首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of neurons in the adult mammalian central nervous system (CNS) to regenerate after injury is limited by inhibitors in CNS myelin. Nogo-66 is the most important myelin inhibitor but the mechanisms of Nogo-66 inhibition of neurite outgrowth remain poorly understood. Particularly, the relationship between Nogo-66 and microtubule-affinity regulating kinase 2 (MARK2) has not been examined. This study investigated the role of MARK2 in Nogo-66 inhibition and the function of MARK2 in neurite elongation in neurons in vitro. MARK2 and phosphorylated MARK2 at Ser212 (p-Ser212) alterations in Neuro 2a cells were assessed at different Nogo-66 exposure times; the relationships between MARK2 and microtubule-associated proteins (MAPs) were determined via the overexpression or interference of MARK2. Our study reports that Nogo-66 inhibited the expression of total MARK2 but also reduced Ser212 phosphorylation of MARK2, whereas levels of MAP1-b and tau varied depending on MARK2 overexpression or reduced expression. Furthermore, MARK2 increased the proportion of tyrosinated α-tubulin, thereby disrupting the stability of tubulin, most likely affecting axonal growth. In line with these results, overexpression of MARK2 promoted neurite elongation and therefore is able to rescue the inhibitory effect of Nogo-66 on neurite growth. In conclusion, the intracellular PKB/MARK2/MAPs/α-tubulin pathway appears to be essential for neurite elongation in neurons in vitro. These results suggest a critical role for MARK2 in overcoming Nogo-66-induced inhibition of axon outgrowth in neurons. Pharmacological activators of MARK2 may be applicable to promote successful axonal outgrowth following many types of CNS injuries.  相似文献   

2.
Cruz MC  Fox DS  Heitman J 《The EMBO journal》2001,20(5):1020-1032
Cryptococcus neoformans is a fungal pathogen that causes meningitis in immunocompromised patients. Its growth is sensitive to the immunosuppressants FK506 and cyclosporin, which inhibit the Ca2+- calmodulin-activated protein phosphatase calcineurin. Calcineurin is required for growth at 37 degrees C and virulence of C.neoformans. We found that calcineurin is also required for mating. FK506 blocks mating of C.neoformans via FKBP12-dependent inhibition of calcineurin, and mutants lacking calcineurin are bilaterally sterile. Calcineurin is not essential for the initial fusion event, but is required for hyphal elongation and survival of the heterokaryon produced by cell fusion. It is also required for hyphal elongation in diploid strains and during asexual haploid fruiting of MATalpha cells in response to nitrogen limitation. Because mating and haploid fruiting produce infectious basidiospores, our studies suggest a second link between calcineurin and virulence of C.neoformans. Calcine urin regulates filamentation and 37 degrees C growth via distinct pathways. Together with studies revealing that calcineurin mediates neurite extension and neutrophil migration in mammals, our findings indicate that calcineurin plays a conserved role in the control of cell morphology.  相似文献   

3.
Tau and MAP1B are the main members of neuronal microtubule-associated proteins (MAPs), the functions of which have remained obscure because of a putative functional redundancy (Harada, A., K. Oguchi, S. Okabe, J. Kuno, S. Terada, T. Ohshima, R. Sato-Yoshitake, Y. Takei, T. Noda, and N. Hirokawa. 1994. Nature. 369:488-491; Takei, Y., S. Kondo, A. Harada, S. Inomata, T. Noda, and N. Hirokawa. 1997. J. Cell Biol. 137:1615-1626). To unmask the role of these proteins, we generated double-knockout mice with disrupted tau and map1b genes and compared their phenotypes with those of single-knockout mice. In the analysis of mice with a genetic background of predominantly C57Bl/6J, a hypoplastic commissural axon tract and disorganized neuronal layering were observed in the brains of the tau+/+map1b-/- mice. These phenotypes are markedly more severe in tau-/-map1b-/- double mutants, indicating that tau and MAP1B act in a synergistic fashion. Primary cultures of hippocampal neurons from tau-/-map1b-/- mice showed inhibited axonal elongation. In these cells, a generation of new axons via bundling of microtubules at the neck of the growth cones appeared to be disturbed. Cultured cerebellar neurons from tau-/-map1b-/- mice showed delayed neuronal migration concomitant with suppressed neurite elongation. These findings indicate the cooperative functions of tau and MAP1B in vivo in axonal elongation and neuronal migration as regulators of microtubule organization.  相似文献   

4.
Abstract: Previously, we observed that long-term treatment of distal nerve fibers of rat sympathetic neurons in compartmented cultures with phorbol 12-myristate 13-acetate (PMA) caused a reduction in the rate of neurite elongation by >50%. In the present report we show that protein kinase C (PKC) activity could be measured in extracts of distal neurites by an assay of the Ca2+-dependent phosphorylation of a PKC-specific octapeptide substrate. We found that local application of 1 µ M PMA for 24 h to distal neurites caused nearly complete down-regulation of Ca2+-dependent PKC activity measured in this manner. We determined that the inhibition of neurite elongation by PMA was mediated by local mechanisms in the neurites because local application of PMA to center compartments containing cell bodies and proximal neurites did not inhibit the rate of elongation of distal neurites. We then investigated the effects of the recently available PKC inhibitors, calphostin C and chelerythrine, finding that, like PMA, these inhibited the growth of distal neurites when applied locally to them, and had no effect when applied to cell bodies and proximal neurites. However, the inhibition of neurite growth by calphostin C occurred at a concentration far below its IC50 value for protein kinase inhibition, and both calphostin C and chelerythrine inhibited distal neurite growth even in neurons pretreated with PMA. Thus, it appears that these agents do not all inhibit neurite growth through the same mechanisms. Although the PKC activities involved in neurite elongation in sympathetic neurons have not been precisely defined, these data presented in this study indicate that protein kinases localized to growth cones play a complex and important role in regulating axonal growth.  相似文献   

5.
Chen QH  Liao XM  Wang SH 《生理学报》2011,63(6):511-516
为了研究聚ADP-核糖聚合酶-1 fpoly(ADP-ribose)polymerase-1,PARP-1]对微管相关蛋白tau磷酸化水平的影响,本实验分别用不同剂量(0.5,1,2,4 mmol/L)的PARP-1的抑制剂3-氨基苯甲酰胺(3-aminobenzamide,3-AB)处理稳定表达tau441蛋白的HE...  相似文献   

6.
PIP3 is involved in neuronal polarization and axon formation   总被引:1,自引:0,他引:1  
Recent experiments in various cell types such as mammalian neutrophils and Dictyostelium discoideum amoebae point to a key role for the lipid product of PI 3-kinase, PIP(3), in determining internal polarity. In neurons, as a consequence of the elongation of one neurite, the axon is specified and the cell acquires its polarity. To test the hypothesis that PI 3-kinase and PIP(3) may play a role in neuronal polarity, and especially in axon specification, we observed localization of PIP(3) visualized by Akt-PH-GFP in developing hippocampal neurons. We found that PIP(3) accumulates in the tip of the growing processes. This accumulation is inhibited by addition of PI 3-kinase inhibitors. Those inhibitors, consistently with a role of PIP(3) in process formation and elongation, delay the transition from stage 1 neurons to stage 3 neurons, and both axon formation and elongation. Moreover, when the immature neurite contacts a bead coated with laminin, a substrate known to induce axon specification, PIP(3) accumulates in its growth cone followed by a rapid elongation of the neurite. In such conditions, the addition of PI 3-kinase inhibitors inhibits both PIP(3) accumulation and future axon elongation. These results suggest that PIP(3) is involved in axon specification, possibly by stimulating neurite outgrowth. In addition, when a second neurite contacted the beads, this neurite rapidly elongates whereas the elongation of the first laminin-contacting neurite stops, consistently with the hypothesis of a negative feedback mechanism from the growing future axon to the other neurites.  相似文献   

7.
8.
Tau protein kinase I(TPKI)/glycogen synthase kinase (GSK)-3beta is abundant in the developing rat brain. The highly phosphorylated juvenile form of tau is present during the same developmental period. To study the role of TPKI/ GSK-3beta in neuronal growth, we examined the effects of lithium, a direct inhibitor of TPKI/GSK-3beta, using primary cultures of rat hippocampal neurons. Immunohistochemical staining of the neurons indicates that in the presence of lithium (2-10 mM), neurite growth becomes inhibited in a dose-dependent manner. Western blot analyses of the cell extracts revealed that the presence of lithium in the culture medium increased the amount of dephosphorylated tau while decreasing phosphorylation at Ser199 and Ser396, both of which are TPKI/GSK-3beta phosphorylation sites on tau. The inhibition by lithium is reversible. Although the amount of TPKI/GSK-3beta remained constant, the amount of tau decreased in a dose-dependent manner in the presence of lithium. TPKI/GSK-3beta was distributed in the somata and proximal neurites of the cultured hippocampal neurons. These results therefore suggest that TPKI/GSK-3beta plays an important role in the axonal growth of neurons during synapse formation in the developing brain.  相似文献   

9.
Activation of the RhoA-Rho kinase (ROCK) pathway stimulates actomyosin-driven contractility in many cell systems, largely through ROCK-mediated inhibition of myosin II light chain phosphatase. In neuronal cells, the RhoA-ROCK-actomyosin pathway signals cell rounding, growth cone collapse, and neurite retraction; conversely, inhibition of RhoA/ROCK promotes cell spreading and neurite outgrowth. The actin-binding protein p116(Rip), whose N-terminal region bundles F-actin in vitro, has been implicated in Rho-dependent neurite remodeling; however, its function is largely unknown. Here, we show that p116(Rip), through its C-terminal coiled-coil domain, interacts directly with the C-terminal leucine zipper of the regulatory myosin-binding subunits of myosin II phosphatase, MBS85 and MBS130. RNA interference-induced knockdown of p116(Rip) inhibits cell spreading and neurite outgrowth in response to extracellular cues, without interfering with the regulation of myosin light chain phosphorylation. We conclude that p116(Rip) is essential for neurite outgrowth and may act as a scaffold to target the myosin phosphatase complex to the actin cytoskeleton.  相似文献   

10.
Hyperphosphorylated tau, which is the major protein of the neurofibrillary tangles in Alzheimer's disease brain, is most probably the result of an imbalance of tau kinase and phosphatase activities in the affected neurons. By using metabolically competent rat brain slices as a model, we found that selective inhibition of protein phosphatase 2A by okadaic acid induced an Alzheimer-like hyperphosphorylation and accumulation of tau. The hyperphosphorylated tau had a reduced ability to bind to microtubules and to promote microtubule assembly in vitro. Immunocytochemical staining revealed hyperphosphorylated tau accumulation in pyramidal neurons in cornu ammonis and in neocortical neurons. The topography of these changes recalls the distribution of neurofibrillary tangles in Alzheimer's disease brain. Selective inhibition of protein phosphatase 2B with cyclosporin A did not have any significant effect on tau phosphorylation, accumulation, or function. These studies suggest that protein phosphatase 2A participates in regulation of tau phosphorylation, processing, and function in vivo. A down-regulation of protein phosphatase 2A activity can lead to Alzheimer-like abnormal hyperphosphorylation of tau.  相似文献   

11.
The cytoskeleton is essential for the structural organization of neurons and is influenced during development by excitatory stimuli such as activation of glutamate receptors. In particular, NMDA receptors are known to modulate the function of several cytoskeletal proteins and to influence cell morphology, but the underlying molecular and cellular mechanisms remain unclear. Here, we characterized the neurofilament subunit NF-M in cultures of developing mouse cortical neurons chronically exposed to NMDA receptor antagonists. Western blots analysis showed that treatment of cortical neurons with MK801 or AP5 shifted the size of NF-M towards higher molecular weights. Dephosphorylation assay revealed that this increased size of NF-M observed after chronic exposure to NMDA receptor antagonists was due to phosphorylation. Neurons treated with cyclosporin, an inhibitor of the Ca(2+)-dependent phosphatase calcineurin, also showed increased levels of phosphorylated NF-M. Moreover, analysis of neurofilament stability revealed that the phosphorylation of NF-M, resulting from NMDA receptor inhibition, enhanced the solubility of NF-M. Finally, cortical neurons cultured in the presence of the NMDA receptor antagonists MK801 and AP5 grew longer neurites. Together, these data indicate that a blockade of NMDA receptors during development of cortical neurons increases the phosphorylation state and the solubility of NF-M, thereby favoring neurite outgrowth. This also underlines that dynamics of the neurofilament and microtubule cytoskeleton is fundamental for growth processes.  相似文献   

12.
Identified neurons of the buccal ganglion of the snail Helisoma when isolated from their ganglionic environment and plated in cell culture grow new neurites that are tipped with motile growth cones. Addition of the neurotransmitter serotonin to the culture medium surrounding actively growing neurons causes an immediate, premature cessation of neurite elongation in specific identified neurons. Serotonin selectively inhibits neurite extension of neurons B19 and P5 while having no effect on the extension of neuron B5. Coincident with the serotonin evoked inhibition of neurite elongation is an inhibition of growth cone motile activities and a retraction of growth cone filopodia and lamellipodia. One site of serotonin's growth inhibitory actions is directly at the growth cone rather than at the neurites or cell body. A second area of this study concerns connectivity. In Helisoma neurons the formation of electrical synaptic connections critically relies on both potential partner neurons having a mutual interaction of actively growing neurites. Neurons in a nongrowing state do not form electrical synapses (Hadley et al., 1983). As a result of inhibiting neurite extension, serotonin is able to affect synaptogenesis by preventing certain neurons (neurons B19) from forming electrical synaptic connections with other neurons (neurons B5) that are themselves competent to interconnect. Thus, by inhibiting neurite extension, serotonin is capable of regulating both the development of arborizations and the formation of connectivity.  相似文献   

13.
Calcineurin is a serine/threonine phosphatase originally involved in the immune response but is also known for its role as a central mediator in various non-immunological intracellular signals. The nuclear factor of activated T cell (NFAT) proteins are the most widely described substrates of calcineurin, but ongoing work has uncovered other substrates among which are the cytoskeleton organizing proteins (i.e. cofilin, synaptopodin, WAVE-1). Control over cytoskeletal proteins is of outmost interest because the phenotypic properties of cells are dependent on cytoskeleton architecture integrity, while rearrangements of the cytoskeleton are implicated in both physiological and pathological processes. Previous works investigating the role of calcineurin on the cytoskeleton have focused on neurite elongation, myocyte hypertrophic response and recently in kidney cells structure. Nuclear factor of activated T cell activation is expectedly identified in the signalling pathways for calcineurin-induced cytoskeleton organization, however new NFAT-independent pathways have also been uncovered. The aim of this review is to summarize the current knowledge on the effects of calcineurin on cytoskeletal proteins and related intracellular pathways. These newly described properties of calcineurin on cytoskeletal proteins may explain some of the beneficial or deleterious effects observed in kidney cells associated with the use of the calcineurin inhibitors, cyclosporine and tacrolimus.  相似文献   

14.
Nerve growth factor (NGF) and insulin-like growth factor-1 (IGF-1) play an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Adult DRG neurons exhibit neurotrophin-independent survival, providing an excellent system with which to study trophic factor effects on neurite growth in the absence of significant survival effects. Using young adult rat DRG neurons we have demonstrated a synergistic effect of NGF plus IGF (N + I), compared with either factor alone, in promoting neurite growth. Not only does the presence of NGF and IGF-1 enhance neurite initiation, it also significantly augments the extent of neurite branching and elongation. We have also examined potential mechanism(s) underlying this synergistic effect. Immunoblotting experiments of classical growth factor intermediary signalling pathways (PI 3-K-Akt-GSK-3 and Ras-Raf-MAPK) were performed using phospho-specific antibodies to assess activation state. We found that activation of Akt and MAPK correlated with neurite elongation and branching. However, using pharmacological inhibitors, we observed that a PI 3-K pathway involving both Akt and GSK-3 appeared to be more important for neurite extension and branching than MAPK-dependent signalling. In fact, inhibition of activation of MAPK with U0126 resulted in increased neuritic branching, possibly as a result of the concomitant increase observed in phospho-Akt. Furthermore, inhibition of GSK3 (which is negatively regulated by phosphorylation on S9/S21) also resulted in increased growth. Our data point to signalling convergence upon the PI 3-K-Akt-GSK-3 pathway that underlies the NGF plus IGF synergism. In addition, to our knowledge, this is the first report in primary neurons that inhibition of GSK3 results in an enhanced neurite growth.  相似文献   

15.
Nerve growth cones contain mRNA and its translational machinery and thereby synthesize protein locally. The regulatory mechanisms in the growth cone, however, remain largely unknown. We previously found that the calcium entry‐induced increase of phosphorylation of eukaryotic elongation factor‐2 (eEF2), a key component of mRNA translation, within growth cones showed growth arrest of neurites. Because dephosphorylated eEF2 and phosphorylated eEF2 are known to promote and inhibit mRNA translation, respectively, the data led to the hypothesis that eEF2‐mediating mRNA translation may regulate neurite outgrowth. Here, we validated the hypothesis by using a chromophore‐assisted light inactivation (CALI) technique to examine the roles of localized eEF2 and eEF2 kinase (EF2K), a specific calcium calmodulin‐dependent enzyme for eEF2 phosphorylation, in advancing growth cones of cultured chick dorsal root ganglion (DRG) neurons. The phosphorylated eEF2 was weakly distributed in advancing growth cones, whereas eEF2 phosphorylation was increased by extracellular adenosine triphosphate (ATP)‐evoked calcium transient through P2 purinoceptors in growth cones and resulted in growth arrest of neurites. The increase of eEF2 phosphorylation within growth cones by inhibition of protein phosphatase 2A known to dephosphorylate eEF2 also showed growth arrest of neurites. CALI of eEF2 within growth cones resulted in retardation of neurite outgrowth, whereas CALI of EF2K enhanced neurite outgrowth temporally. Moreover, CALI of EF2K abolished the ATP‐induced retardation of neurite outgrowth. These findings suggest that an eEF2 phosphorylation state localized to the growth cone regulates neurite outgrowth. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

16.
Yu DY  Luo J  Bu F  Song GJ  Zhang LQ  Wei Q 《Biological chemistry》2006,387(7):977-983
Calcineurin is a Ca2+/calmodulin-dependent phosphatase that dephosphorylates numerous substrates in different neuronal compartments. Genetic and pharmacological studies have provided insight into its involvement in the brain. Cyclosporin A (CsA) is used as a specific calcineurin inhibitor in many pharmacological experiments. However, the calcineurin activity of CsA-treated brain has not been reported. To examine the relationship between calcineurin activity and brain function, we injected CsA into the left lateral ventricle of the mouse brain and assayed calcineurin activity. CsA reduced calcineurin activity in a dose-dependent manner, without affecting the amount of calcineurin protein. Assays of the effect of protein phosphatase inhibitors on CsA-injected mouse brain extracts and kinetic analysis revealed that CsA inhibited calcineurin activity in a non-competitive manner in vivo, in agreement with in vitro results. Injection of CsA led to enhanced phosphorylation of tau at Ser-262 (12E8 site), Ser-198, Ser-199, and/or Ser-202 (Tau-1 site) and Ser-396 and/or Ser-404 (PHF-1 site), as well as to impaired spatial memory, which are two characteristic features of Alzheimer's disease. We propose that inhibition of calcineurin may play an important role in Alzheimer's disease.  相似文献   

17.
Brain tau protein is phosphorylated in vitro by cdc2 and MAP2 kinases, obtained through immunoaffinity purification from rat brain extracts. The phosphorylation sites are located on the tau molecule both upstream and downstream of the tubulin-binding motifs. A synthetic peptide comprising residues 194-213 of the tau sequence, which contains the epitope recognized by the monoclonal antibody tau-1, is also efficiently phosphorylated in vitro by cdc2 and MAP2 kinases. Phosphorylation of this peptide markedly reduces its interaction with the antibody tau-1, as it has been described for tau protein in Alzheimer's disease. Both cdc2 and MAP2 kinases are present in brain extracts obtained from Alzheimer's disease patients. Interestingly, the level of cdc2 kinase may be increased in patient brains as compared with non-demented controls. These results suggest a role for cdc2 and MAP2 kinases in phosphorylating tau protein at the tau-1 epitope in Alzheimer's disease.  相似文献   

18.
As a dual‐specificity phosphatase catalyzing the dephosphorylation of phosphatidylinositols and protein substrates, PTEN is critically involved in the nervous system development. However, the regulatory role of PTEN in neurite outgrowth is still controversial, and the downstream signaling events remain elusive. Here, we show that PTEN knockdown promoted the proliferation and survival but not the neurite outgrowth of rat pheochromocytoma PC12 cells when exposed to nerve growth factor (NGF). In contrast, selective PTEN silencing in differentiating PC12 cells that express nestin significantly facilitated neurite elongation. Elevated Akt and Erk1/2 phosphorylation was involved in accelerated NGF‐induced neurite development of PC12 cells following PTEN knockdown. Discriminated roles of the lipid phosphatase and protein phosphatase activities of PTEN in neurite development, as well as the detailed molecular profiles affected by these phosphatase activities, were defined by restored expression of a lipid phosphatase‐deficient PTEN mutant following endogenous PTEN silencing in PC12 cells. Our study suggests an overall inhibitory effect of PTEN in neurite development reconciled by a probably indispensable role of this phosphatase in the initiation of PC12 cell differentiation. J. Cell. Biochem. 111: 1390–1400, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Neurofibrillary tangles (NFTs) are classic lesions of Alzheimer's disease. NFTs are bundles of abnormally phosphorylated tau, the paired helical filaments. The initiating mechanisms of NFTs and their role in neuronal loss are still unknown. Accumulating evidence supports a role for the activation of proteolytic enzymes, caspases, in neuronal death observed in brains of patients with Alzheimer's disease. Alterations in tau phosphorylation and tau cleavage by caspases have been previously reported in neuronal apoptosis. However, the links between the alterations in tau phosphorylation and its proteolytic cleavage have not yet been documented. Here, we show that, during staurosporine-induced neuronal apoptosis, tau first undergoes transient hyperphosphorylation, which is followed by dephosphorylation and cleavage. This cleavage generated a 10-kDa fragment in addition to the 17- and 50-kDa tau fragments previously reported. Prior tau dephosphorylation by a glycogen synthase kinase-3beta inhibitor, lithium, enhanced tau cleavage and sensitized neurons to staurosporine-induced apoptosis. Caspase inhibition prevented tau cleavage without reversing changes in tau phosphorylation linked to apoptosis. Furthermore, the microtubule depolymerizing agent, colchicine, induced tau dephosphorylation and caspase-independent tau cleavage and degradation. Both phenomena were blocked by inhibiting protein phosphatase 2A (PP2A) by okadaic acid. These experiments indicate that tau dephosphorylation precedes and is required for its cleavage and degradation. We propose that the absence of cleavage and degradation of hyperphosphorylated tau (due to PP2A inhibition) may lead to its accumulation in degenerating neurons. This mechanism may contribute to the aggregation of hyperphosphorylated tau into paired helical filaments in Alzheimer's disease where reduced PP2A activity has been reported.  相似文献   

20.
Laminin, an extracellular matrix molecule, is known to promote neurite growth. In the present study, the effects of soluble laminin on organelle transport and their relation to neurite growth were investigated in cultured dissociated mouse dorsal root ganglion (DRG) neurons. Laminin added into the extracellular medium was deposited on the surface of DRG neurons. DRG neurons incubated with soluble laminin exhibited branched, long, and thin neurites. Time-lapse study demonstrated that many small-diameter branches were newly formed after the addition of laminin. Thus, the growths of large-diameter primary neuritis, arising from cell bodies and branches extended from growth cones of primary neuritis, were analyzed separately. Laminin decreased the growth rate of primary neurites but increased that of branches. In primary neurites, acute addition of laminin rapidly decreased organelle movement in the neurite shaft and growth cone, accompanied by slowing of the growth cone advance. Branching of primary neurites occurred in response to laminin in some growth cones. In these growth cones, organelles protruded into nascent branches. In branches, soluble laminin increased organelle movement in the growth cone and the distal portion of the shaft. These results suggest that laminin inhibits the elongation of primary neurites but promotes branching and elongation of branches, all of which seem to be closely related to organelle transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号