首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
重组CHO-GS细胞降低氨毒副作用的代谢研究   总被引:1,自引:0,他引:1  
在重组CHOGS细胞无血清批培养过程中,由于GS系统的引入,使氨对细胞的毒副作用显著降低,从而引起细胞生长和代谢途径发生变化。当起始氨浓度为1.42mmolL时,细胞最高密度可达到15.6×105cellsmL,随着氨浓度的增加,尽管细胞生长受到一定的抑制,但在氨浓度为12.65mmolL时,细胞密度仍可达到8.9×105cellsmL。当起始氨浓度从0.36mmolL增加到12.65mmolL时,细胞对葡萄糖的得率系数和乳酸对葡萄糖的得率系数降低,己糖激酶(HK)、丙酮酸激酶(PK)和乳酸脱氢酶(LDH)酶活分别提高了43%、140%和25%,表明细胞对葡萄糖的利用增加,糖代谢更倾向于高能量生成途径。在谷氨酰胺代谢途径中,氨促进了谷丙转氨酶(GPT)酶活,谷氨酸到α酮戊二酸的转化逐渐倾向于谷丙转氨途径,谷氨酸脱氢酶(GDH)酶活降低,脱氨途径相应受到抑制。此外,氨浓度的增加使细胞群体处于G0G1期的比例逐渐升高,当氨浓度为12.65mmolL时,重组蛋白比生产速率比氨浓度为0.36mmolL时提高了2.1倍。  相似文献   

2.
综述体外培养哺乳动物细胞的葡萄糖和谷氨酰胺代谢。大部分的葡萄糖通过糖酵解途径为细胞提供中间代谢物质和能量 ,最终生成乳酸 ,只有很少部分进入TCA循环和磷酸戊糖途径。谷氨酰胺通过谷氨酰胺酶生成谷氨酸 ,并进一步通过谷氨酸脱氢酶或转氨酶生成α -酮戊二酸进入TCA循环 ,为细胞提供中间代谢物质和能量。糖酵解和谷氨酰胺代谢 (glutaminolysis)受葡萄糖和谷氨酰胺的影响而相互调节。  相似文献   

3.
葡萄糖对重组CHO细胞生长代谢及EPO表达的影响   总被引:3,自引:0,他引:3  
孙祥明  张元兴   《生物工程学报》2001,17(6):698-702
在CHO细胞批培养中 ,葡萄糖浓度从8.9增加到49.6mmol/L ,最大活细胞密度没有明显的差异 ,乳酸对葡萄糖的得率系数首先随着葡萄糖浓度的增加而增加 ,葡萄糖浓度达到 17.9mmol/L后 ,乳酸对葡萄糖的得率系数基本上维持恒定。在本实验中 ,葡萄糖浓度对谷氨酰胺代谢没有明显的影响。EPO的累积浓度首先随着起始葡萄糖浓度的增加 ( 8.9~ 17.9mmol L)而增加 ,进而又随着葡萄糖浓度的增加 (17.9~ 49.6mmol L)而下降 ,表明存在一最适浓度 ,在此浓度下重组CHO细胞的EPO表达最大。  相似文献   

4.
谷氨酸合酶活力的快速测定   总被引:3,自引:0,他引:3  
1974年依赖铁氧还蛋白的谷氨酸合酶(Gluta-mate Synthase,EC 1.4.7.1.)的发现证明植物主要通过谷氨酰胺合成酶/谷氨酸合酶途径进行氨的同化。在这个氨同化途径中,谷氨酸合酶是限速酶,它催化一分子谷氨酰胺和一分子α-酮戊二酸形成两分子的谷氨酸。谷氨酸合酶活力测定的关键是如何把产物谷氨酸与反应液中的其它组分,尤其是底物(谷氨酰胺)分开。纸层析、纸电泳、同位素、氨基酸自动分析和高压液相层析  相似文献   

5.
以离心换液的批培养为例,通过设计谷氨酰胺和天冬酰胺不同的添加方式来考察两者对CHO细胞生长,代谢及产物表达的影响。结果表明:基础培养基中谷氨酰胺和天冬酰胺不能简单地相互替换,缺失谷氨酰胺或天冬酰胺的基础培养基均不能支持dhfr-CHO细胞的正常生长和产物表达,仅谷氨酰胺和天冬酰胺的浓度同时达到4mmol/L,才能满足细胞生长所需。另外,代谢副产物氨的生成仅与谷氨酰胺和天冬酰胺的加和线性相关,与两者添加比例无关。但适当提高天冬酰胺与谷氨酰胺的比例可提高抗体表达水平,同时减少乳酸的生成。因此,为培养基开发与优化过程中谷氨酰胺和天冬酰胺的添加策略提供了依据,为建立高效的流加培养过程奠定了基础。  相似文献   

6.
聚γ-谷氨酸(γ-PGA)及其衍生物是一种新型土壤修复和改良材料,能吸附土壤中的重金属和放射性核物质等污染物,也可作为保水材料应用于干旱环境。NaCl、Mn(Ⅱ)、L-谷氨酰胺和α-酮戊二酸四因素对Bacillus licheniformisWBL-3合成γ-PGA产量及分子量有重要影响。分别用L-谷氨酰胺和α-酮戊二酸代替L-谷氨酸,Bacillus licheniformisWBL-3未产生γ-PGA。单因素试验表明:γ-PGA产量均随四因素浓度的增大呈现先增大后减小的趋势,γ-PGA产量分别在NaCl,Mn(Ⅱ)、L-谷氨酰胺和α-酮戊二酸浓度为6%,100μmol.L-1,1.5 mmol.L-1和10 mmol.L-1时达到最大值35.79g.L-1,24.77 g.L-1,30.07 g.L-1和26.09 g.L-1;γ-PGA分子量随NaCl浓度的增大而增大,随α-酮戊二酸浓度的增大而减小,随Mn(Ⅱ)、L-谷氨酰胺浓度的增大而呈现先增大后减小的趋势。正交试验证明了单因素试验的结论,四因素间没有交互作用的影响,最优组合为NaCl:6%,α-酮戊二酸:10 mmol.L-1,Mn(Ⅱ):100μmol.L-1,L-谷氨酰胺:1.5 mmol.L-1,产量达到55.62 g.L-1。  相似文献   

7.
(1)比較家蚕(华九-云瀚)和野蚕(蓖麻蚕、柞蚕和樗蚕)各种氨基酸和α-酮戊二酸之轉氨作用;发現在家蚕和野蚕絲腺体后部及脂肪体中都存在有活力強的谷丙轉氨酶和谷天轉氨酶。(2)在野蚕(萞麻蚕、柞蚕和樗蚕)之絲腺体后部存在有支鏈氨基酸((?)白氨酸、白氨酸和缬氨酸)和α-酮戊二酸及丙酮酸之間的轉氨作用。闡明了絲腺体中丙氨酸生物合成之另一途径。(3)在家蚕及野蚕之体液中,和Koide之結果不同,存在有谷天轉氨酶及谷丙轉氨酶。比較了五龄不同日期以上两酶和支链氨基酸-谷氨酸轉氨酶活力之变化。(4)証明了支鏈氨基酸和α-酮戊二酸之間的轉氨作用是酶促的轉氨反应,而非由氨基酸供体之脫氨作用,继而和α-酮戊二酸之加氨作用而形成谷氨酸。(5)自萞麻蚕絲腺体提取支鏈氨基酸-谷氨酸轉氨酶。和原始之活力相比提高了比活39倍,回收率为81%。(6)支鏈氨基酸-谷氨酸轉氨酶在α-酮戊二酸浓度較低时随浓度之增加而上升,到一定浓度时,反应速度反而下降。(?)白氨酸和α-酮戊二酸之間的轉氨作用,在1小时之內,谷氨酸之形成速度基本上呈直线关系。对热不稳定,在50℃时活力降低82%。(7)巯基抑制剂对支鏈氨基酸-谷氨酸轉氨酶具有显著的抑制作用。PCMB(10~(-4)M)抑制該酶60%,溴化乙酰胺(10~(-4)M)为37%;DL-环絲氨酸对該轉氨酶之抑制作用指出,該酶是属于对环絲氨酸具有低度敏感性的轉氨酶类。  相似文献   

8.
【目的】研究黑水虻Hermetia illucens抗菌肽HI-3对人结肠癌HCT-8细胞氨基酸代谢的影响,以丰富对其抑癌机理的认识。【方法】采用CCK-8法测定不同浓度(80, 160和320 μg/mL)抗菌肽HI-3对HCT-8细胞的抑制率;利用GC-MS进行HCT-8细胞代谢物测定,通过基于R软件的通路分析找出氨基酸含量差异最显著的氨基酸代谢通路并筛选出该通路靶标酶。320 μg/mL HI-3处理HCT-8细胞后,利用酶活性检测试剂盒测定靶标酶谷氨酰胺酶(GLS)活性;利用RT-qPCR和Western blot技术分别对HCT-8细胞的GLS基因进行mRNA及蛋白表达水平的测定;利用生化试剂盒和ELISA试剂盒检测HCT-8细胞内谷氨酰胺和谷氨酸代谢通路涉及的重要代谢物谷氨酰胺(Gln)、谷氨酸(Glu)、谷胱甘肽(GSH)、α-酮戊二酸(α-KG)和ATP含量的变化。【结果】浓度为80, 160和20 μg/mLHI-3对HCT-8细胞的抑制率分别为33.85%±3.50%, 46.26%±0.90%和55.53%±1.70%,且抑制率随HI 3浓度升高而增大。320 μg/mL HI-3处理对谷氨酰胺和谷氨酸代谢通路的影响最大,其中氨基酸代谢物含量与阴性对照组(0 μg/mL HI-3)相比差异最为显著;这一通路中的靶标酶GLS活性及其GLS的mRNA和蛋白表达水平均极显著低于阴性对照组;另外与此通路相关的重要代谢物Gln, Glu, GSH, α-KG和ATP含量与阴性对照组相比亦显著减少。【结论】浓度为320 μg/mL黑水虻抗菌肽HI-3对HCT-8细胞谷氨酰胺和谷氨酸代谢通路影响最为显著,并能通过阻碍该通路来显著抑制HCT-8细胞的增殖。  相似文献   

9.
<正> 肝性脑病又称肝昏迷,是由于肝脏疾病,导致肝脏功能严重受损而影响大脑功能。氨基酸代谢在其中起了不可忽视的作用。早期一般认为肠道吸收来自氨基酸和尿素分解的氨与体内氨基酸脱氨作用产生的氨不能如数进入受损的肝脏鸟氨酸循环,生成尿素,因此过多的血氨通过血脑屏障扩散入脑组织,分别与谷氨酸和α-酮戊二酸结合  相似文献   

10.
支持细胞是睾丸的重要组成部分,其主要功能是为生精细胞提供适宜的生长环境。从幼鼠睾丸中分离得到支持细胞,并通过苏木精-伊红和Fas-L免疫组化染色对分离得到的细胞进行了鉴定。通过对原代小鼠睾丸支持细胞的贴壁、生长和培养液中葡萄糖、谷氨酰胺、氨基酸等营养底物及其副产物乳酸、铵根离子等的代谢以及培养液渗透压和pH的研究,发现支持细胞的贴壁时间主要集中在接种后2~4h;当培养液中氨根离子浓度高于2.3mmol/L,渗透压高于326mosm/kg,pH≤6.8时支持细胞生长进入衰亡期;在氨基酸代谢方面,发现培养过程中丙氨酸和谷氨酸浓度迅速增加,缬氨酸、亮氨酸和异亮氨酸浓度略有降低,丝氨酸、精氨酸和甘氨酸浓度基本保持不变。因此培养液中铵根离子浓度的过量积累、渗透压和pH的异常和贴壁面积不足是限制支持细胞静态生长的主要因素。研究结果为支持细胞大规模培养及工艺优化奠定了基础。  相似文献   

11.
Batch and continuous cultures were carried out to study the stoichiometry, kinetics, and regulation of glucose and amino acid metabolism of a recombinant BHK cell line, with particular attention to the metabolism at low levels of glucose and glutamine. The apparent yields of cells on glucose and glutamine, lactate on glucose, and ammonium on glutamine were all found to change significantly at low residual concentrations of glucose (<5 mmol/L) and glutamine (<1 mmol/L) . The uptake rates of glucose and glutamine were markedly reduced at low concentrations, leading to a more effective utilization of these nutrients for energy metabolism and biosynthesis and reduced formation rates of lactate and ammonium. However, the consumption of other amino acids, especially the essential amino acids leucine, isoleucine, and valine and the nonessential amino acids serine and glutamate, was strongly enhanced at low glutamine concentration. Quantitatively, it was shown that the cellular yields and rates associated with glucose metabolism were primarily determined by the residual glucose concentration, while those associated with glutamine metabolism depended mainly on the residual glutamine. Both experimental results and analysis of the kinetic data with models showed that the glucose metabolism of BHK cells is not affected by glutamine except for a slight influence under glucose limitation and glutaminolysis not by glucose, at least not significantly under the experimental conditions. Compared to hybridoma and other cultured animal cells, the recombinant BHK cell line showed remarkable differences in terms of nutrient sensitivity, stoichiometry, and amino acid metabolism at low levels of nutrients. These cell-line-specific stoichiometry and nutrient needs should be considered when designing an optimal medium and/or feeding strategy for achieving high cell density and high productivity of BHK cells. In this work, a cell density of 1.1 × 107 cells/mL was achieved in a conventional continuous culture by using a proper feed medium.  相似文献   

12.
A peculiar phenomenon, differing from the response of mammalian cells, occurred when Chinook salmon embryo (CHSE) cells were passaged in the medium lacking of both glucose and glutamine. To elucidate metabolic mechanism of CHSE cells, the metabolism parameters, key metabolic enzymes, and ATP levels were measured at different glucose and glutamine concentrations. In the glutamine-free culture, hexokinase activity kept constant, and lactate dehydrogenase (LDH) activity decreased. This indicated that lack of glutamine did not expedite glucose consumption but made it shift to lower lactate production and more efficient energy metabolism. The results coincided with the experimental results of unaltered specific glucose consumption rate and decreased yield coefficients of lactate to glucose. In the glucose-free culture, simultaneous increase of glutaminase activity and of specific ammonia production rate suggested an increased flux into the glutaminolysis pathway, and increases of both glutamate dehydrogenase activity and yield coefficient of ammonia to glutamine showed an increased flux into deamination pathway. However, when glucose and glutamine were both lacking, the specific consumption rates of most of amino acids increased markedly, together with decrease of LDH activity, indicating that pyruvate derived from amino acids, away from lactate production, remedied energy deficiency. When both glucose and glutamine were absent, intracellular ATP contents and the energy charge remained virtually unaltered.Revisions requested 16 December 2004; Revisions received 24 January 2005  相似文献   

13.
Mammalian cells have the ability to proliferate under different nutrient environments by utilizing different combinations of the nutrients, especially glucose and the amino acids. Under the conditions often used in in vitro cultivation, the cells consume glucose and amino acids in great excess of what is needed for making up biomass and products. They also produce large amounts of metabolites with lactate, ammonia, and some non-essential amino acids such as alanine as the most dominant ones. By controlling glucose and glutamine at low levels, cellular metabolism can be altered and can result in reduced glucose and glutamine consumption as well as in reduced metabolite formation. Using a fed-batch reactor to manipulate glucose at a low level (as compared to a typical batch culture), cell metabolism was altered to a state with substantially reduced lactate production. The culture was then switched to a continuous mode and allowed to reach a steady-state. At this steady-state, the concentrations of cells and antibody were substantially higher than a control culture that was initiated from a batch culture without first altering cellular metabolism. The lactate and other metabolite concentrations were also substantially reduced as compared to the control culture. This newly observed steady-state was achieved at the same dilution rate and feed medium as the control culture. The paths leading to the two steady-states, however, were different. These results demonstrate steady-state multiplicity. At this new steady-state, not only was glucose metabolism altered, but the metabolism of amino acids was altered as well. The amino acid metabolism in the new steady-state was more balanced, and the excretion of non-essential amino acids and ammonia was substantially lower. This approach of reaching a more desirable steady-state with higher concentrations of cells and product opens a new avenue for high-density- and high-productivity-cell culture.  相似文献   

14.
Oxygen is an important nutrient that may limit the productivity of commercial cell culture reactors. The transient responses of hybridoma growth and metabolism to step changes in the oxygen supply rate have been examined for dissolved oxygen concentrations (DO) ranging from 0.1% to 10% of air saturation in continuous culture. Metabolic quotients are reported for glucose, lactate, ammonia, oxygen, glutamine, alanine and other amino acids. A majority of the estimated ATP production was due to oxidative phosphorylation under all conditions tested. Decreases in the oxygen supply rate below the value required to maintain 0.5% DO caused the viable cell concentration to decrease. Glycolysis was enhanced at the lower oxygen concentrations, and after an initial decrease, the specific glutamine consumption rate was also higher. High residual glutamine concentrations occurred below 0.5% DO. Oxidation of other amino acids and production of serine were also inhibited. The cells subsequently adapted to low oxygen concentrations. The increase in cell concentration following the return to 10% DO was preceded by increased biosynthetic activity, as evidenced by transiently reduced yields of lactate from glucose, and alanine and ammonia from glutamine.  相似文献   

15.
Summary Recombinant human interferon- production by Chinese hamster ovary cells was restricted to the growth phase of batch cultures in serum-free medium. The specific interferon production rate was highest during the initial period of exponential growth but declined subsequently in parallel with specific growth rate. This decline in specific growth rate and interferon productivity was associated with a decline in specific metabolic activity as determined by the rate of glucose uptake and the rates of lactate and ammonia production. The ammonia and lactate concentrations that had accumulated by the end of the batch culture were not inhibitory to growth. Glucose was exhausted by the end of the growth phase but increased glucose concentrations did not improve the cell yield or interferon production kinetics. Analysis of amino acid metabolism showed that glutamine and asparagine were exhausted by the end of the growth phase, but supplementation of these amino acids did not improve either cell or product yields. When glutamine was omitted from the growth medium there was no cell proliferation but interferon production occurred, suggesting that recombinant protein production can be uncoupled from cell proliferation. Offprint requests to: P. M. Hayter  相似文献   

16.
The neuronal effects of glucose deficiency on amino acid metabolism was studied on three-dimensional cultures of rat telencephalon neurones. Transient (6 h) exposure of differentiated cultures to low glucose (0.25 mm instead of 25 mm) caused irreversible damage, as judged by the marked decrease in the activities of two neurone-specific enzymes and lactate dehydrogenase, 1 week after the hypoglycemic insult. Quantification of amino acids and ammonia in the culture media supernatants indicated increased amino acid utilization and ammonia production during glucose-deficiency. Measurement of intracellular amino acids showed decreased levels of alanine, glutamine, glutamate and GABA, while aspartate was increased. Added lactate (11 mm) during glucose deficiency largely prevented the changes in amino acid metabolism and ammonia production, and attenuated irreversible damage. Higher media levels of glutamine (4 mm instead of 0.25 mm) during glucose deprivation prevented the decrease of intracellular glutamate and GABA, while it further increased intracellular aspartate, ammonia production and neuronal damage. Both lactate and glutamine were readily oxidized in these neuronal cultures. The present results suggest that in neurones, glucose deficiency enhances amino acid deamination at the expense of transamination reactions. This results in increased ammonia production and neuronal damage.  相似文献   

17.
Alteration of mammalian cell metabolism by dynamic nutrient feeding   总被引:3,自引:0,他引:3  
Zhou W  Rehm J  Europa A  Hu WS 《Cytotechnology》1997,24(2):99-108
The metabolism of hybridoma cells was controlled to reduce metabolic formation in fed-batch cultures by dynamically feeding a salt-free nutrient concentrate. For this purpose, on-line oxygen uptake rate (OUR) measurement was used to estimate the metabolic demand of hybridoma cells and to determine the feeding rate of a concentrated solution of salt-free DMEM/F12 medium supplemented with other medium components. The ratios among glucose, glutamine and other medium components in the feeding nutrient concentrate were adjusted stoichiometrically to provide balanced nutrient conditions for cell growth. Through on-line control of the feeding rate of the nutrient concentrate, both glucose and glutamine concentrations were maintained at low levels of 0.5 and 0.2 mM respectively during the growth stage. The concentrations of the other essential amino acids were also maintained without large fluctuations. The cell metabolism was altered from that observed in batch cultures resulting in a significant reduction of lactate, ammonia and alanine production. Compared to a previously reported fed-batch culture in which only glucose was maintained at a low level and only a reduced lactate production was observed, this culture has also reduced the production of other metabolites, such as ammonium and alanine. As a result, a high viable cell concentration of more than 1.0 × 107 cells/mL was achieved and sustained over an extended period. The results demonstrate an efficient nutrient feeding strategy for controlling cell metabolism to achieve and sustain a high viable cell concentration in fed-batch mammalian cell cultures in order to enhance the productivity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The murine myeloma cell line Sp 2/0-Ag 14 was cultured in an ordinary batch culture and in a glutamine limited fed-batch culture. In batch culture, the overflow metabolism of glutamine ends in excess production of ammonium and the amino acids alanine, proline, ornithine, asparagine, glutamate, serine and glycine. This pattern was dramatically changed in the fed-batch culture. Glutamine limitation halved the cellular ammonium production and reduced the ratio of NH4 +/glutamine. The excess production of alanine, proline and ornithine was reduced by a factor of 2–6 while asparagine was not produced at all. In contrary to the other amino acids glycine production was increased. These results are discussed in view of the different nature of glutamine metabolism in the mitochondrial compartment vs. the cytosolic. Furthermore, essential amino acids were used more efficiently in the fed-batch as judged by the increase in the cellular yield coefficients in the range of 1.3–2.6 times for seven of the 11 consumed ones. In all, this leads to a more efficient use of the energy sources glucose and glutamine as revealed by an increase in the cellular yield coefficient for glucose by 70% and for glutamine by 61%.  相似文献   

19.
Glutamate synthase was purified about 250-fold from Thiobacillus thioparus and was characterized. The molecular weight was estimated as 280,000 g/mol. The enzyme showed absorption maxima at 280, 380, and 450 nm and was inhibited by Atebrin, suggesting that T. thioparus glutamate synthase is a flavoprotein. The enzyme activity was also inhibited by iron chelators and thiolbinding agents. The enzyme was specific for reduced nicotinamide adenine dinucleotide phosphate (NADPH) and alpha-ketoglutarate, but L-glutamine was partially replaced by ammonia as the amino donor. The Km values of glutamate synthase for NADPH, alpha-ketoglutarate, and glutamine were 3.0 muM, 50 muM, and 1.1 mM, respectively. The enzyme had a pH optimum between 7.3 and 7.8. Glutamate synthase from T. thioparus was relatively insensitive to feedback inhibition by single amino acids but was sensitive to the combined effects of several amino acids. Enzymes involved in glutamate synthesis in T. thioparus were studied. Glutamine synthetase and glutamate synthase, as well as two glutamate dehydrogenases (NADH and NADPH dependent), were present in this organism. This levels of glutamate synthase and glutamate dehydrogenase were similar in T. thioparus grown on 0.7 or 7.0 mM ammonium sulfate. The sum of the activities of both glutamate dehydrogenases was only 1/25 of that of glutamate synthase under the assay conditions. It was concluded that the glutamine pathway is important for ammonia assimilation in this autotrophic bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号