobic niche that should allow for substantial pools of both oxidized and (partly) reduced HD5. We used ion mobility coupled to mass spectrometry to track the structural changes in HD5 upon disulfide bond reduction. We found evidence of stepwise unfolding of HD5 with sequential reduction of the three disulfide bonds. Alkylation of free cysteines followed by tandem mass spectrometry of the corresponding partially reduced states revealed a dominant pathway of reductive unfolding. The majority of HD5 unfolds by initial reduction of C5-C20, followed by C10-C30 and C3-C31. We find additional evidence for a minor pathway that starts with reduction of C3-C31, followed by C5-C20 and C10-C30. Our results provide insight into the pathway and conformational landscape of disulfide bond reduction in HD5. 相似文献
5.
In this study, we examined the unfolding processes of native beta(2)-microglobulin and two related variants, one with an N-terminal hexapeptide deletion DeltaN6 and another with Lys57-Asp58 cleavage, by high-temperature molecular dynamics simulations. Three simulation models were used, molecular dynamics (MD) simulations with explicit water solvation, MD simulations with the CHARMM EEF1 force field and Langevin dynamics with the CHARMM EEF1 force field. Our simulations reproduce many of the experimentally observed structural changes. The most striking agreement is in the beta-strands to alpha-helix transition. In our simulations, strands beta(3), beta(4) and beta(5) consistently change to alpha-helix, whereas beta(8) changes to an alpha-helix only briefly. Through comparisons of the conformational behavior of the native, the DeltaN6 and the Lys-cut beta(2)-m, using the three simulation methods, we identified the consensus conformational changes that differentiate between the native beta(2)-m and its two variants. We found that the main effect of the removal of the N-terminal hexapeptide is to increase the separation between strands beta(2) and beta(6) and to facilitate the beta to alpha transition. On the other hand, the lysine cleavage only increases the flexibility of strand beta(5) and does not affect the interactions between strands beta(2) and beta(6). These conformational changes may relate to polymerization tendencies of these variants. 相似文献
6.
The aggregation of beta(2)-microglobulin (beta(2)m) into amyloid fibrils occurs in the condition known as dialysis-related amyloidosis (DRA). The protein has a beta-sandwich fold typical of the immunoglobulin family, which is stabilized by a highly conserved disulphide bond linking Cys25 and Cys80. Oxidized beta(2)m forms amyloid fibrils rapidly in vitro at acidic pH and high ionic strength. Here we investigate the role of the single disulphide bond of beta(2)m in amyloidosis in vitro. We show that reduction of the disulphide bond destabilizes the native protein such that non-native molecules are populated at neutral pH. These species are prone to oligomerization but do not form amyloid fibrils when incubated for up to 8 mo at pH 7.0 in 0.4 M NaCl. Over the pH range 4.0-1.5 in the presence of 0.4 M NaCl, however, amyloid fibrils of reduced beta(2)m are formed. These fibrils are approximately 10 nm wide, but are shorter and assemble more rapidly than those produced from the oxidized protein. These data show that population of non-native conformers of beta(2)m at neutral pH by reduction of its single disulphide bond is not sufficient for amyloid formation. Instead, association of one or more specific partially unfolded molecules formed at acid pH are necessary for the formation of beta(2)m amyloid in vitro. Further experiments will now be needed to determine the role of different oligomeric species of beta(2)m in the toxicity of the protein in vivo. 相似文献
7.
Studies on the reduction and reoxidation of the disulfide bonds of the alpha and beta subunits of human choriogonadotropin 总被引:1,自引:0,他引:1
Reoxidation of the disulfide bonds of the alpha-subunit of human choriogonadotropin after their complete reduction yields a product which is indistinguishable from the native subunit in its electrophoretic pattern in polyacrylamide gel and in its ability to recombine with the beta subunit of bovine lutropin. The circular dichroism of reoxidized human choriogonadotropin-alpha is essentially identical to that of the native alpha-subunit, except for slightly more negative ellipticity in the region of 240 mm. Hybrid hormone preparations obtained by recombination of reoxidized or native human choriogonadotropin-alpha with native lutropin-beta exhibit identical electrophoretic patterns in polyacrylamide gels, elution profiles in gel filtration, receptor binding activities, and CD spectra. However, reoxidation of human choriogonadotropin-beta under the same conditions does not yield a product which resembles the native beta subunit in its electrophoretic pattern on gels, its CD spectrum or its ability to recombine with the alpha subunit. 相似文献
8.
9.
Narimoto T Sakurai K Okamoto A Chatani E Hoshino M Hasegawa K Naiki H Goto Y 《FEBS letters》2004,576(3):313-319
Although the stability of globular proteins has been studied extensively, that of amyloid fibrils is scarcely characterized. Beta2-microglobulin (beta2-m) is a major component of the amyloid fibrils observed in patients with dialysis-related amyloidosis. We studied the effects of guanidine hydrochloride on the amyloid fibrils of beta2-m, revealing a cooperative unfolding transition similar to that of the native state. The stability of amyloid fibrils increased on the addition of ammonium sulfate, consistent with a role of hydrophobic interactions. The results indicate that the analysis of unfolding transition is useful to obtain insight into the structural stability of amyloid fibrils. 相似文献
10.
Structure and aggregation mechanism of beta(2)-microglobulin (83-99) peptides studied by molecular dynamics simulations 下载免费PDF全文
Many human neurodegenerative diseases are associated with amyloid fibril formation. The human 99-residue beta(2)-microglobulin (beta2m) is one of the most intensively studied amyloid-forming proteins. Recent studies show that the C-terminal fragments 72-99, 83-89, and 91-96 form by themselves amyloid fibrils in vitro and play a significant role in fibrillization of the full-length beta2m protein under acidic pH conditions. In this work, we have studied the equilibrium structures of the 17-residue fragment 83-99 in solution, and investigated its dimerization process by multiple molecular dynamics simulations. We find that an intertwined dimer, with the positions of the beta-strands consistent with the results for the monomer, is a possible structure for two beta2m(83-89) peptides. Based on our molecular-dynamics-generated dimeric structure, a protofibril model is proposed for the full-length beta2m protein. 相似文献
11.
Mechanism of integrin activation by disulfide bond reduction 总被引:8,自引:0,他引:8
Integrin alphaIIbbeta3 plays a pivotal role in hemostasis and thrombosis by mediating platelet adhesion and platelet aggregation. Integrin alphaIIbbeta3 contains an on/off switch that regulates its ligand binding affinity. The switch from "off" to "on" is commonly referred to as integrin activation. We recently identified a redox site within the extracellular domain of the platelet integrin alphaIIbbeta3 that exhibits many properties that one might expect of the on/off switch [Yan, B., and Smith, J. W. (2000) J. Biol. Chem. 275, 39964-39972]. Several independent reports show that reducing agents, such as dithiothreitol, can activate integrins. The objective of the present study was to determine if the effects of DTT can be attributed to a perturbation at the integrin redox site. Indeed, we find that DTT reduces two disulfide bonds within the integrin's cysteine-rich domain. Such bond reduction leads to global conformational changes within both alphaIIb and beta3 and the opening of the RGD and fibrinogen binding sites. These findings causally link the reduction of disulfide bonds within the integrin's redox site to transitions in the integrin's activation state. 相似文献
12.
N H Heegaard J W Sen N C Kaarsholm M H Nissen 《The Journal of biological chemistry》2001,276(35):32657-32662
Aggregation and fibrillation of beta(2)-microglobulin are hallmarks of dialysis-related amyloidosis. We characterize perturbations of the native conformation of beta(2)-microglobulin that may precede fibril formation. For a beta(2)-microglobulin variant cleaved at lysine 58, we show using capillary electrophoresis that two conformers spontaneously exist in aqueous buffers at neutral pH. Upon treatment of wild-type beta(2)-microglobulin with acetonitrile or trifluoroethanol, two conformations were also observed. These conformations were in equilibrium dependent on the sample temperature and the percentage of organic solvent present. Circular dichroism showed a loss of beta-structures and gain of alpha-helices. Reversal to the native conformation occurred when removing the organics. Affinity capillary electrophoresis experiments showed increased specific interactions of the nonnative beta(2)-microglobulin conformation with the dyes 8-anilino-1-naphthalene sulfonic acid and Congo red. The observations may relate to early folding events prior to amyloid fibrillation and facilitate the development of methods to detect and inhibit pro-amyloid protein and peptide conformations. 相似文献
13.
Formation of randomly paired disulfide bonds in des-(121-124)-ribonuclease after reduction and reoxidation 总被引:3,自引:0,他引:3
H Taniuchi 《The Journal of biological chemistry》1970,245(20):5459-5468
14.
Hasegawa K Ohhashi Y Yamaguchi I Takahashi N Tsutsumi S Goto Y Gejyo F Naiki H 《Biochemical and biophysical research communications》2003,304(1):101-106
To search for the essential regions responsible for the beta2-microglobulin (beta2-m) amyloid fibril formation, we synthesized six peptides corresponding to six of the seven beta-sheets in the native structure of beta2-m, and examined their amyloidogenicity. Among the peptides examined, peptide (21-31) (strand B) and the mixture of peptide (21-31) and (78-86) (strand F) showed fibril formation at both pH 2.5 and 7.5. Peptide (21-31) is the N-terminal half of the previously reported proteolytic fragment of beta2-m, Ser21-Lys41 (K3), suggesting that this region may be the essential core. Interestingly, the dimer formation of peptide (21-31) by the disulfide bond substantially facilitated the fibril formation, indicating that the disulfide bond is important for the structural stability of the fibrils. 相似文献
15.
Rennella E Corazza A Fogolari F Viglino P Giorgetti S Stoppini M Bellotti V Esposito G 《Biophysical journal》2009,96(1):169-179
The exchange rates for the amide hydrogens of β2-microglobulin, the protein responsible for dialysis-related amyloidosis, were measured under native conditions at different temperatures ranging from 301 to 315 K. The pattern of protection factors within different regions of the protein correlates well with the hydrogen-bonding pattern of the deposited structures. Analysis of the exchange rates indicates the presence of mixed EX1- and EX2-limit mechanisms. The measured parameters are consistent with a two-process model in which two competing pathways, i.e., global unfolding in the core region and partial openings of the native state, determine the observed exchange rates. These findings are analyzed with respect to the amyloidogenic properties of the protein. 相似文献
16.
Esposito G Corazza A Viglino P Verdone G Pettirossi F Fogolari F Makek A Giorgetti S Mangione P Stoppini M Bellotti V 《Biochimica et biophysica acta》2005,1753(1):76-84
The solution structure of human beta(2)-microglobulin (beta(2)-m) was determined by (1)H NMR spectroscopy and restrained modeling calculations. Compared to the crystal structure of type I major histocompatibility complex (MHC-I), where the protein is associated to the heavy-chain component, several differences are observed, i.e., increased separation between strands A and B, displacements of strand C' and loop DE, shortening of strands D and E. These modifications can be considered as the prodromes of the amyloid transition. Even minor charge changes in response to pH, as is the case with H31 imidazole protonation, trigger the transition that starts with unpairing of strand A. The same mechanism accounts for the partial unfolding and fiber formation subsequent to Cu(2+) binding which is shown to occur primarily at H31. Solvation of the protected regions in MHC-I decreases the tertiary packing by breaking the contiguity of the surface hydrophobic patches via surface charge cluster. Mutants or truncated forms of beta(2)-m can be designed to remove the instability from H31 titration or to enhance the instability through surface charge suppression. By monitoring the conformational evolution of wild-type protein and variants thereof, either in response or absence of external perturbation, valuable insights into intermediate structure and fibrillogenesis mechanisms are gained. 相似文献
17.
Kinetics of disulfide reduction in alpha-lactalbumin by dithiothreitol are investigated by measuring time-dependent changes in absorption at 310 nm and in CD ellipticity at 270 nm (pH 8.5 or 7.0, and 25 degrees C). When the disulfide-intact protein is folded, the kinetics are biphasic. The disulfide bond between the half-cystines-6 and -120 is reduced in the fast phase, and the other three disulfide bonds are reduced in the slow phase. The apparent rate constants of the two phases are both proportional to the concentration of dithiothreitol, indicating that both phases are expressed by bimolecular reactions. However, detailed molecular mechanisms that determine the reaction rates are markedly different between the two phases. The slow phase shows a sigmoidal increase in the reaction rate with increasing concentration of a denaturant, urea, and is also accelerated by destabilization of the native state on removal of the bound Ca2+ ion in the protein. The disulfide bonds are apparently protected against the reducing agent in the native structure. The fast phase reaction rate is, however, decreased with an increase in the concentration of urea, and the disulfide bond shows extraordinary superreactivity in native conditions. It is 140 times more reactive than normal disulfides in the fully accessible state, and three-disulfide alpha-lactalbumin produced by the fast phase assumes nativelike structure under a strongly native condition. As ionic strength does not affect the superreactivity of this disulfide bond, electrostatic contributions to the reactivity must be negligible. Inspection of the disulfide bond geometry based on the refined X-ray coordinates of baboon alpha-lactalbumin [Acharya et al. (1989) J. Mol. Biol. 208, 99-127] and comparison of the geometry with those in five other proteins clearly demonstrate that the superreactivity arises from the geometric strain imposed on this disulfide bond by the native structure folding. Relationships of the disulfide strain energy to the protein stability and the disulfide reactivity are discussed. 相似文献
18.
19.
Kameda A Hoshino M Higurashi T Takahashi S Naiki H Goto Y 《Journal of molecular biology》2005,348(2):383-397
beta(2)-Microglobulin (beta2-m), a light chain of the major histocompatibility complex type I, is also found as a major component of amyloid fibrils formed in dialysis-related amyloidosis. Denaturation of beta2-m is considered to initiate the formation of fibrils. To clarify the mechanism of fibril formation, it is important to characterize the intermediate conformational states at the atomic level. Here, we investigated the refolding of beta2-m from the acid-unfolded state by heteronuclear magnetic resonance and circular dichroism spectroscopies. At low temperature, beta2-m refolded slowly, accumulating a rate-limiting intermediate with non-native chemical shift dispersions for several residues, but with compactness and secondary structures similar to those of the native protein. beta2-m has a cis proline residue at Pro32, located on the turn connecting the betaB and betaC strands. The slow refolding phase disappeared upon mutation of Pro32 to Val, indicating that Pro32 is responsible for the accumulation of the intermediate. The distribution of the perturbed residues in the intermediate suggests that the non-native prolyl peptide bond of Pro32 affects large areas of the molecule. A cis proline residue is common to various immunoglobulin domains involved in amyloidosis, implying that a non-native prolyl peptide bond that might occur under physiological conditions is related to the amyloidogenicity of these immunoglobulin domains. 相似文献
20.
The population of one or more partially folded states has been proposed as a critical initial step in amyloid formation for several proteins. Here we use equilibrium denaturation measured by (1)H-(15)N NMR to determine the conformational properties of an amyloidogenic intermediate of human beta(2)-microglobulin (beta(2)m) formed at low pH. The data show that this amyloid precursor is a noncooperatively stabilized ensemble that retains stable structure in five of the seven beta-strands that comprise the native fold. The amyloid precursors of beta(2)m and transthyretin have similar properties despite having structurally unrelated native folds. The data offer a rationale as to why these proteins are both amyloidogenic at low pH and suggest that amyloidosis of these and other proteins may involve ordered assembly from a precursor with similar conformational features. 相似文献