首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis signaling through CD95 (Fas/APO-1) involves aggregation and clustering of the receptor followed by its actin-dependent internalization. Internalization is required for efficient formation of the death-inducing signaling complex (DISC) with maximal recruitment of FADD, caspase-8/10 and c-FLIP occurring when the receptor has reached an endosomal compartment. The first detectable event during CD95 signaling is the formation of SDS-stable aggregates likely reflecting intense oligomerization of the receptor. We now demonstrate that these SDS-stable forms of CD95 correspond to very high molecular weight DISC complexes (hiDISC) and are the sites of caspase-8 activation. hiDISCs are found both inside and outside of detergent-resistant membranes. The formation of SDS-stable CD95 aggregates involves palmitoylation of the membrane proximal cysteine 199 in CD95. Cysteine 199 mutants no longer form SDS-stable aggregates, and inhibition of palmitoylation reduces internalization of CD95 and activation of caspase-8. Our data demonstrate that SDS-stable forms of CD95 are the sites of apoptosis initiation and represent an important early step in apoptosis signaling through CD95 before activation of caspases.  相似文献   

2.
Oncogenic Ras induces cells to undergo apoptosis after inhibition of protein kinase C (PKC) activity. The integration of differential signaling pathways is required for full execution of apoptosis. In this study, we used Jurkat as well as Fas/FADD-defective cell lines expressing v-ras to determine the upstream elements required for activation of the caspase cascade in PKC/Ras-mediated apoptosis. During this Ras-induced apoptotic process, caspase-8 was activated, possibly through its binding to Fas-associated death domain (FADD), in Jurkat/ras and Jurkat/Fas(m)/ras cells but not in Jurkat/FADD(m)/ras cells. c-Jun NH(2)-terminal kinase (JNK) was activated in all three cell lines expressing ras in response to apoptotic stimulation. Suppression of JNK by dn-JNK1 blocked the interaction of FADD and caspase-8 and partially protected Jurkat/ras and Jurkat/Fas(m)/ras cells from apoptosis. However, dn-JNK1 had no effect on PKC/Ras-induced apoptosis in Jurkat/FADD(m)/ras cells. The results indicate that FADD/caspase-8 signaling is involved in PKC/Ras-mediated apoptosis, and JNK may be an upstream effector of caspase activation.  相似文献   

3.
Fas, a member of the tumor necrosis factor receptor family, can upon ligation by its ligand or agonistic antibodies trigger signaling cascades leading to cell death in lymphocytes and other cell types. Such signaling cascades are initiated through the formation of a membrane death-inducing signaling complex (DISC) that includes Fas, the Fas-associated death domain protein (FADD) and caspase-8. We report here that a considerable fraction of Fas is constitutively partitioned into sphingolipid- and cholesterol-rich membrane rafts in mouse thymocytes as well as the L12.10-Fas T cells, and Fas ligation promotes a rapid and specific recruitment of FADD and caspase-8 to the rafts. Raft disruption by cholesterol depletion abolishes Fas-triggered recruitment of FADD and caspase-8 to the membrane, DISC formation and cell death. Taken together, our results provide the first demonstration for an essential role of membrane rafts in the initiation of Fas-mediated cell death signaling.  相似文献   

4.
CD95 (APO-1/Fas) is an apoptosis-inducing receptor belonging to the tumor necrosis factor receptor superfamily. Multimerization of CD95 leads to instant recruitment of the signaling molecules FADD and caspase-8 to the activated receptor forming the death-inducing signaling complex (DISC). DISC formation is the first essential step of CD95 signaling and results in activation of caspase-8 starting a signaling cascade that leads to apoptosis. Here we describe a method for analyzing the CD95 DISC. The method is based on coimmunoprecipitation of the signaling molecules with the activated CD95 receptor followed by Western blot detection of associated molecules. Therefore, this method can analyze the very first signaling events during CD95-mediated apoptosis.  相似文献   

5.
Ab binding to CD20 has been shown to induce apoptosis in B cells. In this study, we demonstrate that rituximab sensitizes lymphoma B cells to Fas-induced apoptosis in a caspase-8-dependent manner. To elucidate the mechanism by which Rituximab affects Fas-mediated cell death, we investigated rituximab-induced signaling and apoptosis pathways. Rituximab-induced apoptosis involved the death receptor pathway and proceeded in a caspase-8-dependent manner. Ectopic overexpression of FLIP (the physiological inhibitor of the death receptor pathway) or application of zIETD-fmk (specific inhibitor of caspase-8, the initiator-caspase of the death receptor pathway) both specifically reduced rituximab-induced apoptosis in Ramos B cells. Blocking the death receptor ligands Fas ligand or TRAIL, using neutralizing Abs, did not inhibit apoptosis, implying that a direct death receptor/ligand interaction is not involved in CD20-mediated cell death. Instead, we hypothesized that rituximab-induced apoptosis involves membrane clustering of Fas molecules that leads to formation of the death-inducing signaling complex (DISC) and downstream activation of the death receptor pathway. Indeed, Fas coimmune precipitation experiments showed that, upon CD20-cross-linking, Fas-associated death domain protein (FADD) and caspase-8 were recruited into the DISC. Additionally, rituximab induced CD20 and Fas translocation to raft-like domains on the cell surface. Further analysis revealed that, upon stimulation with rituximab, Fas, caspase-8, and FADD were found in sucrose-gradient raft fractions together with CD20. In conclusion, in this study, we present evidence for the involvement of the death receptor pathway in rituximab-induced apoptosis of Ramos B cells with concomitant sensitization of these cells to Fas-mediated apoptosis via Fas multimerization and recruitment of caspase-8 and FADD to the DISC.  相似文献   

6.
In T lymphocytes, the role of Akt in regulating Fas/Fas ligand (FasL)-mediated apoptotic signaling and death is not clearly understood. In this study, we observed that inhibition of Akt causes enhanced expression of FasL mRNA and protein and increased death-inducing signaling complex (DISC) formation with Fas-associated death domain (FADD) and procaspase-8 recruitment. Also, caspase-8 was activated at the DISC with accompanying decrease in c-FLIPs expression. FasL neutralizing antibody significantly decreased apoptotic death in the Akt-inhibited T cells. Additionally, Akt inhibition-induced Fas signaling was observed to link to the mitochondrial pathway via Bid cleavage. Further, inhibition of caspase-8 activity effectively blocked the loss of mitochondrial membrane potential and DNA fragmentation, suggesting that DISC formation and subsequent caspase-8 activation are critical initiating events in Akt inhibition-induced apoptotic death in T lymphocytes. These data demonstrate yet another important survival function governed by Akt kinase in T lymphocytes, which involves the regulation of FasL expression and consequent apoptotic signaling.  相似文献   

7.
Apoptosis is modulated by extrinsic and intrinsic signaling pathways through the formation of the death receptor-mediated death-inducing signaling complex (DISC) and the mitochondrial-derived apoptosome, respectively. Ino-C2-PAF, a novel synthetic phospholipid shows impressive antiproliferative and apoptosis-inducing activity. Little is known about the signaling pathway through which it stimulates apoptosis. Here, we show that this drug induces apoptosis through proteins of the death receptor pathway, which leads to an activation of the intrinsic apoptotic pathway. Apoptosis induced by Ino-C2-PAF and its glucosidated derivate, Glc-PAF, was dependent on the DISC components FADD and caspase-8. This can be inhibited in FADD−/− and caspase-8−/− cells, in which the breakdown of the mitochondrial membrane potential, release of cytochrome c and activation of caspase-9, -8 and -3 do not occur. In addition, the overexpression of crmA, c-Flip or dominant negative FADD as well as treatment with the caspase-8 inhibitor z-IETD-fmk protected against Ino-C2-PAF-induced apoptosis. Apoptosis proceeds in the absence of CD95/Fas-ligand expression and is independent of blockade of a putative death-ligand/receptor interaction. Furthermore, apoptosis cannot be inhibited in CD95/Fas−/− Jurkat cells. Expression of Bcl-2 in either the mitochondria or the endoplasmic reticulum (ER) strongly inhibited Ino-C2-PAF- and Glc-PAF-induced apoptosis. In conclusion, Ino-C2-PAF and Glc-PAF trigger a CD95/Fas ligand- and receptor-independent atypical DISC that relies on the intrinsic apoptotic pathway via the ER and the mitochondria.  相似文献   

8.
The CD95 (Fas/APO-1) death-inducing signaling complex (DISC) is essential for the initiation of CD95-mediated apoptotic and nonapoptotic responses. The CD95 DISC comprises CD95, FADD, procaspase-8, procaspase-10, and c-FLIP proteins. Procaspase-8 and procaspase-10 are activated at?the DISC, leading to the formation of active caspases and apoptosis initiation. In this study we analyzed the?stoichiometry of the CD95 DISC. Using quantitative western blots, mass spectrometry, and mathematical modeling, we reveal that the amount of DED proteins procaspase-8/procaspase-10 and c-FLIP at the DISC exceeds that of FADD by several-fold. Furthermore, our findings imply that procaspase-8, procaspase-10, and c-FLIP could form DED chains at the DISC, enabling the formation of dimers and efficient activation of caspase-8. Taken together, our findings provide an enhanced understanding of caspase-8 activation and initiation of apoptosis at the DISC.  相似文献   

9.
Yang JK  Wang L  Zheng L  Wan F  Ahmed M  Lenardo MJ  Wu H 《Molecular cell》2005,20(6):939-949
The death-inducing signaling complex (DISC) comprising Fas, Fas-associated death domain (FADD), and caspase-8/10 is assembled via homotypic associations between death domains (DDs) of Fas and FADD and between death effector domains (DEDs) of FADD and caspase-8/10. Caspase-8/10 and FLICE/caspase-8 inhibitory proteins (FLIPs) that inhibit caspase activation at the DISC level contain tandem DEDs. Here, we report the crystal structure of a viral FLIP, MC159, at 1.2 Angstroms resolution. It reveals a noncanonical fold of DED1, a dumbbell-shaped structure with rigidly associated DEDs and a different mode of interaction in the DD superfamily. Whereas the conserved hydrophobic patch of DED1 interacts with DED2, the corresponding region of DED2 mediates caspase-8 recruitment and contributes to DISC assembly. In contrast, MC159 cooperatively assembles with Fas and FADD via an extensive surface that encompasses the conserved charge triad. This interaction apparently competes with FADD self-association and disrupts higher-order oligomerization required for caspase activation in the DISC.  相似文献   

10.
To investigate apoptosis resistance upon restimulation in human peripheral blood T lymphocytes, we used the following in vitro model. This model represents the main features of T cell reactivity: freshly isolated PHA-activated T cells cultured in IL-2 for a prolonged period of time develop a CD95 (APO-1/Fas) apoptosis-sensitive phenotype. These T cells represent activation-induced cell death-sensitive T cells during the down phase of an immune response. A fraction of apoptosis-sensitive activated T cells becomes apoptosis resistant upon TCR/CD3 restimulation. CD95 apoptosis sensitivity requires formation of a functional receptor associated death-inducing signaling complex (DISC), i.e., a protein complex of CD95 receptors, the adaptor Fas-associated death domain protein (FADD)/MORT1 and caspase-8 (FADD-like IL-1ss-converting enzyme (FLICE), MACH, Mch5). We identified activation of procaspase-8 at the DISC as the main target for the protective activity of TCR/CD3 restimulation. We found that procaspase-8 cleavage is reduced in T cells after TCR/CD3 restimulation. In addition, we detected up-regulation of c-FLIP(S) (the short splice variant of the cellular FLICE inhibitory protein) and strongly enhanced recruitment of c-FLIP(S) into the DISC. These data suggest that the recruitment of c-FLIP(S) into the DISC results in reduced DISC and caspase-8 activity.  相似文献   

11.
FAF1 has been introduced as a Fas-binding protein. However, the function of FAF1 in apoptotic execution is not established. Based on the fact that FAF1 is a Fas-binding protein, we asked if FAF1 interacted with other members of the Fas-death-inducing signaling complex (Fas-DISC) such as Fas-associated death domain protein (FADD) and caspase-8. FAF1 could interact with caspase-8 and FADD in vivo as well as in vitro. The death effector domains (DEDs) of caspase-8 and FADD interacted with the amino acid 181-381 region of FAF1, previously known to have apoptotic potential. Considering that FAF1 directly binds to Fas and caspase-8, FAF1 shows similar protein-interacting characteristics to that of FADD. In the coimmunoprecipitation with an anti-Fas antibody (APO-1) in Jurkat cells, endogenous FAF1 was associated with the precipitates in which caspase-8 was present. By confocal microscopic analysis, both Fas and FAF1 were detected in the cytoplasmic membrane before Fas activation, and in the cytoplasm after Fas activation. FADD and caspase-8 colocalized with Fas in Jurkat cells validating the presence of FAF1 in the authentic Fas-DISC. Overexpression of FAF1 in Jurkat cells caused significant apoptotic death. In addition, the FAF1 deletion mutant lacking the N terminus where Fas, FADD, and caspase-8 interact protected Jurkat cells from Fas-induced apoptosis demonstrating dominant-negative phenotype. Cell death by overexpression of FAF1 was suppressed significantly in both FADD- and caspase-8-deficient Jurkat cells when compared with that in their parental Jurkat cells. Collectively, our data show that FAF1 is a member of Fas-DISC acting upstream of caspase-8.  相似文献   

12.
Apoptosis triggered by the death receptor CD95 (APO-1 or Fas) is pivotal for the homeostasis of the immune system. We investigated differential effects of glutathione depletion on CD95-triggered apoptosis in T and B cell lines as well as the glutathione dependence of caspase-8 activation. In B lymphoblastoid SKW6.4 cells, CD95-mediated apoptosis was prevented upstream of caspase-8 activation and caspase-3-like activity after acute glutathione depletion by diethyl maleate or cis-chloro-dinitrobenzene. Immunoprecipitation of the death-inducing signaling complex (DISC) revealed that the DISC was still formed in the glutathione-depleted state. The first cleavage step of procaspase-8 activation at the DISC, however, was inhibited. Accordingly, under cell-free conditions, radiolabeled procaspase-8 was processed at the immunoprecipitated DISC only after the addition of exogenous dithiothreitol or reduced glutathione. We also observed suppression of CD95-mediated apoptosis in glutathione-depleted CEM and H9 cells. Notably, Jurkat cells still died upon CD95 engagement under this condition, displaying incomplete nuclear fragmentation and a partial switch to necrosis; this may be explained by reduced cytochrome c/dATP-mediated caspase activation observed in cytosol from glutathione-depleted Jurkat cytosol. Our data indicate that the activation of caspase-8 at the DISC and hence CD95-mediated apoptosis induction shows a cell-specific requirement for intracellular glutathione.  相似文献   

13.
Death receptors in the TNF receptor superfamily signal for apoptosis via the ordered recruitment of FADD and caspase-8 to a death-inducing signaling complex (DISC). However, the nature of the protein-protein interactions in the signaling complex is not well defined. Here we show that FADD self-associates through a conserved RXDLL motif in the death effector domain (DED). Despite exhibiting similar binding to both Fas and caspase-8 and preserved overall secondary structure, FADD RDXLL motif mutants cannot reconstitute FasL- or TRAIL-induced apoptosis and fail to recruit caspase-8 into the DISC of reconstituted FADD-deficient cells. Abolishing self-association can transform FADD into a dominant-negative mutant that interferes with Fas-induced apoptosis and formation of microscopically visible receptor oligomers. These findings suggest that lateral interactions among adapter molecules are required for death receptor apoptosis signaling and implicate self-association into oligomeric assemblies as a key function of death receptor adapter proteins in initiating apoptosis.  相似文献   

14.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

15.
The Fas/Fas ligand (L) system plays an important role in the maintenance of peripheral B cell tolerance and the prevention of misguided T cell help. CD40-derived signals are required to induce Fas expression on virgin B cells and to promote their susceptibility to Fas-mediated apoptosis. In the current study, we have analyzed the early biochemical events occurring upon Fas ligation in CD40L-activated primary human tonsillar B cells with respect to Fas-associated death domain protein (FADD), caspase-8/FADD-like IL-1beta-converting enzyme (FLICE), and c-FLICE inhibitory protein (FLIP). We report here that Fas-induced apoptosis in B cells does not require integrity of the mitochondrial Apaf-1 pathway and that caspase-8 is activated by association with the death-inducing signaling complex (DISC), i.e., upstream of the mitochondria. We show that both FADD and the zymogen form of caspase-8 are constitutively expressed at high levels in virgin B cells, whereas c-FLIP expression is marginal. In contrast, c-FLIP, but neither FADD nor procaspase-8, is strongly up-regulated upon ligation of CD40 or the B cell receptor on virgin B cells. Finally, we have found that c-FLIP is also recruited and cleaved at the level of the DISC in CD40L-activated virgin B cells. We propose that c-FLIP expression delays the onset of apoptosis in Fas-sensitive B cells. The transient protection afforded by c-FLIP could offer an ultimate safeguard mechanism against inappropriate cell death or allow recruitment of phagocytes to ensure efficient removal of apoptotic cells.  相似文献   

16.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors.  相似文献   

17.
Cell shrinkage and loss of intracellular K(+) are early requisite features for the activation of effector caspases and apoptotic nucleases in Fas receptor-mediated apoptosis of Jurkat cells, although the mechanisms responsible for both process remain unclear (Bortner, C. D., Hughes, F. M., Jr., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 32436-32442). We have now investigated the role of protein kinase C (PKC)-dependent signaling in the regulation of Fas-induced cell shrinkage and loss of K(+) during apoptosis. Anti-Fas induced cell shrinkage was blocked during PKC stimulation by the phorbol ester 12-O-tetradecanoylphorbol-3-acetate (PMA) and by bryostatin-1. Conversely, inhibition of PKC with G?6976, enhanced the anti-Fas-mediated loss of cell volume. Analyses of mitochondrial membrane potential and DNA fragmentation revealed that the PKC-mediated effect observed in cell volume is propagated to these late features of apoptosis. Flow cytometric analyses and (86)Rb efflux experiments revealed that a primary effect of PKC appears to be on the modulation of Fas-induced K(+) efflux, since both PMA and bryostatin-1 inhibited extrusion of K(+) that occurs during Fas-mediated cell death, and G?6976 exacerbated the effect of anti-Fas. Interestingly, high extracellular K(+) significantly blocked the effect of anti-Fas alone or anti-Fas combined with G?6976, suggesting an underlying effect of PKC on K(+) loss. Western blot analyses showed the caspase-dependent proteolysis of PKC isotypes delta, epsilon, and theta in whole cell extracts from anti-Fas treated Jurkat T cells. However, stimulation of PKC by PMA or bryostatin-1 prevented this isotypic-specific PKC cleavage during apoptosis, providing further evidence that PKC itself exerts an upstream signal in apoptosis and controls the caspase-dependent proteolytic degradation of PKC isotypes. Finally, we show that PMA or bryostatin-1 prevents the activation of caspase-3 and caspase-8. Thus, this study shows that the protective effect that PKC stimulation exerts in the Fas-mediated apoptotic pathway occurs at a site upstream of caspases-3 and -8.  相似文献   

18.
Carbon monoxide promotes Fas/CD95-induced apoptosis in Jurkat cells   总被引:2,自引:0,他引:2  
A properly functioning immune system is dependent on programmed cell death/apoptosis at virtually every stage of lymphocyte development and activity. Carbon monoxide (CO), an enzymatic product of heme oxyenase-1, has been shown to possess anti-apoptotic effects in a number of different model systems. The purpose of the present study was to expand on this knowledge to determine the role of CO in the well established model of Fas/CD95-induced apoptosis in Jurkat cells, and to determine the mechanism by which CO can modulate T-cell apoptosis. Exposure of Jurkat cells to CO resulted in augmentation in Fas/CD95-induced apoptosis, which correlated with CO-induced up-regulation of the pro-apoptotic protein FADD as well as activation of caspase-8, -9, and -3 while simultaneously down-regulating the anti-apoptotic protein BCL-2. These effects of CO were lost with overexpression of the small interfering RNA of FADD. CO, as demonstrated previously in endothelial cells, was also anti-apoptotic in Jurkat cells against tumor necrosis factor and etoposide. We further demonstrate that this pro-apoptotic effect of CO was independent of reactive oxygen species production and involved inhibition in Fas/CD95-induced activation of the pro-survival ERK MAPK. We conclude that in contrast to other studies showing the anti-apoptotic effects of CO, Fas/CD95-induced cell death in Jurkat cells is augmented by exposure to CO and that this occurs in part via inhibition in the activation of ERK MAPK. These data begin to elucidate specific differences with regard to the effects of CO and cell death pathways and provide important and valuable insight into potential mechanisms of action.  相似文献   

19.
Members of the viral Flice/caspase-8 inhibitory protein (v-FLIP) family prevent induction of apoptosis by death receptors through inhibition of the processing and activation of procaspase-8 and -10 at the level of the receptor-associated death-inducing signaling complex (DISC). Here, we have addressed the molecular function of the v-FLIP member MC159 of the human molluscum contagiosum virus. MC159 FLIP powerfully inhibited both caspase-dependent and caspase-independent cell death induced by Fas. The C-terminal region of MC159 bound TNF receptor-associated factor (TRAF)3, was necessary for optimal TRAF2 binding, and mediated the recruitment of both TRAFs into the Fas DISC. TRAF-binding-deficient mutants of MC159 showed impaired inhibition of FasL-induced caspase-8 processing and Fas internalization, and had reduced antiapoptotic activity. Our findings provide evidence that a MC159/TRAF2/TRAF3 complex regulates a new aspect of Fas signaling, and identify MC159 FLIP as a molecule that targets multiple features of Fas-induced cell death.  相似文献   

20.
Previous studies have shown that Protein kinase C (PKC) stimulation may interfere with Fas signaling pathway and Fas ligand (FasL)-induced apoptosis. In this study, we investigated in Jurkat cells, a FasL-sensitive human T-cell model, whether PKC(zeta) targets apical events of Fas signaling. We describe for the first time that in Jurkat cells, both PKC(zeta) and Prostate apoptosis response-4 (Par-4), one of the major endogenous PKC(zeta) regulators, are components of the death inducing signaling complex (DISC). Using PKC(zeta) overexpressing cells or si-RNA depletion, we demonstrate that PKC(zeta) interferes neither with Fas expression nor Fas clustering in raft microdomains, but negatively regulates FasL-induced apoptosis by interfering with DISC formation and subsequent caspase-8 processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号